
The RAISE
Specification Language

The RAISE Language Group

Copyright c© 1992 by CRI A/S, Denmark.

Part No.: LACOS/CRI/DOC/8/V1

Date: 20 January 1992

The RAISE Language Group:

Chris George,
Peter Haff,
Klaus Havelund,
Anne E. Haxthausen,
Robert Milne,
Claus Bendix Nielsen,
Søren Prehn,
Kim Ritter Wagner

Contents

Editorial Preface xv

Preface xvii

Acknowledgements xix

1 Introduction 1
1.1 Structure of the Book 2
1.2 The RAISE Background 2
1.3 The LaCoS Continuation 3
1.4 Related Work 3

I RSL Tutorial 9

2 Introduction to Tutorial 11

3 Some Basic Concepts 13
3.1 Specification of an Election Database 13
3.2 Modules 14
3.3 Type Declarations 14
3.4 Value Declarations 15
3.5 Axiom Declarations 16
3.6 Module Extension 18
3.7 Combining Value and Axiom Declarations 19
3.8 Comments in Specifications 20

4 Built-in Types 21
4.1 Booleans 21
4.2 Integers 27

v

4.3 Natural Numbers 28
4.4 Real Numbers 29

4.5 Characters 30

4.6 Texts 30

4.7 The Unit Value 30

4.8 Precedence and Associativity 31

5 Products 32

5.1 Product Type Expressions 32
5.2 Product Value Expressions 33

5.3 Example: A System of Coordinates 33

6 Bindings and Typings 35

6.1 Bindings 35

6.2 Single Typings 37

6.3 Multiple Typings 37

6.4 Typing Lists 37

7 Functions 39
7.1 Total Functions 39

7.2 Definitions by Axioms 40

7.3 Explicit Definition of Total Functions 41

7.4 Partial Functions 41

7.5 Explicit Definition of Partial Functions 42

7.6 Function Expressions 43
7.7 Higher Order Functions 44

7.8 Explicit Definition of Curried Functions 45

7.9 Currying and Uncurrying 45

7.10 Predicative Definition of Functions 46

7.11 Implicit Definition of Functions 46
7.12 Algebraic Definition of Functions 47

7.13 Example: A Database 49

7.14 Example: The Natural Numbers 51

8 Sets 54

8.1 Set Type Expressions 54

8.2 Set Value Expressions 55

8.3 Infix Operators 56
8.4 Prefix Operators 58

8.5 Example: A Resource Manager 58

8.6 Example: A Database 59

8.7 Example: Equivalence Relations 61

vi

9 Lists 63
9.1 List Type Expressions 63
9.2 List Value Expressions 64
9.3 List Indexing 66
9.4 Defining Infinite Lists 66
9.5 Infix Operators 66
9.6 Prefix Operators 67
9.7 Texts are Character Lists 68
9.8 Example: A Queue 68
9.9 Example: Sorting Integer Lists 69
9.10 Example: A Database 70

10 Maps 74
10.1 Map Type Expressions 75
10.2 Map Value Expressions 75
10.3 Application of a Map 76
10.4 Prefix Operators 76
10.5 Infix Operators 77
10.6 Example: A Database 78
10.7 Example: Equivalence Relations 79
10.8 Example: A Bill of Products 80

11 Subtypes 83
11.1 Subtype Expressions 83
11.2 Subtypes Versus Axioms 84
11.3 Maximal Types 84
11.4 Example: Equivalence Relations 86
11.5 Example: A Bounded Queue 88
11.6 Empty Subtypes 89

12 Variant Definitions 91
12.1 Constant Constructors 91
12.2 Record Constructors 92
12.3 Destructors 94
12.4 Reconstructors 96
12.5 Forming Disjoint Unions of Types 97
12.6 Wildcard Constructors 97
12.7 The General Form of a Variant Definition 98
12.8 Example: Sets 99
12.9 Example: Keys and Data 100
12.10 Example: Ordered Trees 102
12.11 Example: A Database 105
12.12 Example: A File Directory 107

vii

13 Case Expressions 108
13.1 Literal Patterns 109
13.2 Wildcard Patterns 109
13.3 Name Patterns 109
13.4 Record Patterns 109
13.5 List Patterns 112
13.6 Product Patterns 113
13.7 Example: Ordered Trees 113
13.8 Example: A Database 114

14 Let Expressions 116
14.1 Explicit Let Expressions 116
14.2 Implicit Let Expressions 118
14.3 Nested Let Expressions 118
14.4 Example: A Resource Manager 120

15 Union and Short Record Definitions 121
15.1 Using a Layered Variant Definition 121
15.2 Union Definitions 123
15.3 Short Record Definitions 125
15.4 Wildcards in Union Definitions 126
15.5 Using a Flat Variant Definition 127
15.6 Example: A Database 128

16 Under-specification and Non-determinism 129
16.1 Under-specification 129
16.2 Non-determinism 130
16.3 Unbounded non-determinism 130
16.4 Predicates Must be Deterministic 131

17 Overloading and User-defined Operators 132
17.1 Overloading of Value Identifiers 132
17.2 User-defined Operators 134
17.3 Turning Operators into Expressions 136
17.4 Occurrences of Operators 136
17.5 Type Disambiguation 137
17.6 Example: The Rational Numbers 138

18 Variables and Sequencing 139
18.1 Variable Declarations 139
18.2 Functions with Variable Access 140
18.3 Assignment Expressions 141
18.4 Sequencing Expressions 141
18.5 Pure and Read-only Expressions 142
18.6 Quantification over States 142

viii

18.7 Equivalence Expressions 143
18.8 Conditional Equivalence Expressions 144
18.9 Equivalence and Equality 145
18.10 Operation Calls and the Result-type Unit 146
18.11 Example: A Database 147

19 Expressions Revisited 149
19.1 Pure and Read-only Expressions 149
19.2 Expression Evaluation Order 149
19.3 If Expressions 150

20 Repetitive Expressions 151
20.1 While Expressions 151
20.2 Until Expressions 152
20.3 For Expressions 153

21 Local Expressions 156

22 Algebraic Definition of Operations 158
22.1 Extending an Applicative Module 159
22.2 Algebraic Equivalences 160
22.3 Being Implicit about Variables 161
22.4 Initialise Expressions 163
22.5 Example: A Database 163
22.6 Refining Applicative Specifications into Imperative Ones 165

23 Post-expressions 168

24 Channels and Communication 172
24.1 Channel Declarations 172
24.2 Functions with Channel Access 173
24.3 Communication Expressions 174
24.4 Composing Expressions Concurrently 175
24.5 Hiding Channels 178
24.6 External Choice 179
24.7 Internal Choice 182
24.8 Example: A Database 183
24.9 Example: An Interfaced Database 184
24.10 Imperative Processes 185

25 Expressions Revisited 187
25.1 Pure and Read-only Expressions 187
25.2 Equivalence Expressions 187

26 Comprehended Expressions 188

ix

27 Algebraic Definition of Processes 190
27.1 Extending an Applicative Module 191
27.2 Algebraic Equivalences 191
27.3 Being Implicit about Channels 195
27.4 Using Subtypes 197
27.5 Example: A Database 199
27.6 Refining Applicative Specifications into Imperative Ones 201

28 Modules 204
28.1 Basic Class Expressions 204
28.2 Objects 205
28.3 Schemes 208
28.4 Extension 210

29 Renaming and Hiding 213
29.1 Renaming 213
29.2 Hiding 214

30 Parameterized Schemes 217
30.1 Simple Parameterization and Instantiation 217
30.2 Naming of Parameter Requirements 219
30.3 Object Fittings 219
30.4 More Complex Parameter Requirements 222
30.5 Actual versus Formal Parameters 225
30.6 The Implementation Relation 226

31 Module Nesting 230

32 Object Arrays 232
32.1 Formulation without Object Arrays 232
32.2 Formulation with Object Arrays 233
32.3 Making the Size a Parameter 235
32.4 Object Arrays as Scheme Parameters 236
32.5 Object Array Fittings 240
32.6 Anonymous Object Arrays 243

33 The Name Space 247
33.1 Names 247
33.2 Object Expressions 248
33.3 Access Descriptions 249

II RSL Reference Description 251

x

34 Reference Introduction 253
34.1 Purpose 253
34.2 Target Group 253
34.3 Structure of Part II Chapters 253
34.4 Documentation Conventions 254
34.5 Static Correctness 257
34.6 Semantics 259

35 Declarative Constructs, Scope and Visibility Rules 261
35.1 Declarative Constructs 261
35.2 Scope Rules 262
35.3 Visibility Rules 263

36 Overloading 265
36.1 General 265
36.2 Overload Resolution 265

37 Specifications 269

38 Declarations 270
38.1 General 270
38.2 Scheme Declarations 270
38.3 Object Declarations 272
38.4 Type Declarations 273
38.5 Value Declarations 280
38.6 Variable Declarations 287
38.7 Channel Declarations 288
38.8 Axiom Declarations 289

39 Class Expressions 291
39.1 General 291
39.2 Basic Class Expressions 292
39.3 Extending Class Expressions 292
39.4 Hiding Class Expressions 293
39.5 Renaming Class Expressions 293
39.6 Scheme Instantiations 294
39.7 Rename Pairs 297
39.8 Defined Items 297

40 Object Expressions 299
40.1 General 299
40.2 Names 299
40.3 Element Object Expressions 299
40.4 Array Object Expressions 300
40.5 Fitting Object Expressions 301

xi

41 Type Expressions 302
41.1 General 302
41.2 Type Literals 304
41.3 Names 305

41.4 Product Type Expressions 305
41.5 Set Type Expressions 305
41.6 List Type Expressions 306

41.7 Map Type Expressions 306
41.8 Function Type Expressions 307
41.9 Subtype Expressions 308
41.10 Bracketed Type Expressions 309

41.11 Access Descriptions 309

42 Value Expressions 312
42.1 General 312
42.2 Value Literals 315

42.3 Names 315
42.4 Pre-names 316
42.5 Basic Expressions 316
42.6 Product Expressions 316

42.7 Set Expressions 317
42.8 List Expressions 319
42.9 Map Expressions 321

42.10 Function Expressions 322
42.11 Application Expressions 323
42.12 Quantified Expressions 325
42.13 Equivalence Expressions 326

42.14 Post-expressions 327
42.15 Disambiguation Expressions 328
42.16 Bracketed Expressions 328
42.17 Infix Expressions 329

42.18 Prefix Expressions 330
42.19 Comprehended Expressions 331
42.20 Initialise Expressions 332

42.21 Assignment Expressions 332
42.22 Input Expressions 333
42.23 Output Expressions 333
42.24 Structured Expressions 334

43 Bindings 340

44 Typings 342

xii

45 Patterns 344
45.1 General 344
45.2 Value Literals 345
45.3 Names 345
45.4 Wildcard Patterns 345
45.5 Product Patterns 346
45.6 Record Patterns 346
45.7 List Patterns 347
45.8 Inner Patterns 348

46 Names 351
46.1 General 351
46.2 Qualified Identifiers 351
46.3 Qualified Operators 352

47 Identifiers and Operators 353
47.1 General 353
47.2 Infix Operators 354
47.3 Prefix Operators 359

48 Connectives 362
48.1 Infix Connectives 362
48.2 Prefix Connectives 363

49 Infix Combinators 364

III Appendices 369

A Syntax Summary 371
Specifications 371
Declarations 371
Class Expressions 373
Object Expressions 373
Type Expressions 374
Value Expressions 375
Bindings 378
Typings 378
Patterns 378
Names 379
Identifiers and Operators 379
Connectives 380
Infix Combinators 380

B Precedence and Associativity of Operators 381

xiii

C Lexical Matters 382
Varying Tokens 382
ASCII Forms of Greek Letters 384
Fixed Tokens 384
RSL Keywords 385

D Bibliography 386

E Index 389
Symbols 390
Literals 391
Terms 392
Examples 397

xiv

Editorial Preface

The aim of the BCS Practitioner Series is to produce books which are relevant
for practising computer professionals across the whole spectrum of Information
Technology activities. We want to encourage practitioners to share their practical
experience of methods and applications with fellow professionals. We also seek to
disseminate information in a form which is suitable for the practitioner who often
has only limited time to read widely within a new subject area or to assimilate
research findings.
The role of the BCS is to provide advice on the suitability of books for the Series,

via the Editorial Panel, and to provide a pool of potential authors upon which we
can draw. Our objectitve is that this Series will reinforce the drive within the BCS
to increase professional standards in IT. The other partners in this venture, Prentice
Hall, provide the publishing expertise and international marketing capabilities of
a leading publisher in the computing field.
The response when we set up the Series was extremely encouraging. However,

the success of the Series depends on there being practitioners who want to learn as
well as those who feel they have something to offer! The Series is under continual
development and we are always looking for ideas for new topics and feedback on
how to further improve the usefulness of the Series. If you are interested in writing
for the Series then please contact us.
The use of formal methods for software development was one of the topics

which the Editorial Panel identified as of great importance for the Series. This
book is one of two about RAISE which provides a complete method, together with
supporting tools, for the application of a formal approach to software specification,
design and implementation. RAISE was developed with the practitioner in mind
and is the result of collaborative effort within the ESPRIT programme.

Ray Welland
Computing Science Department, University of Glasgow

Editorial Panel Members
Frank Bott (UCW, Aberystwyth), John Harrison (BAe Sema), Nic Holt (ICL),
Trevor King (Praxis Systems Plc), Tom Lake (GLOSSA), Kathy Spurr (Analysis
and Design Consultants), Mario Wolczko (University of Manchester)

xv

Preface

A formal specification language like the RAISE Specification Language aims at
providing a sound notation — with a semantics and a proof system — for capturing
requirements and expressing the functionality of software.
Formal methods are no longer just the subject of academic study; they are in-

creasingly being accepted by industry. Together with a sound development method,
also provided by RAISE, and to be treated in a separate volume, use of RAISE
aims at providing the software industry with a mature means of developing software
correct with respect to its specification.
The name RAISE stands for Rigorous Approach to Industrial Software Engineer-

ing. RAISE was the name of a CEC funded ESPRIT project, and is now the name
for a wide spectrum specification and design language, an associated method, and
a commercially available tool set.
RAISE caters for a full spectrum of specification features — parameterizable

abstract data types, modularity, concurrency, non-determinism, subtypes — for
full development from abstraction to programming languages like Ada and C++,
and for formal correctness proofs.
This book is primarily aimed at professional programmers, but can also be used

by students at a late undergraduate or early graduate level. It shows how spec-
ifications may be written in any of the styles permitted by RSL: applicative or
imperative; sequential or concurrent; direct (explicit) or axiomatic (implicit); with
abstract data types (algebraic) or with concrete data types (model-oriented). Each
combination of paradigmatic styles fits specific external contexts and also allows
for a progression of increasingly concrete designs.
The RAISE language, method and tools have been developed as collective efforts

in the ESPRIT RAISE (315) and LaCoS (5383) projects. Part I of the book
was written by Klaus Havelund, and part II of the book was written by Anne E.
Haxthausen and Klaus Havelund.

xvii

Acknowledgements

During the design of RSL many people adviced, influenced and reviewed the design
process.
We would like to thank the following external advisors and consultants: A.

Blikle, who gave us good advice in the early days of the RAISE project, in par-
ticular on type (domain) theories and logic, and introduced us to the ideas of
MetaSoft; M. Broy and C.B. Jones, who, as consultants to the project, reviewed
early to mid-term RAISE and RSL research and development, and gave much ap-
preciated insight and advice; D. Sannella and A. Tarlecki, who gave lectures and
advice on modularity concepts and type (domain) models, during the mid-term
RAISE project; A. Hill and H. Langmaack, who, as external reviewers assigned
by the CEC, followed the RAISE project throughout, and carefully scrutinized the
progress of the project.
In addition to the RAISE Language Group, many people involved in the RAISE

project directly or indirectly contributed to the design of RSL: Erik Meiling , I-
da Ørding Hansen, Holger Morell Heerfordt, Jesper Jørgensen, Steen Lynenskjold,
Ole Frost Mikkelsen, Leif Sandegaard Nielsen, Mogens Nielsen, Ole N. Oest, Steen
U. Palm, Jan Storbank Pedersen, Peter Sestoft, Harald Søndergaard (with DD-
C/CRI); Peter Olsen, Theodor Norup Petersen (with NBB/SYPRO); Tim Denvir,
Tony Evans, Patrick Goldsack, David Grosvenor, Mel I. Jackson, Hamid Lesan
and Roger Shaw (with STC Technology Ltd).
Final editing of this book was done by Dines Bjørner, Chris George and Søren

Prehn.

xix

CHAPTER 1

Introduction

The construction of computer-based systems is a rather young profession. It is con-
cerned firstly with evolving techniques, tools and engineering practices in order to
cope with and exploit the underlying, rapidly evolving hardware technology. Ad-
ditionally, very basic techniques and methods for specifying, developing, operating
and maintaining computer software systems are still being developed.
As in any field of engineering, it turns out that construction of large and complex

systems is very difficult and requires a complementary set of techniques to be
deployed. In fields of engineering such as mechanical engineering and electrical
engineering, mathematical techniques based on geometry, calculus and complex
function theory have been developed and put to invaluable industrial use for more
than two hundred years.
Mathematical techniques for specification, development and verification of soft-

ware systems, often termed formal methods, are now coming into use for the con-
struction of real systems. First of all, suitably mature theories and formalisms are
now being turned into usable techniques. Secondly, a growing number of (young)
professionals have been taught such techniques. Thirdly, there is a growing insis-
tence that such techniques be used, in particular for the development of systems
whose function or malfunction may seriously affect lives, property and society.
This book is about such mathematical techniques. It teaches a mathematical-

ly based notation, the RAISE Specification Language, which is useful for formal
specification, design and development of software. RSL is, we believe, the most
versatile and comprehensive language of its kind available today. It includes many
of the ideas on formal methods that have been researched and discussed over the
last two decades, in a unified framework. RSL permits abstract, property-oriented
specification of sequential as well as concurrent systems. RSL permits specifications
and designs of large systems to be modularized and permits separate subsystems
to be separately developed. RSL also permits low-level operational designs to be
expressed, to a level of detail from which extraction of final code is straightforward.
That is: most of the construction of a system, from specification to design, may
be done using one and the same formalism, thus facilitating precise, mathematical

1

2 Introduction

arguments for correctness of development steps and of other critical properties.
The book has two main parts: an RSL Tutorial, and an RSL Reference Descrip-

tion. The Tutorial is intended as an introduction to RSL. Readers with a working
knowledge of contemporary programming languages may use the Tutorial for self-
study. Also, the Tutorial could be used in study-groups, or as text book in classes.
The Reference Description is intended for use when reading or writing RSL: for
looking up precise definitions of constructs in RSL.
This book does not teach formal development and proofs. These areas will be

covered in a subsequent volume on the RAISE Method.

1.1 Structure of the Book

Part I, chapters 2–33, is the RSL Tutorial. This part covers RSL in a manner
suitable for sequential reading.
Part II, chapters 34–48, is the RSL Syntax and Semantics Reference Description.
Part III consists of five appendices. Appendix A contains a syntax summary for

RSL. The syntax summary may be used as an overview of available constructs, as
well as a quick reference on how to write specific constructs. Appendix B describes
the precedence and associativity of RSL combinators and operators. Appendix C
describes lexical matters (microsyntax) for RSL. Appendix D contains an extensive
bibliography of the technical and scientific literature that influenced the design of
RSL. Appendix E contains an Index. The index lists, in four groups, all RSL
symbols, the RSL literals, syntax categories (i.e. non-terminals of the syntax) and
important concepts and, finally, the examples of the Tutorial part.
The reader is well advised to study the contents listing of the book carefully. The

entire book is systematically organized with respect to the structure and facilities
of RSL; hence the contents listing may serve as an index to ‘areas’ of RSL.

1.2 The RAISE Background

RAISE stands for Rigorous Approach to Industrial Software Engineering, and was
initially coined as the name of an industrial R & D project carried out in the
context of the CEC ESPRIT programme during the years 1985 through 1990.
The aims of the RAISE project were to develop notation, techniques and tool-

s that would enable industrial usage of ‘formal methods’ in the construction of
software systems. The project was motivated by early successes on projects em-
ploying methods such as the Vienna Development Method (VDM), as well as by a
realization of the problems and relative immaturity of such methods.
The results of the RAISE project include RSL, as well as a large number of

techniques and strategies for doing formal development and proofs (together termed
the RAISE Method). Also, the RAISE project resulted in comprehensive tool
support, which has by now been further developed into commercially supported
products.

The LaCoS Continuation 3

The RAISE project was carried out by four companies: Dansk Datamatik Cen-
ter (DDC), which was taken over by Computer Resources International (CRI) in
1988; STC Technology Ltd (STL) (now incorporated in BNR Europe Limited),
Nordisk Brown Boveri (now SYPRO) and ICL. DDC/CRI and STL/BNR were the
main developers of RAISE, while NBB/SYPRO and ICL were the main industrial
trialists.

1.3 The LaCoS Continuation

The LaCoS ESPRIT project, planned for the period 1990–1995, serves to further
refine the RAISE technology. An important aspect of the project is a series of
real-life industrial applications of RAISE. The producer partners of LaCoS, who
provide and refine RAISE technology, are: CRI, BNR Europe and SYPRO. The
consumer partners, who apply RAISE and report critically on RAISE technology
are: Bull (F), MATRA Transport (F), INISEL Espacio (E), SSI (I), Technisystems
(H), and Lloyd’s Register of Shipping (UK).
The LaCoS (Large scale Correct Systems using formal methods) project is now

well underway.

1.4 Related Work

RAISE builds upon ideas reflected in a number of formal methods and specification
languages.
As a precursor to the RAISE project, DDC/CRI and STL carried out the ‘For-

mal Methods Appraisal’ study ([47]) in 1983. That study reviewed a large number
of approaches, in order to identify the best possible basis for the RAISE project.
The most important conclusion of that study was that so far the model-oriented
approaches, in particular VDM, had proven most viable for industrial usage, and
that the RAISE project would be well-advised to build on such a basis. Another
important conclusion was, however, that the meta-language of VDM, colloquially
called Meta-IV, was insufficient. In particular Meta-IV did not deal with structur-
ing and concurrency. Structuring was found to be better addressed in ‘algebraic
specification languages’. Also, these languages enable a different level of abstrac-
tion to that possible with model-oriented languages. This difference is found in,
for example, the (model-oriented approach to) concrete types compared with the
(algebraic approach to) abstract types. For concurrency, it was concluded that the
most mature approaches which were likely to blend well with the general ideas of
methods like VDM were process algebras like CCS and CSP, based on synchronous
communication.
The task facing the designers of RSL was to construct a unifying framework in

which the basic features of VDM could be extended with facilities for property-
oriented specification, structuring and concurrency.
A mid-term report on this design process is given in [46], reflecting an early

version of RSL ([43]).

4 Introduction

We now review briefly various features of RSL and RAISE with respect to pre-
decessor methods, languages and ideas.

1.4.1 The Vienna Development Method

The VDM has continued to develop ever since it was conceived in the early seven-
ties, and the VDM meta-language has been used in a number of different versions
([6, 29, 30, 31]). In the very early phase of the RAISE project, an attempt was
made to consolidate the different versions of VDM notation ([25]). Several aspects
of VDM notation which are more or less universally agreed on in the VDM com-
munity were included in early as well as final versions of RSL: type constructors for
mappings, sets, lists, Cartesian products, etc., together with the applicative forms
of expressions and function definitions (including pre-/post- style).
A substantial body of case studies using VDM has been published ([9, 32, 8, 11,

5, 10, 1]). Together with more systematic accounts of the method aspect of using
VDM ([7, 31, 3, 4]) they present a large collection of techniques and strategies
for modelling, specifying and developing software; techniques and strategies which
may all readily be used with RSL.

1.4.2 Property-oriented Specifications

In ‘algebraic specifications languages’, such as ACT ONE, Clear, OBJ and Larch,
the possible denotations of type and value names are constrained by means of
axioms. In the usual algebraic specification style, individual axioms may affect the
possible denotations of both type and value names: the structure of the denotation
of a type name (‘sort’) is implicitly derived from the axioms. Also, the use of
axioms, in contrast to explicit definitions of types and values (including functions)
may lead to under-specification (looseness).
An important realization during the design of RSL was that, since sorts eventu-

ally have to be implemented, the possible denotations should be drawn from types
which could be explicitly defined (as in VDM). In this manner, property-oriented
specifications may easily be linked formally to model-oriented designs. Moreover,
by combining the two techniques, intermediate techniques may be obtained: some
types in a specification may be just sorts while others may be explicitly defined;
functions may be (mutually) (under-)specified by axioms, although they may apply
to values of explicitly defined types. Early formalizations of these ideas are given
in [27].

1.4.3 Modularity Constructs

The facilities for structuring specifications in RSL reflect awareness of [45, 44] and
are closely related to those found in other languages such as Clear, ACT ONE,
ASL, OBJ, Larch and Standard/Extended ML [16, 51, 20, 13, 24, 23, 21, 19, 14,
22, 48, 42].

Related Work 5

In RSL there are two kinds of ‘modules’: objects and schemes. A scheme repre-
sents a (possibly parameterized) class of models while an object represents either
a single model belonging to a specified class or an array of such models.
The schemes, classes and objects of RSL are like the functors, signatures and

structures of Standard ML ([42]) and Extended ML ([48]), except in their treat-
ments of results and sharing. The schemes of RSL take objects as parameters and
return classes as results; they achieve sharing between two parameters by ensuring
that the classes of the parameters are applications of schemes to shared objects.
The functors of Standard ML and Extended ML take structures as parameters
and return structures as results; they achieve sharing between two parameters by
imposing explicit sharing constraints.
The operations on classes are similar to the specification-building operations

in algebraic specification languages. Basic class expressions in RSL correspond
to theory presentations (signature + axioms) in algebraic specification languages.
Other operations such as ‘hide’ and ‘rename’ are special cases of ‘derive’ in Clear
and ASL. ‘Extend’ corresponds to ‘enrich’ in Clear except for the sharing properties.
(However, the use in RSL of schemes which take objects as parameters can require
the declaration of extra objects to provide actual parameters.)
The use of objects, and of the access any qualified by object names, allows

interference between procedures to be delimited succinctly in specifications without
the use of detailed states. The resulting style of specification has as its nearest
equivalent the ‘object-oriented’ style of COLD-K ([17, 33]), which goes further by
permitting dynamic object creation, using dynamically varying types.

1.4.4 Sequencing and Concurrency

Early versions of RSL ([43]) included constructs for expressing side-effects on a
state, and communication on channels. The imperative facet was based on a sim-
plified version of the imperative features available in ‘Danish VDM’ ([25]), while
the concurrent facet was closely modelled on CSP ([28]). Although sequential and
concurrent constructs could easily refer to types and values, irrespective of whether
these were defined directly or in terms of axioms, sequential and concurrent con-
structs came with their own sets of specification means; for example, processes
could be implicitly defined by means of trace assertions, or explicitly in terms of
‘CSP programs’. Thus, the applicative, sequential and concurrent facets were, in
fact, rather disjoint.
A tighter integration of the facets of the language was achieved in [35] by em-

phasizing the role of equational axioms. Handling side-effects in equational axioms
involved introducing equivalences between the effects of expressions (not just equal-
ities between the results of expressions). Post-conditions for partial correctness (but
not for total correctness) can be defined in terms of equivalence.
To extend the use of equational axioms to concurrent processes, interlocking

was introduced in [36]. This can be a powerful means of specifying properties of
processes in terms of their mutual behaviour, although the proof rules governing its

6 Introduction

interactions with concurrency are complicated. As interlocking is difficult to use in
the presence of ‘silent transitions’, the binary non-deterministic choice of CSP ([28])
was adopted instead of the unary non-deterministic choice of CCS ([39, 40, 41]).
However, using the techniques of [15], concurrency was taken to be essentially that
of CCS, not that of CSP, in order to capture intuitions about synchronization,
communication and deadlock. The combination of the binary non-deterministic
choice of CSP with the concurrency of CCS is satisfactory in theory but in practice
leads to formal manipulations that are more intricate than those in CSP or CCS.
This integration between the facets of the language does more than make im-

perative specifications analogous with applicative ones: it formalizes the relation
between specification in different styles. In particular, when an imperative specifi-
cation is analogous with an applicative one, then (under certain weak conditions)
the imperative specification (or, strictly, a conservative extension of it) implements
the applicative one and thereby provides an interpretation of it. The proof that
this is so depends on the ability to pass imperative functions as parameters in RSL.
The treatment of all functions as values (including imperative functions that may

access variables and processes that may also communicate on channels) means that
one can quantify over them as well as pass them as parameters and return them as
results. In particular, it is possible to state induction axioms in the language.

1.4.5 Development Relations

During the development of a software system, many aspects may be recorded for-
mally, using RSL, and then relations between the various, individual RSL docu-
ments may themselves be recorded using RSL. However, the notion of implemen-
tation relation has a special status.
The formal implementation relation defined for RAISE ensures that an imple-

mentation can be substituted for its specification. As such, the implementation
relation is crucial for separate development: the specification of a subsystem which
is to be separately developed is a contract between the users and producers of the
system, and the users will expect the implementation to be substituted for the
specification at system integration time.
A class expression signifies a theory and denotes a class of models. In this respect

RSL resembles ASL ([51]) and Extended ML ([49]). However, the implementation
relation is more limited than that of ASL and Extended ML. In RAISE one class
expression implements or refines another if every provable consequence of the latter
is a provable consequence of the theory of the former. This is equivalent to sub-
classing of models, but only on the assumption that equality is not implementable
using some other function or relation. This choice of implementation relation al-
lows reasoning to be conducted using the proof rules rather than the semantics. In
particular it allows the assertion of an implementation relation between two class
expressions to be expanded into a finite collection of axioms about the implement-
ing theory. However, it requires behavioural equivalence to be treated by the use
of explicit abstraction functions and relations.

Related Work 7

It would be possible to make the RAISE implementation relation subsume be-
havioural equivalence by allowing equalities to be implementable using functions or
relations. Doing this in a logic like that of RAISE would still permit the horizontal
and vertical composition of theories ([34, 50]). However, allowing equalities to be
implementable would add considerable complications to the proof rules. For ex-
ample, the property that the implementation relation can be expressed as a finite
collection of axioms would be lost.

1.4.6 Other RAISE Documents

The formal, mathematical description of RSL is covered in the following documents:
[37], which contains a set of proof rules which axiomatize RSL, and [38] which
provides a mathematical model. The earlier document [26] provides a simplified,
but more approachable mathematical model.
[12], the RAISE Method Manual, provides a large number of techniques and

strategies for doing development and proof in RAISE.
[18], the RAISE Justification Handbook, provides a collection of proof rules

presented in a style suited for doing justifications. The rules are based on those in
[37].
A sequel volume to this book on the RAISE Method will be based on [12] and

[18].

Part I

RSL Tutorial

CHAPTER 2

Introduction to Tutorial

This tutorial presents the RAISE Specification Language, which is a wide-spectrum
language for specifying and designing software systems.
The term ‘wide-spectrum’ refers to the fact that RSL allows for abstract property

oriented specification styles as well as for concrete algorithm oriented styles. These
different styles make it possible to do refinement within RSL. That is, one may
write an abstract RSL specification suited for human reading, and then in one or
more steps refine it into a concrete RSL specification suited for translation into
some programming language.
In this tutorial RSL is presented in a way that as far as possible avoids forward

references; it tries to start with the more simple and generally familiar concepts
and builds on them towards the more complex and less familiar.
Chapters 3–17 present applicative features. The basic concepts are those of a

function and function composition. A function is basically a simple mapping from
values of one type to values of another type. Functions in this sense are well
known from mathematics. Note that the concepts of value and type are central.
Examples of values are integers 1, 2, ..., but also functions themselves are values. A
type contains a set of values of the ‘same shape’. RSL provides value expressions
for representing values and type expressions for representing types.
Chapters 18–23 present sequential imperative features. The basic concepts are

those of a variable, variable assignment and sequential composition. A variable
is a container capable of holding values of a particular type. The contents of a
variable can be changed by assigning a new value to the variable. A variable can
thus change contents within its lifetime. Value expressions that change the value
of a variable are said to have side-effects on that variable.
Value expressions with side-effects may be composed sequentially, meaning that

they are to be evaluated in a specified order. This order of evaluation is of course
important since changing the order may give different side-effects.
Chapters 24–27 present concurrency. The basic concepts are those of a channel,

channel communication and concurrent composition. A channel is a medium along
which values of a particular type can be communicated. Value expressions can

11

12 Introduction to Tutorial

be composed to be evaluated in parallel, in which case they may communicate
with each other through channels. The basic channel communication primitives
are ‘send a value to a channel’ and ‘receive a value from a channel’.
Chapters 28–33 present modules. The basic concepts are those of class expres-

sions, schemes and objects. Class expressions are collections of declarations and
represent classes of models. Schemes are named class expressions, possibly param-
eterized. Objects are named instances (or arrays of instances) of class expressions,
so they represent single models (or arrays of single models). Schemes and objects,
together termed modules, allow for the composition and reuse of specifications.

CHAPTER 3

Some Basic Concepts

This chapter introduces some basic concepts. This is done mainly through an
example RSL specification of a database for registering voters at an election.
First some informal requirements are given for the election database. Then the

formal specification follows, annotated with explanatory comments in subsequent
sections. The annotations introduce the basic concepts as they occur in the speci-
fication.

3.1 Specification of an Election Database

3.1.1 Informal Requirements

Consider the following requirements for an election database.
The database is supposed to support the administration of an election by iden-

tifying all the people who are currently registered as voters.
The database must provide the following functions:

1. register : Registers a person in the database.
2. check : Checks whether a person has been registered in the database.
3. number : Returns the number of people currently registered in the database.

3.1.2 Formal Specification

Parts of the informal requirements (except for number) can be modelled by the
following RSL module.

DATABASE =
class

type
Person,
Database = Person-set

value

13

14 Some Basic Concepts

empty : Database,
register : Person × Database → Database,
check : Person × Database → Bool

axiom
empty ≡ {},
∀ p : Person, db : Database • register(p,db) ≡ {p} ∪ db,
∀ p : Person, db : Database • check(p,db) ≡ p ∈ db

end

That is, an RSL module captures the types, the values, and the axioms of some
part of a system. Please read this module and relate it to the informal requirements
presented in section 3.1.1, recalling that number is not yet formally specified.
The subsequent sections explain the contents of this module.

3.2 Modules

In general a module definition has the form:

id =
class

declaration1
...
declarationn

end

for n ≥ 0, where a declaration begins with a keyword (type, value, axiom)
indicating the kind of declaration to come, followed by one or more definitions of
that kind, separated by commas.
The example module definition contains three declarations:

1. A type declaration defining the types Person and Database.
2. A value declaration defining the values empty , register and check .
3. An axiom declaration expressing properties of the values.

Here empty is a constant Database value. register is a function value from Persons
and Databases to Databases and check is a function value from Persons and
Databases to Booleans.
The module concept in its full power will be explained in chapters 28–33 of this

tutorial.

3.3 Type Declarations

A type is a collection of logically related values. Some types are already built-in,
i.e. predefined within RSL. An example of a built-in type is Nat. It contains all
the natural numbers represented by the literals: 0,1,2,
In addition to the built-in types, one is allowed to define one’s own types.

Value Declarations 15

Types can be named in type declarations. A type declaration has the form:

type
type definition1,
...
type definitionn

for n ≥ 1. In our example specification there are two such definitions.
The first type definition has the form:

id

It defines the type Person as an abstract type. That is, a type with no predefined
operators for generating and manipulating its values, except for = which compares
two values of the type to check whether they are equal.
Each type is associated with an equality operator = and an inequality operator

6=, which are applicable to values of the type.
The fact that Person is defined as an abstract type reflects the requirements,

where no information is given about how people are identified in terms of their
name and the like. We abstract from such details.
An abstract type is also referred to as a sort and a definition of such a type is

referred to as a sort definition.
The next type definition, which has the form:

id = type expr

is an abbreviation definition where the name id is specified to be an abbreviation
for the type expression occurring on the right hand side of =.
A database is specified to be a set of people. The type operator -set when applied

to the type Person gives a new type containing as values all (finite) subsets of the
set of values in Person.
A type obtained by applying a type operator to one or more other types is referred

to as a compound type. Abstract types (like Person) are thus not compound.
We could have chosen another representation for the database, but modelling it

as a set seems natural since the order of registration is irrelevant and no person
may be registered more than once.

3.4 Value Declarations

Values can be named in value declarations. A value declaration has the form:

value
value definition1,
...
value definitionn

for n ≥ 1. In our example specification there are three such definitions.
A value definition has in the simplest case the form:

16 Some Basic Concepts

id : type expr

That is, the identifier id is defined to represent a value within the type represented
by the type expression. Such a definition is sometimes referred to as a value
signature. We often for convenience say that such a value definition ‘defines the
value id ’ instead of saying that it ‘defines the identifier id to represent a value’.
The first value definition defines the constant value empty of the type Database.

This value simply represents the empty database.
The actual value that the identifier empty represents is not described in the value

definition, but instead in one of the axioms. Likewise for the other value identifiers.
The second value definition defines the function register that adds a person to

the database. Suppose we want to register the person Hamid in a database db,
then:

register(Hamid,db)

represents the database after having made the registration.
The type of register is represented by the type expression:

Person × Database → Database

This type expression is built up by applying two type operators, like the -set
operator used for defining Database. To better illustrate how the type operators
associate, it helps to note that the above type expression is equivalent to the
following:

(Person × Database) → Database

The type operator × (Cartesian product) is thus applied to the pair Person and
Database, and the type operator→ (function space) is applied to the pair consisting
of the resulting Cartesian product and Database.
The Cartesian product of Person and Database is the type containing as values

all pairs (p, db) where p : Person and db : Database.
The third value definition defines the function check , that, when applied to a

person and a database, returns a Boolean value within the built-in type Bool. This
type contains two values represented by the literals true and false. The function
is supposed to return true if and only if the person is registered in the database.
Until now we have only explained how values are defined by giving their name

and type. In the next section, we shall see how the actual values that value names
represent can be characterized by axioms.
To summarize, in the simple case which we consider here, a module provides zero

or more named types together with zero or more named values.

3.5 Axiom Declarations

Axioms express properties of value names. In our example there are three axioms.
The first axiom defines the name empty to represent the empty set (of people).
Remember that the type of empty is Person-set.

Axiom Declarations 17

Note the use of the symbol ≡ (equivalence) instead of = (equality). These two
operators have the same meaning in applicative contexts, but their meanings are
fundamentally different in sequential imperative and concurrent contexts (see sec-
tion 18.7 and section 25.2). For reasons of consistency the ≡ symbol will normally
be used as the outermost comparing operator in axioms.
The first axiom states that two value expressions are equivalent, namely empty

and {}. A value expression evaluates to a value. The term ‘expression’ will in the
rest of the tutorial be used as short for ‘value expression’, when no confusion arises
from doing so. The expression empty evaluates to a set s1 and the expression {}
evaluates to a set s2 (the empty set). The axiom then requires s1 and s2 to be the
same.
In fact the whole axiom:

empty ≡ {}

is itself an expression of type Bool. All axioms are Boolean expressions which, by
definition, must evaluate to true.
An axiom declaration (in the simplest case) thus has the form:

axiom
value expr1,
...
value exprn

for n ≥ 1. The second axiom in our example expresses that the function register
adds a person p to a database db by making the set union of the database, which
is a set, and the singleton set containing the person.
The axiom is a quantified expression reading as follows: for all people p and for

all databases db, register applied to the pair (p, db) must be equivalent to {p}∪db.
The third axiom defines the function check . A person is registered if that person

belongs to the set representing the database.
The collection of axioms is complete in the sense that for each value identifier the

axioms state exactly what value within its type each identifier represents. Thus,
for example, empty is defined to represent nothing but the empty set. Likewise, the
function register represents the one and only function that adds its first argument
to its second argument.
Axioms do not, however, need to be complete. The ultimate extreme is the

situation where there are no axioms at all. In that case the value identifier may
represent any value within its type.
An example of an incomplete axiom is the following. Suppose that we want to re-

specify the function check in such a way that it returns true for any person p and
database db if p is in the database and some additional, yet unknown, condition is
satisfied. This can be expressed with the following axiom:

axiom ∀ p : Person, db : Database • check(p,db) ⇒ p ∈ db

The axiom says that for all people p and for all databases db, if the predicate

18 Some Basic Concepts

check(p, db) holds, then p ∈ db.
This axiom is incomplete since several check functions within Person × Database

→ Bool satisfy it. One such function is the one originally specified by the axiom:

axiom ∀ p : Person, db : Database • check(p,db) ≡ p ∈ db

Another function is one that satisfies the following axiom:

axiom ∀ p : Person, db : Database • check(p,db) ≡ p ∈ db ∧ old enough(p)

Here the function old enough is supposed to return true if a person is old enough
to vote, according to some rule. It must have the following type:

value old enough : Person → Bool

An identifier that is not completely specified through the axioms is said to be
under-specified.
Axioms may be named for documentation purposes and for reference in justifi-

cations. The axioms defining empty , register and check can for example be written
as follows, where axiom names bracketed with [and] precede the axioms:

axiom
[empty axiom]

empty ≡ {},
[register axiom]

∀ p : Person, db : Database • register(p,db) ≡ {p} ∪ db,
[check axiom]

∀ p : Person, db : Database • check(p,db) ≡ p ∈ db

The three axioms have here been named empty axiom, register axiom and check -
axiom. Axiom namings do not add to the properties of a specification.
The more generalized form of an axiom declaration now is:

axiom
opt-axiom naming1 value expr1,
...
opt-axiom namingn value exprn

for n ≥ 1. An axiom naming has the form [id] and is optional, as indicated by the
opt- prefix in the syntax.

3.6 Module Extension

The specification developed so far does not reflect all our requirements. We still
need to specify a function for returning the number of people registered in the
database. We can do that by extending our first module with a value definition
and an axiom.

ELECTION DATABASE =
extend DATABASE with

Combining Value and Axiom Declarations 19

class
value number : Database → Nat
axiom ∀ db : Database • number(db) ≡ card db

end

The typical form of an extending module definition is:

id =
extend id0 with
class

declaration1
...
declarationn

end

where id0 is the name of some module.
The function number , when applied to a database, returns a natural number

— the number of people registered in the database. The axiom defining number
makes use of the cardinality (card) operator which is applicable to any finite set.

3.7 Combining Value and Axiom Declarations

RSL provides shorthands for combining value and axiom declarations when the
axioms have particular forms. Two of these shorthands are described here, to
illustrate the concept of shorthand.
First, the following value declaration containing an explicit value definition:

value id : type expr = value expr

is short for:

value id : type expr
axiom id ≡ value expr

The expression value expr must evaluate to a value within the type represented by
type expr . As an example, we could have defined the constant empty as follows:

value empty : Database = {}

Second, the following value declaration containing an implicit value definition:

value id : type expr • value expr

is short for:

value id : type expr
axiom value expr

The expression value expr must be a Boolean expression. As an example, we could
have defined the constant empty as follows:

value empty : Database • empty = {}

20 Some Basic Concepts

Many other kinds of shorthands are provided, as will be described throughout the
tutorial.

3.8 Comments in Specifications

A specification may include comments, where a comment is a piece of text that has
no influence on the formal meaning of the specification. A comment is enclosed with
the symbols /∗ and ∗/, and comes in front of a definition, be it a type definition,
a value definition or an axiom definition.
Below follows our ELECTION DATABASE module with an added comment.

ELECTION DATABASE =
extend DATABASE with
class

value
/* The function ‘number’ returns the number of people registered */
number : Database → Nat

axiom ∀ db : Database • number(db) ≡ card db
end

CHAPTER 4

Built-in Types

Three kinds of types have been presented: built-in types, like Nat, abstract types
(sorts), like Person, and compound types, like Database, which was defined as
containing sets of Persons.
In this chapter all the built-in types provided by RSL are described. These are

represented by the type literals: Bool (Booleans), Int (integers), Nat (natural
numbers), Real (real numbers), Char (characters), Text (texts) and Unit (the
singleton type).
For each built-in type, the value literals and the operators associated with that

type are described. Note that every type is associated with an equality operator =
and an inequality operator 6=.

4.1 Booleans

The Boolean type literal Bool represents the type containing the two truth values
true and false.

4.1.1 If Expressions

A Boolean expression value expr can be used to choose between the evaluation of
two alternative expressions value expr1 and value expr2 in an if expression of the
form:

if value expr then value expr1 else value expr2 end

If value expr evaluates to true value expr1 is evaluated; if value expr evaluates to
false value expr2 is evaluated.
The two expressions value expr1 and value expr2 must have the same type which

is also the type of the whole if expression.
As an example consider the following expression returning the non-negative dif-

ference between two natural numbers:

if x > y then x − y else y − x end

21

22 Built-in Types

RSL is a specification language in which the behaviour of programs running on
computers can be specified. A characteristic of programs is that they may fail to
terminate. Such non-termination, or more generally, chaotic behaviour, is repre-
sented by the RSL expression chaos.
An important property of if expressions is non-strictness in the sense that when

applied to chaos they do not necessarily themselves evaluate to chaos. The fol-
lowing rules hold:

if true then value expr else chaos end ≡ value expr
if false then chaos else value expr end ≡ value expr

If, however, the condition of an if expression evaluates to chaos, then the if ex-
pression itself evaluates to chaos:

if chaos then value expr1 else value expr2 end ≡ chaos

Note that chaos can appear in positions where expressions of different types are
expected. chaos is not, however, a member of any type, such as Bool. Types only
contain the values of terminating expressions.
Often one may want to nest if expressions, as in the following example:

if x < 0 then x − 1
else

if x > 0 then x + 1
else 0
end

end

A shorthand syntax allows us to avoid the nesting and instead to write the expres-
sion as follows:

if x < 0 then x − 1
elsif x > 0 then x + 1
else 0
end

A multiple if expression of the form:

if value expr1 then value expr1
′

elsif value expr2 then value expr2
′

...
elsif value exprn then value exprn

′

else value exprn+1
′

end

for n ≥ 2, is short for:

if value expr1 then value expr1
′

else
if value expr2 then value expr2

′

Booleans 23

else
...
if value exprn then value exprn

′

else value exprn+1
′

end
...

end
end

4.1.2 Prefix Connectives

No operators other than = and 6= are defined on Bool. Instead, a number of
connectives are defined, which together with their Boolean argument expressions
are short for certain if expressions.
A Boolean expression value expr can be negated with the connective ∼ (not):

∼ value expr

This is read as ‘not value expr ’ and is short for:

if value expr then false else true end

4.1.3 Infix Connectives

Two Boolean expressions value expr1 and value expr2 can be combined with any
of the binary connectives ∧ (and), ∨ (or) and ⇒ (implies) as shown below. The
resulting expressions are short for certain if expressions.
The expression:

value expr1 ∧ value expr2

is short for:

if value expr1 then value expr2 else false end

The expression:

value expr1 ∨ value expr2

is short for:

if value expr1 then true else value expr2 end

The expression:

value expr1 ⇒ value expr2

is short for:

if value expr1 then value expr2 else true end

24 Built-in Types

As examples consider the following Boolean expressions which are tautologies (e-
valuating to true) for any integer x :

(x ≤ 0) ∨ (x > 0)

∼ ((x < 0) ∧ (x > 0))

(x > 0) ⇒ (x ≥ 1)

The explanation of the Boolean connectives in terms of if expressions emphasizes
that one must consider evaluation order when using the infix connectives. Consider
for example the following expression where x and epsilon are real numbers:

(x 6= 0.0) ∧ (1.0/x < epsilon)

and suppose that x = 0.0. The evaluation of the constituent expression 1.0/x is
under-specified since ‘real division’ has the pre-condition that the second argument
must be different from zero (0.0). The expression 1.0/x where x = 0.0 might
evaluate to chaos. Fortunately, with the interpretation of ∧ in terms of an if
expression, this constituent expression will never be evaluated when x = 0.0.
This can be seen by the following reduction where the original expression together

with equivalent expressions are listed:

(x 6= 0.0) ∧ (1.0/x < epsilon)
≡ if (x 6= 0.0) then (1.0/x < epsilon) else false end
≡ if (0.0 6= 0.0) then (1.0/0.0 < epsilon) else false end
≡ if false then (1.0/0.0 < epsilon) else false end
≡ false

The logic obtained is a conditional logic where the second constituent expression
is evaluated only if the value of the first constituent expression is insufficient to
determine the value of the composite expression. In this way partiality of the
second constituent expression (here due to 1.0/0.0) need not cause a problem since
evaluation may be avoided.
The meanings of the Boolean infix connectives and in particular their meanings

when applied to chaos are summarized in the following truth tables. The left
column in each table indicates the left argument of the connective whilst the top
row indicates the right argument.

∧ true false chaos

true true false chaos
false false false false
chaos chaos chaos chaos

∨ true false chaos

true true true true
false true false chaos
chaos chaos chaos chaos

Booleans 25

⇒ true false chaos

true true false chaos
false true true true
chaos chaos chaos chaos

Note that ∧ and ∨ are not commutative if their arguments do not terminate.

4.1.4 Quantifiers

The following expression is an example of a quantified expression:

∀ x : Nat • (x = 0) ∨ (x > 0)

and it reads: ‘for all natural numbers x , either x is equal to 0 or x is greater than
0’.
The quantifier ∀ binds the identifier x , and the x immediately following ∀ is

therefore called a binding. The x : Nat is called a typing.
We say that x is ‘bound’ within the quantified expression. On the other hand,

x is ‘free’ within the expression:

(x = 0) ∨ (x > 0)

A quantified expression has the general form:

quantifier typing1,...,typingn • value expr

for n ≥ 1. The expression value expr must be of type Bool. A quantifier is one of
the following:

∀, ∃, ∃!

read as ‘for all’, ‘there exists’ and ‘there exists exactly one’.
A typing in the simple case has the form:

id1,...,idm : type expr

for m ≥ 1. Some more examples of quantified expressions which evaluate to true
are:

∃ x : Nat • x > 99
∀ x,y : Nat • ∃! z : Nat • x + y = z
∃ x,y : Nat, b : Bool • b = (x = y)

Note that the scope of quantifiers extends to the end of any expression following
the •. For example:

∀ x : Nat • (x = 0) ∨ (x > 0)

is equivalent to:

∀ x : Nat • ((x = 0) ∨ (x > 0))

and not to:

(∀ x : Nat • (x = 0)) ∨ (x > 0)

26 Built-in Types

This is decided by the relative precedence of ∀ and (in this case) ∨. There is more
on precedence in section 4.8.1.

4.1.5 Axiom Quantifications

Sometimes several axioms within an axiom declaration are quantified over a com-
mon set of value names as is the case in our election DATABASE module (sec-
tion 3.1.2):

axiom
empty ≡ {},
∀ p : Person, db : Database • register(p,db) ≡ {p} ∪ db,
∀ p : Person, db : Database • check(p,db) ≡ p ∈ db

The axioms get somewhat clumsy due to the repeated quantifications. One may
instead make an axiom quantification as follows:

axiom forall p : Person, db : Database •

empty ≡ {},
register(p,db) ≡ {p} ∪ db,
check(p,db) ≡ p ∈ db

Note the commas separating axioms. This corresponds to the following single
axiom:

axiom
∀ p : Person, db : Database •

(empty ≡ {}) ∧
(register(p,db) ≡ {p} ∪ db) ∧
(check(p,db) ≡ p ∈ db)

but from a presentational point of view it has the advantage of containing three
clearly separated axioms which may be given individual names.

An axiom declaration of the form:

axiom forall typing list •

opt-axiom naming1 value expr1,
...
opt-axiom namingn value exprn

for n ≥ 1, is short for:

axiom
opt-axiom naming1 ∀ typing list • value expr1,
...
opt-axiom namingn ∀ typing list • value exprn

Integers 27

4.2 Integers

The integer type literal Int represents the type containing the negative as well as
non-negative whole numbers, i.e. integers:

...,−2,−1,0,1,2,...

4.2.1 Prefix Operators

There is one prefix operator for taking the absolute value of an integer:

abs : Int → Nat

That is, if the argument is negative, the negated argument is returned. The op-
erator is the identity on non-negative numbers. The result is a natural number
(section 4.3).
Some examples are:

abs −5 = 5
abs 5 = 5

4.2.2 Infix Operators

A number of binary infix operators are defined on integers.
There are the relational operators ‘greater than’, ‘less than’, ‘greater than or

equal to’ and ‘less than or equal to’:

> : Int × Int → Bool
< : Int × Int → Bool
≥ : Int × Int → Bool
≤ : Int × Int → Bool

Some examples are:

5 > 2
1 ≤ 1

There are the four arithmetic operators for addition, subtraction, multiplication
and integer division:

+ : Int × Int → Int
− : Int × Int → Int
∗ : Int × Int → Int
/ : Int × Int

∼

→ Int

Note that the integer division operator returns an integer, the absolute value of
which is the whole number of times that the absolute value of the second argument
divides into the absolute value of the first. The sign of the result is the product of
the signs of the arguments.

28 Built-in Types

The integer division operator is partial, in that its result is under-specified if the
second argument is zero. A special type operator

∼

→ is provided for generating the
type of partial functions. Chapter 7 will describe the function type operators in
more detail.
Some examples are:

2 ∗ (5 + 7 − 2) = 20
5 / 2 = 2
5 / −2 = −2
−5 / 2 = −2
−5 / −2 = 2

Associated with integer division is the ‘integer remainder’ operator:

\ : Int × Int
∼

→ Int

which returns an integer, the absolute value of which is the remainder after having
divided the absolute value of the second argument into the absolute value of the
first argument. The sign of the result is the sign of the first argument.
This implies the following relation between integer division and integer remain-

der. Let a and b be integers, then, if b is not zero:

a = (a/b)∗b + (a\b)

Some examples are:

5 \ 2 = 1
5 \ −2 = 1
−5 \ 2 = −1
−5 \ −2 = −1

There is finally the exponentiation operator:

↑ : Int × Int
∼

→ Int

which raises the first integer to the power of the second integer.
The integer exponentiation operator is partial in that its result is under-specified

if the second argument is negative or if both arguments are zero.
An example is:

3 ↑ 2 = 9

4.3 Natural Numbers

The natural number type literal Nat represents the type containing the non-
negative integers:

0,1,2,...

The natural number type is a subtype (chapter 11) of the integer type. Conse-
quently, all the integer operators are defined for natural numbers. (Though the
results may not be natural numbers, as in ‘1 − 5’.)

Real Numbers 29

4.4 Real Numbers

The real number type literal Real represents the type containing the real numbers:

...,−4.3,...,1.0,...,12.23,...

Note that all real number literals must be written with a decimal point. Not all
real numbers are representable by literals as one cannot write literals with infinitely
many decimals (digits to the right of the decimal point).

4.4.1 Conversion Operators

The integer type is not a subtype (chapter 11) of the real number type, in contrast
to the natural number type which is a subtype of the integer type. One set of
operators is thus defined for the integers (section 4.2) and another set of operators
is defined for the reals (see below). There is for example both an ‘integer addition’
operator and a ‘real addition’ operator.
Since the two types are separated and since there will sometimes be a need in

calculations to switch from one type to the other, two conversion operators ‘real to
integer’ and ‘integer to real’ are defined:

int : Real → Int
real : Int → Real

The int operator returns the nearest integer towards zero.
Some examples are:

int 4.6 = 4
int −4.6 = −4
real 5 = 5.0
real((int 5.2)/2) = 2.0

4.4.2 Other Prefix Operators

As for integers, there is one prefix operator for taking the absolute value of a real
number:

abs : Real → Real

4.4.3 Infix Operators

A number of binary infix operators are defined on real numbers. They correspond
to the similar infix integer operators:

> : Real × Real → Bool
< : Real × Real → Bool
≥ : Real × Real → Bool
≤ : Real × Real → Bool

30 Built-in Types

+ : Real × Real → Real
− : Real × Real → Real
∗ : Real × Real → Real
/ : Real × Real

∼

→ Real
↑ : Real × Real

∼

→ Real

Note that the real division operator performs arithmetic division without trunca-
tion.

The real exponentiation operator is partial in that its result is under-specified if
the first argument is zero and the second argument is not positive, or if the first
argument is negative and the second argument is not a whole number.

4.5 Characters

The character type literal Char represents the type containing the characters:

′
A
′,′B′,...,′a′,′b′,...

Note that a character begins and ends with ′.

4.6 Texts

The text type literal Text represents the type containing strings of characters. A
text begins and ends with the symbol ′′ and has the general form:

′′c1 ... cn
′′

where for each ci ,
′ci

′ is a value of type Char.

Some examples are:

′′
this is a text

′′

′′
Formal Methods

′′

′′′′

In chapter 9 more will be said about texts.

4.7 The Unit Value

The unit type literal Unit represents the type containing the single value ‘()’. It
might appear strange to have a type with only one value. It is, however, quite useful
when dealing with imperative and concurrent specifications, as will be illustrated
later in this tutorial.

Precedence and Associativity 31

4.8 Precedence and Associativity

4.8.1 Precedence

To avoid having to write too many brackets in expressions, operators and some
other symbols like ∀ are given precedences. Increasing precedence means that things
bind more closely together. For instance, ∗ in RSL has a higher precedence than
+ (as is common in arithmetic), so that:

x + y ∗ z ≡ x + (y ∗ z)

In other words, either of these expressions may be written in RSL, and they are
equivalent, but the brackets in the latter are unnecessary.
Similarly, the symbols +, =, ≡ and ∀ are in decreasing order of precedence, so:

∀ i : Int • i = 0 ≡ i + 1 = 1

is equivalent to:

∀ i : Int • ((i = 0) ≡ ((i + 1) = 1))

The precedence rules are designed to make brackets unnecessary as often as possi-
ble. A table of them can be found in appendix B.

4.8.2 Associativity

Precedence deals with expressions involving different operators; what happens when
they are the same? For example, is x − y − z equivalent to:

x − (y − z)
or

(x − y) − z

The answer is given by associativity rules, also given in the table in appendix B.
Here − is defined to associate to the left, i.e. the latter form with the brackets on
the left is the correct one. Typically the arithmetic operators (like −) associate to
the left and the others to the right. For instance:

x ⇒ y ⇒ z ≡ x ⇒ (y ⇒ z)

Where the table gives no associativity it is because the construct would be ill typed
however it were bracketed, like:

s ⊆ s′ ⊆ s′′

or because there is no standard convention for what it means, like:

x↑y↑z

which must be written either:

x↑(y↑z)
or

(x↑y)↑z

CHAPTER 5

Products

A product is an ordered finite collection of values of possibly different types. Ex-
amples of products are:

(1,2)
(1,true,′′John′′)

The first product is a pair where the first value is 1 and the second value is 2.
Note that one can speak about ‘the first value’, ‘the second value’, etc. The second
product consists of three values, all of different types. Functions with n arguments
are really functions of single products which have n component values.

5.1 Product Type Expressions

The Cartesian product type expression:

type expr1 × ... × type exprn

for n ≥ 2, represents the type containing products of length n:

(v1,...,vn)

where each vi is a value of type type expri .
As an example consider the type expression:

Bool × Bool

The type represented by this is finite and contains the following four products of
length 2:

(true,true)
(true,false)
(false,true)
(false,false)

As another example, the type expression:

Nat × Nat × Bool

32

Product Value Expressions 33

represents an infinite type containing the following products:

(0,0,true)
(0,0,false)
(0,1,true)
(0,1,false)
(1,0,true)
(1,0,false)
(2,0,true)
...

5.2 Product Value Expressions

An expression of the form:

(value expr1,...,value exprn)

for n ≥ 2, evaluates to a product:

(v1,...,vn)

where vi is the value of value expri .
Some examples of product value expressions together with their types are:

(true, p ⇒ q) : Bool × Bool
(x + 1, 0, ′′this is a text

′′) : Nat × Nat × Text

5.3 Example: A System of Coordinates

A system of coordinates provides a set of positions:

(x,y)

where x and y are real numbers. The centre of a system of coordinates is (0.0, 0.0)
and is referred to as origin.
The distance between two positions is obtained by Pythagoras’ theorem.

SYSTEM OF COORDINATES =
class

type
Position = Real × Real

value
origin : Position,
distance : Position × Position → Real

axiom
origin ≡ (0.0,0.0),
∀ x1,y1,x2,y2 : Real •

distance((x1,y1),(x2,y2)) ≡ ((x2−x1)↑2.0 + (y2−y1)↑2.0)↑0.5
end

34 Products

The type Position contains all possible positions — pairs of real numbers.
In the axiom for distance the following product expressions occur:

(x1,y1)
(x2,y2)
((x1,y1),(x2,y2))

The function distance is thus applied to a pair of positions, each of which is a pair
of real numbers.

CHAPTER 6

Bindings and Typings

In this chapter we develop further the concepts of binding and typing. The con-
cepts were briefly introduced in connection with quantified Boolean expressions
(section 4.1.4) and they will be used extensively in later chapters. As an example,
consider the quantified expression:

∀ x : Nat • (x = 0) ∨ (x > 0)

The x : Nat following ∀ is a typing consisting of the binding x and the type
expression Nat.
A typing is a generalized declarative construct for defining identifiers with asso-

ciated types. In section 4.1.4 a typing was defined to have the simplified form:

id1,...,idn : type expr (for n ≥ 1)

A typing can, however, have other forms. In general we distinguish between two
kinds of typings: single typings and multiple typings, the latter being a short form
of the former. In addition we can even have lists of typings. Later it is explained
what single and multiple typings are, and how multiple typings and typing lists
can be expanded into single typings.
First, however, we explain the fundamental concept of a binding.

6.1 Bindings

A binding is a structure of identifiers, possibly grouped by parentheses. Examples
are:

x
(x,y)
(x,(y,z))

The purpose of bindings is to give names to values, extended to giving names to
components of product values. That is, a value can be matched against a binding,
resulting in a collection of definitions.

35

36 Bindings and Typings

The matching of values against bindings takes place for example in a let expres-
sion, of which the following is an example:

let (x,y) = v in x + 1 end

The value v is matched against the binding (x , y) before the expression x + 1 is
evaluated. Let us assume the following definition of the value v :

value v : Int × (Bool × Bool)
axiom v ≡ (1,(true,false))

The expression x + 1 in the let expression is evaluated in the scope of x and y
where x is bound to 1 and where y is bound to (true, false). The result of the
expression is therefore 2. Formulated otherwise, the expression x + 1 is evaluated
within the scope of the following definitions obtained by matching v against (x , y):

value
x : Int,
y : Bool × Bool

axiom
x ≡ 1,
y ≡ (true,false)

Let expressions will be explained in more detail in chapter 14.
The value v can be matched against any of the bindings x , (x , y) and (x , (y , z))

given above. Matching v against the binding x corresponds to the definitions:

value x : Int × (Bool × Bool)
axiom x ≡ (1,(true,false))

Matching v against the binding (x , (y , z)) corresponds to the definitions:

value
x : Int,
y : Bool,
z : Bool

axiom
x ≡ 1,
y ≡ true,
z ≡ false

Note that matching a value against a binding does not generate the definitions in
a syntactic sense. What happens is that within the scope of the binding, it is as if
the definitions had been given.
A binding either has the form:

id

or (in the syntax recursively defined) the form:

(binding1,...,bindingn) (for n ≥ 2)

Single Typings 37

6.2 Single Typings

A single typing has the form:

binding : type expr

Examples of single typings are:

x : Int × (Bool × Bool)
(x,y) : Int × (Bool × Bool)
(x,(y,z)) : Int × (Bool × Bool)

Such a single typing associates identifiers with types in the obvious way. In the
second single typing above, x is associated with Int while y is associated with
Bool×Bool.
A single typing is thus a way of defining identifiers together with their types.

6.3 Multiple Typings

A multiple typing has the form:

binding1,...,bindingn : type expr

for n ≥ 2. It is short for the single typing:

(binding1,...,bindingn) : type expr × ... × type expr

where the product type expression has length n. An example of a multiple typing
is:

y,z : Bool

This is short for the following single typing:

(y,z) : Bool × Bool

6.4 Typing Lists

We shall often meet typing lists of the form:

typing1,...,typingn

where n > 1. Such a typing list is expanded into a single typing in two steps.
First, the individual typings are expanded into single typings, thereby obtaining:

binding1 : type expr1,...,bindingn : type exprn

Secondly, this list of single typings is expanded as one single typing, taking the
form:

(binding1,...,bindingn) : type expr1 × ... × type exprn

As an example, consider the typing list:

x : Int, y,z : Bool

38 Bindings and Typings

This is expanded into a single typing as follows.
First, the individual typings are expanded into single typings, thereby obtaining:

x : Int, (y,z) : Bool × Bool

Secondly, this list of single typings is expanded as one single typing:

(x,(y,z)) : Int × (Bool × Bool)

CHAPTER 7

Functions

A function is essentially a mapping from values of one type to values of another
type. Functions are central to the specification of a system. As an example, the
activities within a system may be modelled as functions, such as for example the
activity: ‘register a person in a database’. This form of activity may be modelled
by a function which, when applied to a pair consisting of a person and a database,
returns an augmented database containing the person.
A function, say f , that maps values of a type T1 to values of a type T2 is total if

for every value in T1, f returns a unique value in T2. A function is partial if there
exists a value within T1 for which f might not return a value in T2 (i.e. might not
terminate), or for which different applications of the function might return different
values in T2. (In the second case we say that the function is ‘non-deterministic’,
see chapter 16.)
A function that is not known to be total is considered partial. Hence the to-

tal functions are included in the partial functions, and the term partial means
‘not specified to be total’ rather than ‘specified to be non-terminating or non-
deterministic’. For example, the integer and real division operators in RSL are
partial because they are under-specified for division by zero.
The properties of functions may be defined in a variety of styles, with abstract

property oriented styles at one end of the spectrum, and concrete algorithm oriented
styles at the other.

7.1 Total Functions

A function type expression of the form:

type expr1 → type expr2

represents a type containing all total functions from the type represented by type -
expr1 to the type represented by type expr2.
A total function:

f : type expr1 → type expr2

39

40 Functions

has the following property:

∀ x : type expr1 • ∃! y : type expr2 • f(x) ≡ y

That is, for any value of the first type the function may be applied and will give a
unique value in the second type. Functions may also be partial, see section 7.4.
We have already seen some examples of functions. In the election database

(section 3.1.2 and section 3.6) we defined:

value
register : Person × Database → Database,
check : Person × Database → Bool,
number : Database → Nat

and in the system of coordinates (section 5.3) we defined:

value distance : Position × Position → Real

We have also seen how functions are applied:

register(p,db)
check(p,db)
number(db)
distance((x1,y1),(x2,y2))

A function is applied via an application expression of the general form:

value expr(value expr1,...,value exprn)

for n ≥ 0, where (for n > 0) value expr represents a function of the type:

T1 × ... × Tn → T

and where each value expri is of type Ti . The result is of type T .
The following sections illustrate how functions may be defined using a variety of

styles.

7.2 Definitions by Axioms

For the purpose of illustration we choose one example which we specify in several
ways in order to show different possibilities. The function has the signature (name
and type):

value fraction : Real → Real

and is supposed to return 1.0/x for any real number argument x 6= 0.0, and to
return 0.0 for the argument x = 0.0. A first solution is:

axiom ∀ x : Real • fraction(x) ≡ if x = 0.0 then 0.0 else 1.0/x end

Alternatively one could define the function through two axioms, one for the zero
case and one for the non-zero case:

axiom
fraction(0.0) ≡ 0.0,

Explicit Definition of Total Functions 41

∀ x : Real • x 6= 0.0 ⇒ (fraction(x) ≡ 1.0/x)

7.3 Explicit Definition of Total Functions

A shorter way of writing:

value fraction : Real → Real
axiom ∀ x : Real • fraction(x) ≡ if x = 0.0 then 0.0 else 1.0/x end

is:

value
fraction : Real → Real
fraction(x) ≡ if x = 0.0 then 0.0 else 1.0/x end

Thus the signature and the axiom have been merged into one definition called
an explicit function definition. This saves writing the keyword axiom and the
quantification over the formal parameter.
The merging of signature and axiom also associates the axiom more closely with

the signature, a style typical in programming languages. This style can make it
easier for a reader of a specification to detect the properties associated with a
particular function identifier.
The explicit function definition is an instance of the form:

value
id : type expr1 × ... × type exprn → type expr
id(id1,...,idn) ≡ value expr

for n ≥ 1, which is typically short for:

value
id : type expr1 × ... × type exprn → type expr

axiom
∀ (id1,...,idn) : type expr1 × ... × type exprn • id(id1,...,idn) ≡ value expr

7.4 Partial Functions

A function type expression of the form:

type expr1
∼

→ type expr2

represents a type containing all partial as well as total functions from the type
represented by type expr1 to the type represented by type expr2.
A function:

f : type expr1
∼

→ type expr2

is partial if there exists a value v : type expr1 such that f might fail to return a
value when applied to v , i.e. might not terminate, or such that the result is non-
deterministic. Non-termination is a common feature of programs and in RSL this is

42 Functions

also possible. As we shall see later, RSL provides a range of loop constructs which
all can lead to non-termination. Non-determinism will be discussed in chapter 16.
The fact that the function f definitely does not terminate for some v : type expr1

can be written as follows:

f(v) ≡ chaos

where chaos is the non-terminating expression.
As an example, suppose that we make the fraction function partial at zero. That

is, we do not specify how the function behaves for the argument x = 0.0. This can
be done as follows:

value partial fraction : Real
∼

→ Real
axiom ∀ x : Real • x 6= 0.0 ⇒ (partial fraction(x) ≡ 1.0/x)

The axiom only defines the behaviour of the function for arguments different from
zero. This is done by preceding the defining equivalence with a test for inequality
with 0.0. The function may therefore evaluate to chaos when applied to 0.0.
That is, one possible function satisfying the axiom is the one that also satisfies the
following property:

partial fraction(0.0) ≡ chaos

The original axiom does, however, not imply this property, so another function
satisfying the original axiom may therefore instead satisfy the alternative property:

∃ r : Real • partial fraction(0.0) ≡ r

Remember that the partial functions are simply those that are not known to be
total, not those that are known to be non-terminating or non-deterministic. Hence
many partial functions are potentially total because they are partial as a result of
under-specification.

7.5 Explicit Definition of Partial Functions

A shorter way of writing:

value partial fraction : Real
∼

→ Real
axiom ∀ x : Real • x 6= 0.0 ⇒ (partial fraction(x) ≡ 1.0/x)

is:

value
partial fraction : Real

∼

→ Real
partial fraction(x) ≡ 1.0/x
pre x 6= 0.0

This is an explicit function definition with a pre-condition following the keyword
pre.
In the general case, however, this explicit definition is really short for:

value partial fraction : Real
∼

→ Real

Function Expressions 43

axiom ∀ x : Real • partial fraction(x) ≡ 1.0/x pre x 6= 0.0

where the expression following the • has the form:

value expr1 ≡ value expr2 pre value expr3

As will be described in section 18.8 such a conditional equivalence expression is
short for:

(value expr3 ≡ true) ⇒ (value expr1 ≡ value expr2)

The above explicit definition of partial fraction is an instance of the form:

value
id : type expr1 × ... × type exprn

∼

→ type expr
id(id1,...,idn) ≡ value expr1 pre value expr2

7.6 Function Expressions

In the following, fraction is defined as the function represented by the function
expression occurring on the right hand side of ≡:

value fraction : Real → Real
axiom fraction ≡ λ x : Real • if x = 0.0 then 0.0 else 1.0/x end

The function expression evaluates to a function. The form of a function expression,
sometimes called a lambda abstraction, consists of a single typing (a binding and
a type expression) and an expression:

λ binding : type expr • value expr

representing a function of type:

type expr
∼

→ T

where T is the type of value expr . The binding must match the type represented
by type expr .
Some other examples are:

value
incr : Int → Int,
add : Int × Int → Int,
cond : Bool × (Nat × Nat) → Nat

axiom
incr ≡ λ x : Int • x + 1,
add ≡ λ (x,y) : Int × Int • x + y,
cond ≡ λ (b,(x,y)) : Bool × (Nat × Nat) • if b then x else y end

It is possible to write the function expressions defining add and cond in a slightly
different way, though the meaning is unchanged:

axiom
add ≡ λ (x : Int, y : Int) • x + y,

44 Functions

cond ≡ λ (b : Bool, x,y : Nat) • if b then x else y end

A function expression can in addition to the previous form also have the following
form:

λ (typing1,...,typingn) • value expr

where n ≥ 0. This form can be expanded into the previous form using the rules
presented in chapter 6 and as exemplified by the above axioms. That is, the typing
list:

typing1,...,typingn

can be expanded into a single typing of the form:

binding : type expr

So the function expression can be expanded into:

λ (binding : type expr) • value expr

and therefore into:

λ binding : type expr • value expr

The case where n = 0 in the ‘typing list’ form represents function expressions of
the form:

λ () • value expr

which are functions of type:

Unit
∼

→ T

where T is the type of value expr . Such a function expression can of course instead
be written as:

λ dummy : Unit • value expr

where dummy is then not referred to within value expr . The () version, however,
saves one from inventing a parameter name, and thereby from confusing the reader.
Functions with parameter type Unit are, however, primarily interesting when

value expr has side-effects, as will be described later in this tutorial.

7.7 Higher Order Functions

Since function types are just like other types, a function can in particular take a
function as parameter and return a function as result. Consider for example the
definition:

value
twice : (Int

∼

→ Int) → Int
∼

→ Int
twice(f) ≡ λ i : Int • f(f(i))

Function arrows associate to the right, so the type of twice could (equivalently)
have been written in the following way:

Explicit Definition of Curried Functions 45

twice : (Int
∼

→ Int) → (Int
∼

→ Int)

The function twice when applied to a function f returns a function (represented
by the function expression) that when applied to an integer i applies f twice.
Some examples of twice applications are:

twice(λ i : Int • i + 1) = λ i : Int • i + 2
twice(λ i : Int • i + 1)(1) = 3

Note that twice can be applied to one argument, as in the first example, or to two,
as in the second.
A function that returns a function upon application is called a curried function.
We do not need to use a function expression to define twice. We can also write

an axiom like:

axiom ∀ f : Int
∼

→ Int, i : Int • twice(f)(i) ≡ f(f(i))

In yet another way of defining twice we could use the built-in operator ◦ for function
composition. For arbitrary types T1, T2 and T3 this has the type:

◦ : (T2
∼

→ T3) × (T1
∼

→ T2) → T1
∼

→ T3

The result of composing two functions f1 and f2 is defined as follows:

f1
◦ f2 = λx : T1 • f1(f2(x))

Our axiom for twice would then be:

axiom ∀ f : Int
∼

→ Int • twice(f) ≡ f ◦ f

7.8 Explicit Definition of Curried Functions

A shorter way of writing:

value twice : (Int
∼

→ Int) → Int
∼

→ Int
axiom ∀ f : Int

∼

→ Int, i : Int • twice(f)(i) ≡ f(f(i))

is:

value
twice : (Int

∼

→ Int) → Int
∼

→ Int
twice(f)(i) ≡ f(f(i))

This explicit function definition is an instance of the form:

value
id : type expr1 → ... → type exprn → type expr
id(id1)...(idn) ≡ value expr

7.9 Currying and Uncurrying

The function twice above is curried. Alternatively, we can define an uncurried
version twice ′ as:

46 Functions

value
twice′ : (Int

∼

→ Int) × Int
∼

→ Int
twice′(f,i) ≡ f(f(i))

We have turned an arrow → into a Cartesian product ×. Previous applications of
the form:

twice(f)(x)

now have to be written:

twice′(f,x)

However, previous applications of the form:

twice(f)

must now be written:

λ i : Int • twice′(f,i)

which is longer. This is one reason for choosing the curried version.

7.10 Predicative Definition of Functions

The function definitions given so far have all been algorithmic in the sense that
they suggest a strategy for constructing an answer.
Function definitions can also be predicative in the sense of just saying what

properties the result must have.
Consider the following specification of the square root function:

value
square root : Real

∼

→ Real
axiom

∀ x : Real • x ≥ 0.0 ⇒
∃ s : Real •

square root(x) = s ∧
s ∗ s = x ∧
s ≥ 0.0

If the predicate did not include the property that s ≥ 0.0 then the square root
function would be under-specified, returning either a positive or negative result on
application — one would not know.

7.11 Implicit Definition of Functions

A shorter way of writing the above is:

value
square root : Real

∼

→ Real
square root(x) as s

Algebraic Definition of Functions 47

post s ∗ s = x ∧ s ≥ 0.0
pre x ≥ 0.0

This is an implicit function definition reading as follows.
The function square root is only necessarily defined for non-negative real numbers

as expressed by Real and the pre-condition following pre.
When applied to a non-negative real x it returns a value, call it s , that satisfies

the post-condition following post.
The implicit definition is short for:

value
square root : Real

∼

→ Real
axiom

∀ x : Real •

square root(x) as s
post s ∗ s = x ∧ s ≥ 0.0
pre x ≥ 0.0

where the expression following the • has the form:

value expr1 as id post value expr2 pre value expr3

This is the general form of a post-expression, and in the simple case it is equiv-
alent to the following expression, assuming that the type of value expr1 can be
represented by the type expression type expr :

value expr3 ⇒
∃ id : type expr •

id = value expr1 ∧ value expr2

This equivalence only holds, however, if the expressions are applicative and termi-
nate with a unique result. In chapter 23 the general meaning of post-expressions
will be explained in detail.
The above implicit definition of square root is an instance of the form:

value
id : type expr1 × ... × type exprn

∼

→ type expr
id(id1,...,idn) as idr

post value expr1
pre value expr2

for n ≥ 1, where value expr2 can refer to the arguments id1, ..., idn and where
value expr1 in addition can refer to idr .

7.12 Algebraic Definition of Functions

Most of the function definitions we have seen up to now are of the form:

id(id1,...,idn) ≡ value expr

48 Functions

The important point here is that between the brackets (and) is a list of identifiers.
This corresponds to the way of defining functions in many programming languages.

RSL, however, also allows for an algebraic style of function definitions. Using
this style, axioms typically have the form:

id(value expr1,...,value exprn) ≡ value expr

where the expressions between (and) typically themselves contain calls of function-
s, perhaps even including id . For example, axioms stating that, for an argument
x , a function f is idempotent and the inverse of a function g can be written in this
style:

f(f(x)) ≡ f(x),
f(g(x)) ≡ x

Consider the specification of integer lists. A list is an ordered sequence of elements.
One can construct a new list by adding an element to an old list. The added element
is referred to as the head of the new list while the old list contained in the new list
is referred to as the tail.

LIST =
class

type
List

value
empty : List,
add : Int × List → List,
head : List

∼

→ Int,
tail : List

∼

→ List
axiom forall i : Int, l : List •

[head add]
head(add(i,l)) ≡ i,

[tail add]
tail(add(i,l)) ≡ l

end

The List type is given as an abstract type since we do not explicitly say how lists
are represented.

If the empty constant were not there, we would not be able to write any list
expressions. For example, the list of numbers from 1 to 3 is expressed as:

add(1,add(2,add(3,empty)))

The head and tail functions are partial in that they are not necessarily defined
for the empty list. This is reflected in the axioms where nothing is said about
head(empty) and tail(empty).

The head axiom says that adding an element i to a list and then taking the head
gives the element i .

Example: A Database 49

The tail axiom says that adding an element to a list l and then taking the tail
gives the original list l .
So we have as consequences of these axioms:

head(add(1,add(2,add(3,empty)))) ≡ 1
tail(add(1,add(2,add(3,empty)))) ≡ add(2,add(3,empty))

7.13 Example: A Database

Consider the specification of a database. The database associates unique keys with
data. That is, one key is associated with at most one data element in the database.
The database should provide the following functions:

• Insert which associates a key with a data element in the database. If the key
is already associated with a data element the new association overrides the
old.

• Remove which removes an association between a key and a data element.
• Defined which checks whether a key is associated with a data element.
• Lookup which returns the data element associated with a particular key.

The specification of this can be given in terms of algebraic function definitions.

DATABASE =
class

type
Database, Key, Data

value
empty : Database,
insert : Key × Data × Database → Database,
remove : Key × Database → Database,
defined : Key × Database → Bool,
lookup : Key × Database

∼

→ Data
axiom forall k,k1 : Key, d : Data, db : Database •

[remove empty]
remove(k,empty) ≡ empty,

[remove insert]
remove(k,insert(k1 ,d,db)) ≡

if k = k1 then remove(k,db) else insert(k1,d,remove(k,db)) end,
[defined empty]

defined(k,empty) ≡ false,
[defined insert]

defined(k,insert(k1,d,db)) ≡ k = k1 ∨ defined(k,db),
[lookup insert]

lookup(k,insert(k1,d,db)) ≡ if k = k1 then d else lookup(k,db) end
pre k = k1 ∨ defined(k,db)

end

50 Functions

The Database type is given as an abstract type since we do not want to say anything
about how databases are represented. Likewise, nothing is said about keys and
data.

The lookup function is partial and is under-specified when applied to a key and
a database not associating that key with a data element. There is only one axiom
for lookup, namely lookup insert , and that only applies when its pre-condition is
satisfied. There is no axiom lookup empty and hence the value of lookup(k , empty)
is under-specified.

The remove insert axiom is the most elaborate of the axioms. The right hand
side is an if expression with two branches:

• If the key k to be removed equals the inserted key k1, then the association
of k with d is removed and the remove function is applied recursively to the
rest. This recursive call may seem strange since one could argue that a key
is at most associated with one data element and therefore only needs to be
removed once. A simpler axiom would be:

remove(k,insert(k1,d,db)) ≡ if k = k1 then db else ... end

This is, however, wrong. We have quantified db over Database and therefore
db can be any database, especially one associating k with some data element.

• If the key k to be removed does not equal the inserted key k1, then k must be
removed from the remaining database. The succeeding association of k1 with
d is necessary to keep that association.

The database example illustrates a useful technique for identifying axioms. The
technique can be characterized as follows:

1. Identify the constructors by which any database can be constructed. These
are the constant empty and the function insert . Any database can thus be
represented by an expression of the form:

insert(k1,d1,insert(k2,d2,...insert(kn,dn,empty)...))

2. Define the remaining functions by case over the constructors using new iden-
tifiers as parameters. In the above axioms, remove, defined and lookup are
defined over the two constructor expressions:

empty
insert(k1,d,db)

We thus get immediately all the left hand sides of the axioms that we need.
That is:

remove(k,empty)
remove(k,insert(k1,d,db))
defined(k,empty)
defined(k,insert(k1,d,db))
lookup(k,empty)
lookup(k,insert(k1,d,db))

Example: The Natural Numbers 51

Note, however, that we choose to under-specify lookup; its signature includes
the partial function arrow, we do not include an axiom with left hand side
lookup(k , empty) and the axiom lookup insert has a pre-condition — it only
applies to defined keys.

The list axioms (section 7.12) have the same form. The technique is useful in many
applications, but there are of course applications where one must be more inventive
when writing axioms.
Chapter 12 describes a very simple way of identifying the constructors of a type.

7.14 Example: The Natural Numbers

Consider the specification of natural numbers. This specification is not really
needed since RSL provides the built-in type Nat. The example is given only for
illustration. Functions are defined algebraically.

PEANO =
class

type
N

value
zero : N,
succ : N → N

axiom forall n,n1,n2 : N •

[first is zero]
∼ (succ(n) ≡ zero),

[linear order]
(succ(n1) ≡ succ(n2)) ⇒ (n1 ≡ n2),

[induction]
∀ p : N → Bool •

(p(zero) ∧ (∀ n : N • p(n) ⇒ p(succ(n)))) ⇒
(∀ n : N • p(n))

end

The axioms are Peano’s axioms for the natural numbers. There is a zero value and
a successor function (adding one to its argument). The first is zero axiom says
that zero is not the successor of any number. The linear order axiom says that for
any natural number there is at most one predecessor, the successor of which is the
natural number.
The induction axiom makes it possible to make proofs about natural numbers

based on mathematical induction.
The axiom says: ‘for any predicate p, if p(zero) holds and if p(n) implies

p(succ(n)) then p holds for all n’. Note the quantification over predicates.
What might be difficult to see is that the induction axiom implies that N only

contains numbers that can be represented by RSL expressions of finite size. That
is, for any number n in N , n is represented by the expression:

52 Functions

succ(succ(...(succ(zero))..))

with n applications of succ.
Note that a similar induction property could have been stated in section 7.12 and

section 7.13 (and would have been needed for us to do inductive proofs about the
lists and databases specified there). In chapter 12 a shorthand for such induction
axioms is described.
We could now extend our PEANO module with functions for performing addition

and multiplication.

NATURAL NUMBERS =
extend PEANO with
class

value
plus : N × N → N,
mult : N × N → N

axiom forall n,n1,n2 : N •

[plus zero]
plus(n,zero) ≡ n,

[plus succ]
plus(n1,succ(n2)) ≡ succ(plus(n1,n2)),

[mult zero]
mult(n,zero) ≡ zero,

[mult succ]
mult(n1,succ(n2)) ≡ plus(mult(n1,n2),n1)

end

There are two questions that one can ask about the axioms for plus and mult :

• Are they correct, i.e. do they conform to the standard rules of arithmetic?
• Are they adequate, i.e. can we use them to add or multiply any two natural
numbers?

The first question we can answer with some confidence by studying the axioms,
perhaps trying a few examples. The second we can answer by observing that the
constructor technique for inventing axioms outlined in section 7.13 has been used.
That is, the axioms for plus and mult are given by case over the constructors of
N : zero and succ. If this technique is used then any expression involving non-
constructors (plus and mult) can be shown to be equivalent to one only involving
the constructors (zero and succ). The only other requirement is that the axioms
for non-constructors must ‘make some progress’. For example, the plus zero axiom
would be no help in defining plus if it were:

plus(n,zero) ≡ plus(n,zero)

because we could then never use the axiom to evaluate the left hand side as an
expression only involving constructors — we would just go round in circles. So,
to show the axioms make progress in defining the non-constructors we need one of

Example: The Natural Numbers 53

the two conditions on the right hand side of an axiom whose left hand side has a
non-constructor as its outermost function:

• The right hand side does not involve the non-constructor. plus zero and
mult zero are examples.

• The right hand side applies non-constructors only to terms with fewer con-
structors. plus succ and mult succ are examples. In each case the second
argument of the non-constructor is reduced from succ(n2) to n2. (If there are
several arguments then none must increase and at least one must decrease in
the number of constructors.)

So with these conditions all expressions can be reduced to expressions only involving
constructors. Hence adequacy is assured if the constructors are adequate.

CHAPTER 8

Sets

A set is an unordered collection of distinct values of the same type. Examples of
sets are:

{1,3,5}
{′′John′′,′′Peter′′,′′Ann′′}

The first set is an integer set and the second set is a text set. The set concept is
widely accepted to be very useful in formal specification. Many real-life aspects
can be modelled as sets: ‘the set of inhabitants of a town’, ‘the set of participants
on a course’, etc.

8.1 Set Type Expressions

A type expression of the form type expr-set represents a type of finite sets. Each
set is a subset of the set of all the values in the type represented by type expr .
Consider for example the type expression Bool-set which represents the type

containing the four sets:

{}
{true}
{false}
{true,false}

Note that the empty set {} is included.
The type expression Nat-set represents the type containing all finite subsets

of the set of all the natural numbers (note that there are infinitely many finite
subsets):

{}
{0}
{1}
{0,1}
{1,2,3}

54

Set Value Expressions 55

...

A type expression of the form type expr-infset represents the type of infinite as
well as finite sets. Each set is a subset of the set of all the values of the type
represented by type expr .
The type expression Bool-infset represents the same type as the finite set type

above since there are no infinite subsets of the set of values of a finite type like
Bool.
The type Nat-infset however, contains infinite sets in addition to the finite ones:

{}
{0}
{1}
{0,1}
{1,2,3}
...
{0,1,2,3,4,...}
{2,3,5,7,...}

The dots ... indicate infinity (note that this is not a proper RSL expression).
An example of an infinite set is the set of all the values in Nat as indicated by

the first infinite set above. Another example of an infinite set is the set of all prime
numbers as indicated by the second infinite set above.
For any type T , T−set is a subtype of T−infset. So all the sets belonging to

Nat-set belong to Nat-infset as well.

8.2 Set Value Expressions

A set may be written by explicitly enumerating its members. We have already seen
examples of such expressions:

{1,2,3}
{′′John′′,′′Peter′′,′′Ann′′}

The general form of an enumerated set expression is:

{value expr1,...,value exprn}

for n ≥ 0, where the value expri have a common maximal type (see section 11.3).
Each expression is evaluated to a value which is included in the resulting set.

Sets are unordered, as is illustrated by the following equality between two set
expressions:

{1,2,3} = {3,2,1}

A set contains distinct values, so the following equality holds:

{1,2,3} = {1,2,3,3}

56 Sets

An important set is that with no members: {}. A set can be defined implicitly by
giving a predicate which defines the members. An example of such a comprehended
set expression is:

{2∗n | n : Nat • n ≤ 3}

The comprehended set expression reads: ‘the set of values 2∗n where n is a natural
number such that n is less than or equal to 3’, so it is equal to {0,2,4,6}.
Other examples are:

{n | n : Nat • is a prime(n)} = {2,3,5,7,...}
{(x,y) | x,y : Nat • y = x + 1} = {(0,1),(1,2),(2,3),...}

The first set contains all the prime numbers. The function is a prime must have
the signature:

value is a prime : Nat → Bool

The second set contains pairs (x , y) where y is x plus one.
The general form of a comprehended set expression is:

{value expr1 | typing1,...,typingn • value expr2}

for n ≥ 1, where value expr2 must be a Boolean expression.
A ranged set expression gives a set of integers in a range from a lower bound to

an upper bound:

{3 .. 7} = {3,4,5,6,7}
{3 .. 3} = {3}
{3 .. 2} = {}

The general form of a ranged set expression is:

{value expr1 .. value expr2}

where value expr1 and value expr2 are integer valued expressions. The expression
represents the set of integers between and including the two bounds, value expr1
being the lower bound. Note that if value expr1 is greater than value expr2, the
set is empty.

8.3 Infix Operators

Basic operators on sets are the test for membership and its negated version. Let
T be an arbitrary type, then the signatures of these two operators are:

∈ : T × T-infset → Bool
6∈ : T × T-infset → Bool

An expression:

e ∈ s

is true if and only if e is a member of the set s . For the negated version we have:

e 6∈ s = ∼(e ∈ s)

Infix Operators 57

Some examples are:

3 ∈ {1,3} = true
2 6∈ {1,3} = true
2 ∈ {1,3} = false

A new set can be composed from two other sets by taking their union or their
intersection:

∪ : T-infset × T-infset → T-infset
∩ : T-infset × T-infset → T-infset

These operators can be defined in terms of test for membership:

s1 ∪ s2 ≡ {e | e : T • e ∈ s1 ∨ e ∈ s2}
s1 ∩ s2 ≡ {e | e : T • e ∈ s1 ∧ e ∈ s2}

Some examples are:

{1,3,5} ∪ {5,7} = {1,3,5,7}
{1,3,5} ∩ {5,7} = {5}
{1,3,5} ∩ {7,8} = {}

A new set can be obtained from two other sets by a ‘set difference’:

\ : T-infset × T-infset → T-infset

Its definition is:

s1 \ s2 ≡ {e | e : T • e ∈ s1 ∧ e 6∈ s2}

Some examples are:

{1,3,5} \ {1} = {3,5}
{1,3,5} \ {7} = {1,3,5}
{1,3,5} \ {n | n : Nat • is a prime(n)} = {1}

There are two operators for comparing sets, namely ‘subset’ and ‘proper subset’:

⊆ : T-infset × T-infset → Bool
⊂ : T-infset × T-infset → Bool

Their definitions are:

s1 ⊆ s2 ≡ ∀ e : T • e ∈ s1 ⇒ e ∈ s2
s1 ⊂ s2 ≡ s1 ⊆ s2 ∧ s1 6= s2

Some examples are:

{1,3,5} ⊆ {1,3,5} = true
{1,3} ⊂ {1,3,5} = true
{1,3,5} ⊂ {1,3,5} = false
{1,3} ⊆ {3,5} = false

For convenience there are reversed versions of the comparison operators:

⊇ : T-infset × T-infset → Bool

58 Sets

⊃ : T-infset × T-infset → Bool

8.4 Prefix Operators

The cardinality operator returns the size of a finite set, that is, the number of
elements contained in the set:

card : T-infset
∼

→ Nat

Some examples are:

card {1,4,67} = 3
card {} = 0

card is a total function when applied to finite sets. The application of card to an
infinite set gives chaos. An example is:

card {n | n : Nat} ≡ chaos

Note that since the result is chaos and not just under-specified, one can always
test whether some set s is infinite by writing:

card s ≡ chaos

8.5 Example: A Resource Manager

Consider the specification of a resource manager. A number of resources are to be
shared between a number of users. A resource manager controls the resources by
maintaining a pool — (a set) of free resources.
When a user wants a resource, the resource manager obtains an arbitrary one

from the pool. When the user no longer needs the resource, the manager releases
it by sending it back to the pool.

RESOURCE MANAGER =
class

type
Resource,
Pool = Resource-set

value
obtain : Pool

∼

→ Pool × Resource,
release : Resource × Pool

∼

→ Pool
axiom forall r : Resource, p : Pool •

obtain(p) as (p1,r1) post r1 ∈ p ∧ p1 = p\{r1}
pre p 6= {},
release(r,p) ≡ p ∪ {r}
pre r 6∈ p

end

Example: A Database 59

The Resource type is defined as an abstract type since we don’t consider here what
resources are and how they are identified.
A Pool is defined as a finite set of resources.
The definition of obtain reads as follows. When applied to a pool p that is

non-empty, a pair (p1, r1) is returned. The resource r1 must be a member of the
old pool p. The new pool p1 is equal to the old p except for r1 which has been
removed. Note that which resource is obtained from a pool containing more than
one resource is under-specified.
The release function just returns a resource to the pool. The resource must not,

however, be free already.
Different styles have been used for defining obtain and release. An implicit style

has been used to define obtain since there is no ‘algorithmic’ strategy for selecting
a member from a set. We only say that the returned resource must belong to the
argument pool.
An explicit style has been used for defining release since RSL provides the union

operator ∪ which represents the intended behaviour.

8.6 Example: A Database

Consider a set version of the database algebraically specified in section 7.13.

SET DATABASE =
class

type
Record = Key × Data,
Database = {| rs : Record-set • is wf Database(rs) |},
Key, Data

value
is wf Database : Record-set → Bool,
empty : Database,
insert : Key × Data × Database → Database,
remove : Key × Database → Database,
defined : Key × Database → Bool,
lookup : Key × Database

∼

→ Data
axiom forall k : Key, d : Data, rs : Record-set, db : Database •

is wf Database(rs) ≡
(∀ k : Key, d1,d2 : Data • ((k,d1) ∈ rs ∧ (k,d2) ∈ rs) ⇒ d1 = d2),

empty ≡ {},
insert(k,d,db) ≡ remove(k,db) ∪ {(k,d)},
remove(k,db) ≡ db \ {(k,d) | d : Data • true},
defined(k,db) ≡ (∃ d : Data • (k,d) ∈ db),
lookup(k,db) as d post (k,d) ∈ db
pre defined(k,db)

end

60 Sets

A database is modelled as a finite set of records, where a record consists of a key
and a data element.
Not all set of records are ‘well-formed’ as databases. We are not interested in

those holding more than one record with the same key. The function is wf Data-
base defines when a set of records is well-formed. This function is used to define a
type Database, of sets of records:

type Database = {| rs : Record-set • is wf Database(rs) |}

Such a type definition, called a subtype definition, defines a new type (here Data-
base) containing all the values of a type expression (here Record-set) that satisfy
a predicate (here is wf Database). Subtypes are described in chapter 11.
The functions insert , remove, defined and lookup all have parameters of type

Database. This means that the property of Database values, that they satisfy
is wf Database, may be assumed in their definitions.
The constant empty is of type Database and the functions insert and remove

return values of type Database. This means that the following axioms are implicit
in the specification:

axiom forall k : Key, d : Data, db : Database •

is wf Database(empty),
is wf Database(insert(k,d,db)),
is wf Database(remove(k,db))

The specification would be inconsistent if the axioms explicitly given were incon-
sistent with these.
The empty database is represented by the empty set.
In order to insert a record into the database, one must first remove any existing

record with the same key. This is necessary in order to keep the database well-
formed.
To remove a key corresponds to removing all records containing that key — note

that there will be at most one such record.
A key is defined if the database contains a record containing that key.
Finally, to lookup a (defined) key corresponds to finding a data element such

that a record containing the key and that data element is in the database.
The set database actually implements the database from section 7.13. We do

not give a detailed definition of the implementation relation here, but just outline
a strategy for proving the implementation.
SET DATABASE implements DATABASE because:

1. SET DATABASE defines all the types that DATABASE defines, the only
change being that one sort (Database) has been replaced by a concrete defi-
nition (of a subtype).

2. SET DATABASE defines (with the same signatures) all the constants and
functions that are defined by DATABASE .

3. All the axioms of DATABASE are true in SET DATABASE . As an example
consider the DATABASE axiom defined empty (ignoring quantification):

Example: Equivalence Relations 61

defined(k,empty) ≡ false
unfold empty:

defined(k,{}) ≡ false
unfold defined:

(∃ d : Data • (k,d) ∈ {}) ≡ false
isin empty:

(∃ d : Data • false) ≡ false
exists introduction:

false ≡ false
is annihilation:

true
qed

The annotations to the steps in this justification, like isin empty , are refer-
ences to proof rules of those names in [18].
So the DATABASE axiom defined empty is true in SET DATABASE .

8.7 Example: Equivalence Relations

Consider a specification of equivalence relations. A set consisting of disjoint sets of
elements is said to define an equivalence relation. We call the member sets equiv-
alence classes. All the elements of an equivalence class are considered equivalent.
An essential function on equivalence relations is make equivalent for making two

elements equivalent. Basically this function joins the equivalence classes of the two
elements.
Another essential function are equivalent tests whether two elements are equiv-

alent. That is, whether they belong to the same equivalence class.

EQUIVALENCE RELATION =
class

type
Element,
Class = Element-infset,
Relation = Class-infset

value
is wf Relation : Relation → Bool,
initial : Relation,
make equivalent : Element × Element × Relation → Relation,
are equivalent : Element × Element × Relation → Bool

axiom forall e,e1,e2 : Element, r : Relation •

is wf Relation(r) ≡
{} 6∈ r ∧
(∀ e : Element • ∃ c : Class • c ∈ r ∧ e ∈ c) ∧
(∀ c1,c2 : Class • c1 ∈ r ∧ c2 ∈ r ∧ c1 6= c2 ⇒ c1 ∩ c2 = {}),

62 Sets

initial ≡ {{e} | e : Element},
make equivalent(e1,e2,r) ≡

{c | c : Class • c ∈ r ∧ {e1,e2} ∩ c = {}} ∪
{c1 ∪ c2 | c1,c2 : Class • c1 ∈ r ∧ c2 ∈ r ∧ e1 ∈ c1 ∧ e2 ∈ c2},

are equivalent(e1,e2,r) ≡ (∃ c : Class • c ∈ r ∧ e1 ∈ c ∧ e2 ∈ c)
end

An equivalence class Class is a set of elements. A Relation is a set of equivalence
classes. Both these sets are possibly infinite (which also, of course, allows them to
be finite).
A relation is well-formed, according to is wf Relation, if:

1. It does not contain the empty equivalence class.
2. Every element in Element is represented in some equivalence class.
3. Any two different equivalence classes are disjoint.

The initial relation makes no elements equivalent. This corresponds to a class for
each element.
Two elements are made equivalent (make equivalent) by collapsing into one class

the classes to which the two elements belong. The right hand side of the axiom
defining make equivalent is the union of two sets. The first set contains those classes
that do not contain either of the two elements. Such classes remain unchanged.
The second set performs the collapse (union) of those sets containing the respective
elements. Note that they might already belong to the same class, in which case
the relation remains unchanged.
Two elements are equivalent (are equivalent) if there exists a class to which both

belong.
We could have used a subtype to define Relation as we did with Database in the

previous example in section 8.6. Readers might like to consider how the specifica-
tion would be changed.

CHAPTER 9

Lists

A list is a sequence of values of the same type, possibly including duplicates. Ex-
amples of lists are:

〈1,3,3,1,5〉
〈true,false,true〉

The first list is an integer list and the second is a Boolean list. Lists are ordered
and may contain duplicates, and one can therefore speak about ‘the first value’ in
a list, ‘the number of occurrences of a particular value’ in a list, etc. An example
of a list is ‘the list of events in order of occurrence’.

9.1 List Type Expressions

A type expression of the form type expr ∗ represents a type of finite lists. Each list
contains only values from the type represented by type expr .
Consider for example the type expression Bool∗. This type contains infinitely

many finite lists of Booleans:

〈〉
〈true〉
〈false〉
〈true,false〉
〈false,true〉
〈true,true〉
〈false,false〉
〈true,false,true〉
...

Note that the empty list 〈〉 is included. The reader should compare the above
Boolean lists with the Boolean sets contained in Bool-set (chapter 8).
A type expression of the form type exprω represents the type of infinite as well

as finite lists. The type Boolω thus contains infinite Boolean lists in addition to

63

64 Lists

the finite ones:

〈〉
〈true〉
〈false〉
〈true,false〉
〈false,true〉
〈true,true〉
〈false,false〉
〈true,false,true〉
...
〈false,true,true,true,false,... 〉

An example of an infinite list is the one containing all the prime numbers in in-
creasing order.
For any type T , T ∗ is a subtype of T ω. So, for example, all the lists belonging

to Bool∗ belong to Boolω as well.

9.2 List Value Expressions

A list may be written by explicitly enumerating its elements. We have already seen
examples of such expressions:

〈1,3,3,1,5〉
〈true,false,true〉

The general form of an enumerated list expression is:

〈value expr1,...,value exprn〉

for n ≥ 0, where the value expri have a common maximal type (see section 11.3).
Each expression is evaluated to a value which is included in the resulting list at

the appropriate position. Note that the order of the expressions matters. As an
example the following inequality holds:

〈1,2,3〉 6= 〈3,2,1〉

A list may contain duplicates, so the following inequality holds:

〈1,2,3〉 6= 〈1,2,3,3〉

An important list is that with no members, the empty list 〈〉.
A ranged list expression represents a list of integers in a range from a lower

bound to an upper bound:

〈3 .. 7〉 = 〈3,4,5,6,7〉
〈3 .. 3〉 = 〈3〉
〈3 .. 2〉 = 〈〉

The general form of a ranged list expression is:

〈value expr1 .. value expr2〉

List Value Expressions 65

where value expr1 and value expr2 are integer valued expressions. The expression
represents the list of increasingly ordered integers between and including the two
bounds, value expr1 being the lower bound. Note that if value expr1 is greater than
value expr2, the list is empty.

A new list can be generated from an old list by applying a function to each
member of the old list. An example of such a comprehended list expression is:

〈2∗n | n in 〈0 .. 3〉〉

The comprehended list expression reads: ‘the list of values 2 ∗ n where n ranges
over the list 〈0..3〉’, so it is equal to 〈0,2,4,6〉. Note that the ordering of the old list
is preserved in the new list.

It is possible via a predicate to limit the selection of elements from the old list.
Consider for example the list consisting of all the prime numbers between 1 and
100, ordered increasingly:

〈n | n in 〈1 .. 100〉 • is a prime(n)〉 = 〈2,3,5,7,...,97〉

This comprehended list expression reads as follows: ‘the list of values n where n
ranges over the list 〈1..100〉, considering only the prime numbers’.

As a third example consider a database which is a list of records:

type
Record = Key × Data,
Database = Record∗

Suppose we want to extract a report from the database, only involving those records
that are interesting as defined by some Boolean valued function on keys. For each
interesting record, the report will contain an entry consisting of the key and a
transformation of the corresponding data element. So the following functions are
assumed:

value
is interesting : Key → Bool,
transformation : Data → Report Data

The report can then be represented by the following comprehended list expression,
assuming the existence of a database db:

〈(k,transformation(d)) | (k,d) in db • is interesting(k)〉

The general form of a comprehended list expression is:

〈value expr1 | binding in value expr2 • value expr3〉

where value expr2 is a list expression and value expr3 is a Boolean expression. The
binding must match the elements of the list represented by value expr2.

66 Lists

9.3 List Indexing

A particular element of a list may be extracted by indexing, where the index must
be a natural number which is at least one and, for finite lists, at most the length
of the list. As an example consider the list l defined by:

value l : Nat∗

axiom l = 〈10,20,30〉

Then indexing l with index 2 gives the second element in the list:

l(2) = 20

Indexing may be regarded as applying the list to the index, just like applying a
function. The general form of an application expression is:

value expr1(value expr2)

where value expr1 is a list expression and value expr2 is an integer expression eval-
uating to a value between one and the length of the list.

9.4 Defining Infinite Lists

An infinite list can be defined through a value definition and an axiom specifying
it to be infinite.
Consider for example the list containing all natural numbers in increasing order:

value
all natural numbers : Natω

axiom
all natural numbers(1) = 0,
∀ idx : Nat •

idx ≥ 2 ⇒
all natural numbers(idx) = all natural numbers(idx − 1) + 1

From the infinite list of natural numbers we can define the list of all prime numbers
by a comprehended list expression:

〈n | n in all natural numbers • is a prime(n)〉 = 〈2,3,5,7,... 〉

9.5 Infix Operators

The concatenation operator concatenates two lists:

̂ : T∗ × Tω → Tω

It produces the list containing all the elements from the first argument followed by
all the elements from second:

〈e1,...,en〉 ̂ 〈en+1,... 〉 = 〈e1,...,en,en+1,... 〉

Some examples are:

Prefix Operators 67

〈1,2,3〉 ̂ 〈4,5〉 = 〈1,2,3,4,5〉
〈1,2,3〉 ̂ 〈〉 = 〈1,2,3〉

Note that the first argument to the concatenation operator must be a finite list
(one cannot append anything to the end of an infinite list since it has no end).
The second argument may, however, be infinite as in:

〈0〉 ̂ all natural numbers = 〈0,0,1,2,3,4,5,... 〉

where all natural numbers is defined above.

9.6 Prefix Operators

Two basic operators on lists are head and tail:

hd : Tω ∼

→ T
tl : Tω ∼

→ Tω

The head of a list is the first element in the list ‘from the left’:

hd 〈e1,e2,... 〉 = e1

The tail of a list is the list that remains after the head element is removed:

tl 〈e1,e2,... 〉 = 〈e2,... 〉

Some examples are:

hd 〈1,2,3〉 = 1
tl 〈1,2,3〉 = 〈2,3〉
tl 〈1〉 = 〈〉
hd all natural numbers = 0
tl all natural numbers = 〈1,2,3,4,... 〉

The head and tail operators are only defined for non-empty list arguments.
The ‘length’ operator returns the length of a finite list:

len : Tω ∼

→ Nat

Some examples are:

len 〈2,4,2〉 = 3
len 〈〉 = 0

len is a total function when applied to finite lists. The application of len to an
infinite list gives chaos. An example is:

len all natural numbers ≡ chaos

Note that since the result is chaos and not just under-specified, one can always
test whether some list l is infinite by writing:

len l ≡ chaos

This expression evaluates to true if the list l is infinite, and to false if l is finite.
Finally there are two operators for extracting the indices and elements of a list:

68 Lists

inds : Tω → Nat-infset
elems : Tω → T-infset

The indices operator is defined as follows. Let fl be a finite list and let il be an
infinite list. Then:

inds fl = {1 .. len fl}
inds il = {idx | idx : Nat • idx ≥ 1}

The elements operator is defined as follows:

elems l = {l(idx) | idx : Nat • idx ∈ inds l}

Some examples are:

inds 〈2,4,2〉 = {1,2,3}
elems 〈2,4,2〉 = {2,4}
inds 〈〉 = {}
elems 〈〉 = {}
inds all natural numbers = {i | i : Nat • i ≥ 1}
elems all natural numbers = {n | n : Nat}

9.7 Texts are Character Lists

The type Text is short for Char∗. That is, one can apply all the list operators to
text values. Some examples are:

′′
abc

′′ = 〈′a′,′b′,′c′〉
′′′′ = 〈〉
hd ′′

abc
′′ = ′

a
′

′′
abc

′′
̂

′′
de

′′
̂ 〈′f′〉 = ′′

abcdef
′′

9.8 Example: A Queue

Consider the specification of a queue. Elements can be put into the queue, one
by one. Elements can leave the queue, ‘first in — first out’, thereby reducing the
queue.

QUEUE =
class

type
Element,
Queue = Element∗

value
empty : Queue,
put : Element × Queue → Queue,
get : Queue

∼

→ Queue × Element
axiom forall e : Element, q : Queue •

Example: Sorting Integer Lists 69

empty ≡ 〈〉,
put(e,q) ≡ q ̂ 〈e〉,
get(q) ≡ (tl q,hd q)
pre q 6= empty

end

A Queue is conveniently modelled as a list. Note that a queue is characterized by
having an ordering on its members, just like lists. Only finite lists are considered
since infinite queues make no sense.
The empty queue is represented by the empty list.
To put an element into the queue corresponds to adding the element to the end

of the list, returning the augmented queue.
To get an element from the queue corresponds to removing the head of the list,

returning the reduced queue and the element removed.

9.9 Example: Sorting Integer Lists

Consider the specification of a sorting function that sorts an integer list to give a
list of increasing integers. We do not design an algorithm, but rather specify it
implicitly in terms of the two functions is permutation and is sorted .

LIST PROPERTIES =
class

value
is permutation : Int∗ × Int∗ → Bool,
is sorted : Int∗ → Bool

axiom forall l,l1,l2 : Int∗ •

is permutation(l1,l2) ≡
(∀ i : Int •

card {idx | idx : Nat • idx ∈ inds l1 ∧ l1(idx) = i} =
card {idx | idx : Nat • idx ∈ inds l2 ∧ l2(idx) = i}),

is sorted(l) ≡
(∀ idx1,idx2 : Nat •

{idx1,idx2} ⊆ inds l ∧ idx1 < idx2 ⇒
l(idx1) ≤ l(idx2))

end

The function is permutation takes two lists and determines whether they are per-
mutations of each other: they have the same length, contain the same elements and
each element occurs the same number of times. In the definition this is expressed
as follows: ‘for every integer i , the number of indices in the one list which select i
must be equal to the number of indices in the other list which select i ’.
The function is sorted takes a list and determines whether it is ordered increas-

ingly: for any two different indices, the element selected by the smaller index must
be less than or equal to the element selected by the larger index.

70 Lists

We can now extend the LIST PROPERTIES module with the definition of a
sorting function:

SORTING =
extend LIST PROPERTIES with
class

value
sort : Int∗ → Int∗

axiom forall l : Int∗ •

sort(l) as l1 post is permutation(l1,l) ∧ is sorted(l1)
end

The sort function takes a list and returns a new list which is a permutation of the
old one and which is sorted.

9.10 Example: A Database

Consider a list version of the database from section 7.13. The database will now
be a list of records, corresponding to the standard notion of a sequential file.
To illustrate how a specification can be implementation oriented, we shall in

addition require the database to be sorted on keys. For that purpose we must
assume a function less than defined on pairs of keys.
The sortedness property can now be utilized when searching for a record with a

particular key k : the search is terminated as soon as a key greater than or equal to
k is found. If the key found is greater than k , the search has failed. This algorithm
saves time (on average) if the key is not contained in the database.
We also make the function lookup total (for ‘well-formed’ databases) by returning

an error value when looking up a key not in the database. We therefore define such
an error value, named not found .
The types Key and Data together with the function less than and the constant

not found are now defined in separate modules. The decomposition into sub-
modules reduces the size, and thereby increases the readability, of each module.

KEY =
class

type
Key

value
less than : Key × Key → Bool

axiom forall k,k1,k2,k3 : Key •

[anti reflexive]
∼less than(k,k),

[transitive]
less than(k1,k2) ∧ less than(k2,k3) ⇒ less than(k1,k3),

[total order]
less than(k1,k2) ∨ less than(k2,k1) ∨ k1 = k2

Example: A Database 71

end

DATA =
class

type Data
value not found : Data

end

The error element not found is under-specified — we do not care about the par-
ticular value at this point.
The function less than defines a strong ordering on keys. If the keys were in-

tegers, the ordering could be <. The function is specified through a number of
axioms. The reader should check that these axioms actually hold for <.
To specify records, we make an abstraction, ‘hiding’ the fact that they are pairs

of keys and data. For that purpose we define functions for generating new records
(new record), and for decomposing records (key of and data of).
A new module which is an extension of KEY and DATA defines these functions.

RECORD =
extend KEY with extend DATA with
class

type
Record = Key × Data

value
new record : Key × Data → Record,
key of : Record → Key,
data of : Record → Data

axiom forall k : Key, d : Data •

new record(k,d) ≡ (k,d),
key of(k,d) ≡ k,
data of(k,d) ≡ d

end

The definition of new record may look strange since it is the identity function,
taking a pair and returning a pair. We have, however, ensured that we don’t need
to bother any more with how records are represented. From now on records are
only created and decomposed by these three functions.
It is now time to define the database as a sorted list of records.

LIST DATABASE =
extend RECORD with
class

type
Database = {| rl : Record∗

• is wf Database(rl) |}
value

is wf Database : Record∗ → Bool,
empty : Database,

72 Lists

insert : Key × Data × Database → Database,
remove : Key × Database → Database,
defined : Key × Database → Bool,
lookup : Key × Database → Data

axiom forall k : Key, d : Data, rl : Record∗, db : Database •

is wf Database(rl) ≡
(∀ r1,r2 : Record, left,right : Record∗

•

rl = left ̂ 〈r1,r2〉 ̂ right ⇒
less than(key of(r1),key of(r2))),

empty ≡ 〈〉,
insert(k,d,db) as db1

post elems db1 = (elems remove(k,db)) ∪ {new record(k,d)},
remove(k,db) ≡ 〈r | r in db • key of(r) 6= k〉,
defined(k,db) ≡

if db = 〈〉 ∨ less than(k,key of(hd db)) then false
else key of(hd db) = k ∨ defined(k,tl db)
end,

lookup(k,db) ≡
if db = 〈〉 ∨ less than(k,key of(hd db)) then not found
elsif key of(hd db) = k then data of(hd db)
else lookup(k,tl db)
end

end

The type Database is defined to be a subtype of lists of records — those that are
‘well-formed’ (see chapter 11 for a description of subtype definitions).

A list of records is well-formed, according to is wf Database, if for any two
successive records, the key of the ‘left’ record is less than the key of the ‘right’
record. Note that this well-formedness condition also prevents duplicate keys, i.e.
two records having the same key. This is actually a consequence of the anti reflexive
axiom in the module KEY .

The function insert is defined implicitly by saying that the result of an insertion
must contain the correct set of records. Note the fact that the result must be well
formed (i.e. sorted and without duplicates) is implicit in the result type Database
in the signature of insert . Although we are trying to be implementation oriented,
the implicit style has been used in the definition of insert , since our particular aim
at this point is to optimize the functions defined and lookup.

The function remove is defined by a list comprehension expression that removes
all the records having the specified key. Note that the result will be well-formed as
the database argument is.

The functions defined and lookup are defined by nearly the same prescription.
They search the database sequentially for a key until either the end is reached or a
greater key is found or the key is found. This algorithm depends on the database
argument being well-formed, ensured by their signatures.

Example: A Database 73

Note in defined that due to the conditional interpretation of ∨, the function
defined will not be applied recursively if the key is found.
In the case of lookup, note how the error value not found is returned on failure

to find the specified key.
An interesting point to note here is that LIST DATABASE implements DATA-

BASE from section 7.13.
Achieving this implementation relation has been our aim, but at the cost of

introducing a problem: the constant not found is a value of type Data just like
any other value of Data. It is therefore possible to insert it into the database by
insert . This is probably not the intention and users of LIST DATABASE should
not do this. (We could, for example, make sure that calls of insert do not have
not found as an argument.)
We could have made the function insert partial with the pre-condition that the

inserted data element should be different from not found . This would, however,
destroy the implementation relation: the original function insert was defined for
all Data values.
The list database specification above is rather implementation oriented. We

could have chosen to give a more abstract specification, still in terms of lists, but
without the sorting. That is to say, one can also use lists for high-level specifica-
tions.

CHAPTER 10

Maps

A map is a table-like structure, very similar to a function, that maps values of one
type into values of another type. Examples of maps are:

[3 7→ true, 5 7→ false]
[′′Klaus′′ 7→ 7, ′′John′′ 7→ 2, ′′Mary′′ 7→ 7]

The first is a map from integers to Booleans. The value 3 is mapped to true while
the value 5 is mapped to false. The second is a map from texts to integers.
The set of values for which a map is defined is referred to as the domain of the

map. The second map above has the domain:

{′′Klaus′′,′′John′′,′′Mary′′}

The range of a map is the set of values mapped to. The second map above has the
range:

{2,7}

Maps are similar to functions in that a map can be applied to a domain value to
return an associated range value. The difference between functions and maps lies
primarily in the kinds of operators which may be applied. Maps can be viewed
as finite or infinite sets of domain/range pairs which may be merged, restricted,
augmented, reduced, overridden etc. Functions, on the other hand, may only be
composed and applied to arguments: in particular we cannot (unless they also
depend on variables) change the set of domain values for which they are defined,
or change the results of applying them to particular domain values.
As an example of a map, consider a file directory which is the mapping from

file identifiers into files. Such a map could typically be subject to the following
manipulations:

1. List all names of existing files.
2. Add a file.
3. Change a file.
4. Delete a file.

74

Map Type Expressions 75

10.1 Map Type Expressions

A type expression of the form:

type expr1 →m type expr2

represents a type of maps, each mapping type expr1 values into type expr2 values.
A map can be partial in having a domain which is only a subset of the set of values
of the type represented by type expr1.
Consider for example the type expression:

Text →m Nat

This type contains infinitely many maps:

[]
[′′3′′ 7→ 3]
[′′Klaus′′ 7→ 7, ′′John′′ 7→ 2, ′′Mary′′ 7→ 7]
...

Note that the empty map [] is included.
Maps may be infinite, in the sense of having infinite domains. The above map

type thus also contains infinite maps.

10.2 Map Value Expressions

A map may be written by explicitly enumerating its associations. We have already
seen examples of such expressions:

[3 7→ true, 5 7→ false]
[′′Klaus′′ 7→ 7, ′′John′′ 7→ 2, ′′Mary′′ 7→ 7]

The general form of an enumerated map expression is:

[value expr1 7→ value expr1
′,...,value exprn 7→ value exprn

′]

for n ≥ 0. Each expression pair (value expri ,value expri
′) is evaluated to values vi

and vi
′ and the resulting map then maps vi to vi

′.
Note that the order of the associations does not matter. As an example consider

the two map expressions which represent the same map:

[3 7→ true, 5 7→ false] = [5 7→ false, 3 7→ true]

An important map is that with no associations, called the empty map: [].
A map can be defined implicitly by giving a predicate which defines the associ-

ations. An example of such a comprehended map expression is:

[n 7→ 2∗n | n : Nat • n ≤ 2] = [0 7→ 0, 1 7→ 2, 2 7→ 4]

The comprehended map expression reads: ‘the map from n to 2 ∗ n where n is a
natural number such that n is less than or equal to 2’.

76 Maps

It is possible via a comprehended map expression to create an infinite map.
Consider for example:

[n 7→ 2∗n | n : Nat • is a prime(n)] = [2 7→ 4, 3 7→ 6, 5 7→ 10, 7 7→ 14, ...]

It is also possible to create a map that will give non-deterministic results when
applied . Consider for example:

[x 7→ y | x,y : Nat • {x,y} ⊆ {1,2}]

This map maps 1 to 1 as well as to 2, and similarly for 2. Such maps should usually
be avoided in specifications but it is possible to create them. See chapter 16 for a
discussion about non-determinism.
The general form of a comprehended map expression is:

[value expr1 7→ value expr2 | typing1,...,typingn • value expr3]

for n ≥ 1, where value expr3 is a Boolean expression.

10.3 Application of a Map

A map can be applied to a value if the value belongs to the domain of the map.
As an example consider the map m defined by:

value m : Text →m Nat
axiom m = [′′Klaus′′ 7→ 7, ′′John′′ 7→ 2, ′′Mary′′ 7→ 7]

Then applying m to ′′
John

′′ gives the value 2:

m(′′John′′) = 2

The general form of an application expression is:

value expr1(value expr2)

where value expr1 is a map expression and value expr2 must return a value within
the domain of the map.
An enumerated map expression where a domain value is mapped to more than

one range value may give a non-deterministic result when applied. As an example,
consider the following map application:

[3 7→ true, 3 7→ false](3)

This expression evaluates to the non-deterministic expression ‘true ⌈⌉ false’. See
chapter 16 for a discussion about non-determinism.

10.4 Prefix Operators

A basic operator on maps is the domain operator which for a particular map returns
its domain, the set of values for which it is defined:

dom : (T1 →m T2) → T1-infset

Some examples are:

Infix Operators 77

dom [′′Klaus′′ 7→ 7, ′′John′′ 7→ 2] = {′′Klaus′′, ′′John′′}
dom [n 7→ 2∗n | n : Nat • is a prime(n)] = {n | n : Nat • is a prime(n)}
dom [] = {}

A related operator is the range operator which returns the range of a map:

rng : (T1 →m T2) → T2-infset

It is defined as follows:

rng m = {m(d) | d : T1 • d ∈ dom m}

Some examples are:

rng [′′Klaus′′ 7→ 7, ′′John′′ 7→ 2] = {7,2}
rng [n 7→ 2∗n | n : Nat • is a prime(n)] = {2∗n | n : Nat • is a prime(n)}
rng [] = {}

10.5 Infix Operators

The override operator overrides one map with another:

† : (T1 →m T2) × (T1 →m T2) → (T1 →m T2)

Priority is given to the associations in the second argument in cases where the
domain values match. Some examples are:

[3 7→ true, 5 7→ false] † [5 7→ true] = [3 7→ true, 5 7→ true]
[3 7→ true] † [5 7→ false] = [3 7→ true, 5 7→ false]
[3 7→ true] † [] = [3 7→ true]

The union operator combines two maps in a way similar to the override operator:

∪ : (T1 →m T2) × (T1 →m T2) → (T1 →m T2)

An example is:

[3 7→ true] ∪ [5 7→ false] = [3 7→ true, 5 7→ false]

The union operator is typically used when one wants to indicate that the two
arguments are known to have disjoint domains.
There are two operators for restricting the domain of a map, namely ‘restriction

by’ and ‘restriction to’:

\ : (T1 →m T2) × T1-infset → (T1 →m T2)
/ : (T1 →m T2) × T1-infset → (T1 →m T2)

Restriction by removes a set of domain values from a map; restriction to restricts
the domain to a set of domain values. They are defined as follows:

m \ s = [d 7→ m(d) | d : T1 • d ∈ dom m ∧ d 6∈ s]
m / s = [d 7→ m(d) | d : T1 • d ∈ dom m ∧ d ∈ s]

Some examples are:

78 Maps

[3 7→ true, 5 7→ false] \ {3} = [5 7→ false]
[3 7→ true, 5 7→ false] / {3} = [3 7→ true]
[3 7→ true, 5 7→ false] \ {3, 5, 7} = []
[3 7→ true, 5 7→ false] / {3, 5, 7} = [3 7→ true, 5 7→ false]

The map composition operator makes it possible to compose two maps:

◦ : (T2 →m T3) × (T1 →m T2) → (T1 →m T3)

The result of composing two maps m1 and m2 is defined as follows:

m1
◦ m2 = [x 7→ m1(m2(x)) | x : T1 • x ∈ dom m2 ∧ m2(x) ∈ dom m1]

Some examples are:

[3 7→ true] ◦ [′′Klaus′′ 7→ 3] = [′′Klaus′′ 7→ true]
[3 7→ true, 5 7→ false] ◦ [′′Klaus′′ 7→ 3, ′′John′′ 7→ 7] = [′′Klaus′′ 7→ true]
[3 7→ true] ◦ [′′Klaus′′ 7→ 5] = []

The second and third map compositions show what happens when the range of the
second argument includes values that are not in the domain of the first argument:
associations for which no match exists are just removed.

10.6 Example: A Database

Consider a map version of the database from section 7.13. The map data type
is very well suited for modelling the database since the database manipulations
correspond closely to map operators.

MAP DATABASE =
class

type
Database = Key →m Data,
Key, Data

value
empty : Database,
insert : Key × Data × Database → Database,
remove : Key × Database → Database,
defined : Key × Database → Bool,
lookup : Key × Database

∼

→ Data
axiom forall k : Key, d : Data, db : Database •

empty ≡ [],
insert(k,d,db) ≡ db † [k 7→ d],
remove(k,db) ≡ db \ {k},
defined(k,db) ≡ k ∈ dom db,
lookup(k,db) ≡ db(k)
pre defined(k,db)

end

Example: Equivalence Relations 79

The Database is a mapping from keys to data.
The empty database is the empty mapping.
To insert an association between a key and a data element corresponds to over-

riding the original database with the new association. Any old association between
the key and some data element is overridden.
To remove a key corresponds to removing it from the domain.
To check whether a key is defined corresponds to finding out whether it belongs

to the domain.
To lookup a key corresponds to applying the map to the key.

10.7 Example: Equivalence Relations

Consider a map version of the equivalence relation specification from section 8.7.
Remember that elements of some type Element are separated into partitions. All
the elements in the same partition are said to be equivalent.
Partitions can be merged by a function make equivalent . Another function,

are equivalent , makes it possible to test whether two elements belong to the same
partition (are equivalent).
We now model a relation as a map from elements to partition identifiers. All

elements in the same partition are mapped to the same partition identifier.

EQUIVALENCE RELATION =
class

type
Element,
Partition Id,
Relation = Element →m Partition Id

value
is wf Relation : Relation → Bool,
initial : Relation,
make equivalent : Element × Element × Relation

∼

→ Relation,
are equivalent : Element × Element × Relation

∼

→ Bool
axiom forall e1,e2 : Element, r : Relation •

is wf Relation(r) ≡ (∀ e : Element • e ∈ dom r),
is wf Relation(initial),
e1 6= e2 ⇒ initial(e1) 6= initial(e2),
make equivalent(e1,e2,r) ≡ r † [e 7→ r(e2) | e : Element • r(e) = r(e1)]
pre {e1,e2} ⊆ dom r,
are equivalent(e1,e2,r) ≡ r(e1) = r(e2)
pre {e1,e2} ⊆ dom r

end

A relation is well-formed, according to is wf Relation, if it maps every element in
Element into some partition identifier. Every element thus belongs to a partition.
The initial relation must be well-formed (the second axiom).

80 Maps

The initial relation must in addition map different elements to different partition
identifiers (the third axiom). So initially no elements are equivalent.
To make two elements e1 and e2 equivalent, make equivalent , all the elements e

that belong to the same partition as e1 are moved to the partition that e2 belongs
to.
Two elements are equivalent, are equivalent , if they are mapped to the same

partition identifier.
Note the pre-conditions to the function make equivalent and to the function

are equivalent . We could have strengthened these to:

pre is wf Relation(r)

In chapter 11 we shall see how a well-formedness predicate can be used to restrict
a type via a subtype expression. This makes it possible to avoid pre-conditions like
those above. Indeed, the second axiom defining initial to be well-formed can also
be avoided.

10.8 Example: A Bill of Products

Consider the specification of a bill of products. We are dealing with products
which are either basic or compound. A compound product is built from one or
more immediate subproducts, each of which is either basic or compound. A basic
product is not built from (immediate) subproducts.
The subproducts of a product are all the immediate ones plus their subproducts.

Each product therefore defines a hierarchy with itself as the top node.
Compound products cannot be recursively composed. That is, a product cannot

have itself as a subproduct.
Our system must keep track of which products are basic and which are compound,

and in the latter case of what the subproducts are.
A function must therefore be provided that for any product returns the set of its

subproducts.
Functions must be provided for entering new products into the system and for

deleting products from the system.
Finally, functions must be provided for adding and erasing subproduct relations

between existing products.

BILL OF PRODUCTS =
class

type
Product,
Bop = Product →m Product-set

value
is wf Bop : Bop → Bool,
empty : Bop,
sub products : Product × Bop

∼

→ Product-infset,
depends on : Product × Product × Bop

∼

→ Bool,

Example: A Bill of Products 81

enter : Product × Product-set × Bop
∼

→ Bop,
delete : Product × Bop

∼

→ Bop,
add : Product × Product × Bop

∼

→ Bop,
erase : Product × Product × Bop

∼

→ Bop
axiom forall p,p1,p2 : Product, ps : Product-set, bop : Bop •

is wf Bop(bop) ≡
(∀ ps : Product-set • ps ∈ rng bop ⇒ ps ⊆ dom bop) ∧
(∀ p : Product • p ∈ dom bop ⇒ p 6∈ sub products(p,bop)),

empty ≡ [],
sub products(p,bop) ≡

{p sub | p sub : Product • depends on(p,p sub,bop)}
pre p ∈ dom bop,
depends on(p1,p2,bop) ≡

p2 ∈ bop(p1) ∨
(∃ p : Product • (p ∈ bop(p1) ∧ depends on(p,p2,bop)))

pre p1 ∈ dom bop,
enter(p,ps,bop) ≡ bop ∪ [p 7→ ps]
pre p 6∈ dom bop ∧ ps ⊆ dom bop,
delete(p,bop) ≡ bop\{p}
pre p ∈ dom bop ∧ ∼(∃ ps : Product-set • ps ∈ rng bop ∧ p ∈ ps),
add(p1,p2,bop) ≡ bop † [p1 7→ bop(p1) ∪ {p2}]
pre

{p1,p2} ⊆ dom bop ∧ p1 6= p2 ∧ p2 6∈ bop(p1) ∧
p1 6∈ sub products(p2,bop),

erase(p1,p2,bop) ≡ bop † [p1 7→ bop(p1)\{p2}]
pre p1 ∈ dom bop ∧ p2 ∈ bop(p1)

end

The Product type is abstractly given since we don’t care about how to identify
products.
A bill of products, Bop, is a map from products to sets of products. A com-

pound product p is mapped to the set {p1, ..., pn} if it consists of the immediate
subproducts p1 ...pn . A basic product is mapped to the empty set.
A bill of products is well-formed, according to is wf Bop, if:

1. Every subproduct is in the domain of the map. That is, every product men-
tioned must occur in the domain,

2. No product is a subproduct of itself. The function application expression
sub products(p, bop) returns all the subproducts of p.

The empty bill of products is the empty mapping.
The subproduct, sub products , of a product is the set of products that the original

product depends on as specified by the auxiliary function depends on: a product
p1 depends on a product p2 if either p2 is an immediate subproduct of p1, or if
there exists an immediate subproduct of p1 which depends on p2.
The pre-condition of sub products says that the product examined must be an

82 Maps

existing one.
To enter a new product together with an identification of all its immediate

subproducts corresponds to directly adding that association to the map. The pre-
condition says that the product must not already exist but that all the immediate
subproducts must.
To delete a product corresponds to removing it from the domain of the map.

The pre-condition says that the product must be an existing one and that it must
not be a subproduct of some other product.
To add an immediate subproduct to a product corresponds to adding it to the

set mapped to by the product. The pre-condition says that:

1. The product as well as the subproduct must exist.
2. They must be different.
3. The subproduct must not already be an immediate subproduct of the product.
4. The product must not be a subproduct of the subproduct. This prevents

violation of the well-formedness condition that a bill of products must be
acyclic.

To erase an immediate subproduct from a product corresponds to removing it from
the set mapped to by the product. Note that the subproduct is not deleted from the
domain of the map. The pre-condition says that the product must be an existing
one and that the subproduct really is an immediate subproduct.

CHAPTER 11

Subtypes

A type T1 is a subtype of another type T2, if all the values contained in T1 are
also contained in T2. The type T2 may contain values that are not in T1. As an
example, the type Nat of natural numbers is a subtype of Int of integers. That is,
Nat contains all the integers in Int that are non-negative. This is an example of a
built-in subtype relationship. The subtype expression construct makes it possible
to define arbitrary subtypes.

11.1 Subtype Expressions

A type can be constrained by a predicate, resulting in a subtype of the original
type. Consider for example the subtype expression:

{| t : Text • len t > 0 |}

It represents the type of ‘those t of type Text where the length of t is greater
than zero’ (remember that a text is a finite list of characters). We thus get a type
containing non-empty texts.
Another example is:

{| (x,y) : Int × Int • x < y |}

That is, ‘those pairs (x , y) of type Int× Int where x is less than y ’.
The general form of a subtype expression is:

{| binding : type expr • value expr |}

where value expr must be a Boolean expression. The binding must match the
values of the type represented by type expr .
A type T1 is a subtype of a type T2 if there exists a predicate p : T2 → Bool

such that:

T1 = {| x : T2 • p(x) |}

The subtype relation is transitive. That is, for any types T1, T2 and T3: if T1 is a
subtype of T2 and T2 is a subtype of T3 then T1 is a subtype of T3.

83

84 Subtypes

11.2 Subtypes Versus Axioms

When defining a value to have some type and to have some properties, one has a
choice between specifying the properties as part of the type via a subtype predicate
and specifying them in axioms.
Assume the definition:

type NonEmpty = {| l : Int∗ • l 6= 〈〉 |}

Consider then the definition:

value non empty : NonEmpty

This could also have been written as:

value non empty : Int∗

axiom non empty 6= 〈〉

As another example, consider the following function definition:

value last element : NonEmpty → Int
axiom forall l : NonEmpty • last element(l) ≡ l(len l)

This could equivalently have been written as:

value last element : Int∗
∼

→ Int
axiom forall l : Int∗ • last element(l) ≡ l(len l) pre l 6= 〈〉

Although we can give such equivalences between subtypes and axioms when there
is just one value of the type (or even a few of them) subtypes can be useful both
as shorthands and as capturing a particular concept — here that of the non-empty
list. They are also very useful in some specifications when functions can be defined
to be total on subtypes although they are partial on any larger type, as we have
seen in the database specifications in sections 8.6 and 9.10.

11.3 Maximal Types

We would like to have our specifications automatically type checked. That is,
expressions must have the expected types according to a set of rules. Since the
type concept of RSL involves general predicates used to construct of subtypes,
type checking must be simplified in order to make it automatic. Proving relations
between RSL predicates cannot in general be made automatic.
The concept of maximal type is the basis of this simplification. The idea is to

simply ignore the predicates. All types are turned into maximal types (by ignoring
subtype predicates) before type checking takes place.
Intuitively, a type is maximal if it is not a subtype of any type other than itself.

The maximal type of a type T is the largest type of which T is a subtype. We
now define the maximal types for the different kinds of types introduced up to this
point.

Maximal Types 85

The built-in types Bool, Int, Real, Char andUnit have themselves as maximal
types.
The maximal type of Nat is Int. Nat contains those integers that are greater

than or equal to zero. We can in fact write Nat as:

{| n : Int • n ≥ 0 |}

A sort has itself as maximal type.
The maximal type of a composite type consisting of the application of a type

operator to a sequence of argument types is obtained by applying a maximal version
of the type operator to the maximal types of the argument types. As an example,
the maximal type of the type Nat∗ is Intω. That is, the type of finite natural
number lists is a subtype of the type of all (infinite as well as finite) integer lists:
those that are finite and which only contain natural numbers.
For the complete description of composite types we assume that for any type T ,

maximal(T) is the corresponding maximal type. Note that maximal is not an RSL
function; it is a meta-notation. Then we can list the following rules:

maximal(T1 × ... × Tn) = maximal(T1) × ... × maximal(Tn)
maximal(T-set) = maximal(T)-infset
maximal(T-infset) = maximal(T)-infset
maximal(T∗) = maximal(T)ω

maximal(Tω) = maximal(T)ω

maximal({| id : T • expr |}) = maximal(T)
maximal(T1 →m T2) = maximal(T1) →m maximal(T2)
maximal(T1

∼

→ T2) = maximal(T1)
∼

→ maximal(T2)
maximal(T1 → T2) = maximal(T1)

∼

→ maximal(T2)

Note that the last rule says that the maximal type of a total function is a partial
function. This is necessary because type checking is to be mechanical, and one
cannot mechanically decide if an arbitrary function is total.
As an example of applying the above rules to find a maximal type, we can apply

this last rule to show:

maximal(Nat → Nat) = Int
∼

→ Int

So the type of total functions fromNat toNat is the type of those partial functions
from Int to Int that for arguments within Nat terminate and return a Nat.
As another example:

maximal(Text) = Charω

Recall that Text is short for Char∗, and that (following the rules):

maximal(Char∗) = maximal(Char)ω = Charω

In type checking an RSL specification, only maximal types are considered. As an
example, consider the definitions:

value
is a prime : Nat → Bool,

86 Subtypes

four : Int
axiom

four ≡ 4,
is a prime(four) ≡ false

In the second axiom, the function is a prime expecting a Nat argument is applied
to the value four , which is an Int argument. Although the types Nat and Int are
different, the axiom is well-typed since their maximal types are the same, namely
Int. From a pragmatic point of view, it is reasonable that the above specification
is well-typed, since four really represents a natural number (4).

Stated in another way: a specification is type checked by first transforming all
types into maximal types, and then doing the type checking. Transforming all
types into maximal types in the above specification gives:

value
is a prime : Int

∼

→ Bool,
four : Int

axiom
four ≡ 4,
is a prime(four) ≡ false

It should be easy to see that the specification is well-typed.

Any type is a subtype of its corresponding maximal type. That is, for any type
T , there exists a predicate p : maximal(T) → Bool such that:

T = {| t : maximal(T) • p(t) |}

Observe that the concept of maximal type may be a useful tool when proving that
one type is a subtype of another type. One just transforms both types into maximal
types, and then proves that the one predicate (that of the expected subtype) implies
the other predicate.

11.4 Example: Equivalence Relations

We have seen a number of examples where a well-formedness function expresses
which values of a particular type are well-formed (sections 8.7, 10.7 and 10.8). The
form used has been:

type T = ...
value is wf T : T → Bool

The function is wf T has not, however, been used in these examples to actual-
ly eliminate the undesired values from T . This can be done through a subtype
expression, as was done in the examples in sections 8.6 and 9.10.

Consider the map version of the equivalence relation specification from sec-
tion 10.7. Recall that a relation is a mapping from elements to partition identifiers.
A relation is well-formed if it maps every element into some partition identifier.

Example: Equivalence Relations 87

The Relation type can now be defined by a subtype expression restricting the
values to those relations that satisfy the well-formedness condition.

EQUIVALENCE RELATION =
class

type
Element,
Partition Id,
Relation = {| r : Element →m Partition Id • is wf Relation(r) |}

value
is wf Relation : (Element →m Partition Id) → Bool,
initial : Relation,
make equivalent : Element × Element × Relation → Relation,
are equivalent : Element × Element × Relation → Bool

axiom forall e1,e2 : Element, r : Relation, m : Element →m Partition Id •

is wf Relation(m) ≡ (∀ e : Element • e ∈ dom m),
e1 6= e2 ⇒ initial(e1) 6= initial(e2),
make equivalent(e1,e2,r) ≡ r † [e 7→ r(e2) | e : Element • r(e) = r(e1)],
are equivalent(e1,e2,r) ≡ r(e1) = r(e2)

end

The following changes have been made compared to the specification in section 10.7:

1. The type Relation has been defined by a subtype expression which uses the
function is wf Relation.

2. The function is wf Relation has a different signature in that the argument
type has become:

(Element →m Partition Id)

instead of Relation. This has been necessary in order to avoid a recursion
between Relation and the type of is wf Relation.

3. The functionsmake equivalent and are equivalent have been made total. They
no longer need pre-conditions due to the well-formedness of their arguments.

4. The axiom saying that initial must be well-formed has been removed. It is
satisfied due to the type of initial .

We could have written the definition of type Relation in at least two other ways.
The body of the function is wf Relation could have been unfolded into the subtype
expression, thereby removing the need to define the function explicitly:

type
Relation = {| r : Element →m Partition Id • ∀ e : Element • e ∈ dom r |}

The two solutions shown so far have the drawback that the ‘primary information’,
which is the map type expression, is concealed by the ‘secondary information’,
which is the well-formedness predicate. One has to analyse the subtype expression
in order to find the primary information.

88 Subtypes

An alternative solution could be to first give the primary information in one
type definition, and then to give the secondary in another one, using a function
definition to express the detail:

type
Loose Relation = Element →m Partition Id,
Relation = {| r : Loose Relation • is wf Relation(r) |}

value
is wf Relation : Loose Relation → Bool

axiom forall r : Loose Relation •

is wf Relation(r) ≡ (∀ e : Element • e ∈ dom r)

11.5 Example: A Bounded Queue

Consider a bounded version of the queue from section 9.8. Elements can be put
into the queue and elements can be removed from the queue, in a ‘first in — first
out’ manner. The queue is bounded in that there is a maximum size, max , which
is a natural number greater than zero, such that no queue can have more than max
elements.

The boundedness is expressed via a subtype expression. In addition, subtypes are
defined for extensible queues (with a size less than max) and for reducible queues
(different from empty). The last two subtypes illustrate how partial functions can
be replaced by total functions, using subtypes.

QUEUE =
class

type
Element,
Queue = {| q : Element∗ • len q ≤ max |},
Extensible Queue = {| q : Queue • len q < max |},
Reducible Queue = {| q : Queue • q 6= empty |}

value
max : Nat,
empty : Extensible Queue,
put : Element × Extensible Queue → Reducible Queue,
get : Reducible Queue → Extensible Queue × Element

axiom forall e : Element, eq : Extensible Queue, rq : Reducible Queue •

max > 0,
empty ≡ 〈〉,
put(e,eq) ≡ eq ̂ 〈e〉,
get(rq) ≡ (tl rq,hd rq)

end

Empty Subtypes 89

11.6 Empty Subtypes

What happens if a subtype is empty, because its restriction reduces to false? We
probably don’t want this to happen, but if it does we need to know what it means.

Defining a type by an abbreviation to an empty type does no harm on its own:

type
NoInt = {| i : Int • false |}

This declaration is useless but only causes problems when NoInt is used. If we use
NoInt as the value of a constant or the result type of a function that can be applied
then we generate a contradiction. Suppose we add to the declaration of NoInt :

value
no constant : NoInt,
no fun : Unit → NoInt

Then these are equivalent to the following declarations:

value
no constant : Int
no fun : Unt → Int

axiom
no constant ∈ { i | i : Int • false },
no fun() ∈ { i | i : Int • false }

Both axioms are equivalent to false and so a specification containing these declar-
ations will be contradictory. Formally, it will have no models, which in practice
means that we can never implement it.

But it is possible (though not encouraged!) to refer to empty types without
causing contradictions. For example, consider the following declarations:

value
no arg fun : NoInt → Int

axiom
∀ x : NoInt • false,
∼(∃ x : NoInt),
{ x | x : NoInt } = {}

The value declaration does no harm because such a function can never be applied.

One would normally expect the first axiom to reduce to the restriction, i.e. to
false, since the bound identifier x does not appear in the restriction. However,
this rule only applies if the type involved is not empty. If it is empty, as here, the
universal quantification is defined to be true and so the axiom is true.

The second axiom looks more reasonable, and one might hope it reduces to true
— it seems to say that NoInt is empty. And indeed there is a rule for existential
quantification that when the type involved is empty then it is automatically false,
making the axiom true.

90 Subtypes

The set comprehension in the third axiom similarly reduces to the empty set and
the axiom is true, as we might expect.

CHAPTER 12

Variant Definitions

Using a variant definition, one can conveniently define a sort together with a number
of functions and constants over that sort. That is, a variant definition is short for
a sort definition, some value definitions and some axioms.
Among the defined values are constructors for generating values of the sort, de-

structors for decomposing values of the sort and finally reconstructors for modifying
values of the sort.
The axioms define the properties of the constructors, destructors and recon-

structors. An important axiom is the induction axiom which states that the sort
is generated by the constructors: any value within the sort is the result of a finite
number of constructor applications.

12.1 Constant Constructors

As a very simple example, consider the following variant definition, defining a type
by enumerating its values:

type Colour == black | white

The type Colour contains two values represented by the constants black and white,
also referred to as the constructors of the type. In the scope of this definition one
can for example define a function for colour-inversion:

value
invert : Colour → Colour

axiom
invert(black) ≡ white,
invert(white) ≡ black

The definition of Colour is actually short for a sort definition, two value definitions
and two axioms. Ignoring, for a moment, one of the axioms (the induction axiom),
it is short for:

type

91

92 Variant Definitions

Colour
value

black : Colour,
white : Colour

axiom
[disjoint]

black 6= white

The disjoint axiom says that black is different from white. This implies that the
type Colour contains at least two values. Note, however, that the axiom does not
prevent Colour from containing more than two values. An extra axiom is needed
to express the intended limit on the size of Colour . This axiom should ensure that
Colour contains only the values represented by black and white.
The second axiom, the induction axiom, which the Colour type definition is also

short for, states this in a slightly different way:

axiom
[induction]

∀ p : Colour → Bool • (p(black) ∧ p(white)) ⇒ (∀ c : Colour • p(c))

The axiom says: ‘for all predicates p, if p holds for black and p holds for white,
then p holds for all colours’.
We can use the induction axiom to show that Colour only contains the values

black and white. We take the predicate p to be defined by:

p = λ c : Colour • (c = black) ∨ (c = white)

Then clearly p(black) is true and p(white) is true, so the induction axiom says
that p(c) is true for all colours c, i.e. that all colours are black or white.
The reason that this axiom is called an induction axiom is that it makes inductive

proofs over the type Colour possible. That is, if one can prove a property about
both black and white, then one has proven that property for all values within
Colour . This is a very simple example of inductive proof. In section 12.2 a more
interesting and general case of inductive proof is described.

12.2 Record Constructors

The individual alternatives separated by vertical bars (|) can be composite instead
of just constant constructors. Consider the following variant definition:

type Collection == empty | add(Elem,Collection)

The type Collection, which is recursively defined, contains two kinds of values:

1. The value empty .
2. Values of the form add(e, c) where e : Elem and c : Collection. The func-

tion add is a record constructor. The term ‘record’ stems from the fact that
such constructors may be used to generate records, where a record is a collec-
tion of named fields. This is explained in section 12.3 and, in particular, in

Record Constructors 93

section 15.3.

The definition is short for a sort definition, two value definitions and two axioms.
Ignoring the induction axiom, it is short for:

type
Collection

value
empty : Collection,
add : Elem × Collection → Collection

axiom
[disjoint]

∀ e : Elem, c : Collection • empty 6= add(e,c)

The add constructor is a function generating values different from empty . Note
that the vertical bar implies disjointness.
The induction axiom is somewhat more complex than in the Colour case:

axiom
[induction]

∀ p : Collection → Bool •

(p(empty) ∧ (∀ e : Elem, c : Collection • p(c) ⇒ p(add(e,c)))) ⇒
(∀ c : Collection • p(c))

The axiom says: ‘for all predicates p, if p holds for empty and p holding for a
collection c implies p holding for add(e, c) for any element e, then p holds for all
collections’.
Observe that the truth of this induction axiom makes inductive proofs over the

type Collection possible. If one can prove a property about empty , and one can
prove the property for any add extension of a Collection satisfying the property,
then one can prove that property for all values within Collection.
Formally speaking we have now said what there is to say about the variant type

definition of Collection. In the remaining part of this section (12.2) we elaborate
on how definitions that put further constraints on the add function may be given.
The disjoint axiom says that empty differs from add(e, c) for any element e and

collection c. In fact, nothing is said about add beyond the disjointness from empty
and the generatedness of Collection by empty and add . In particular, there are
no axioms stating that different applications of add return different collections in
Collection. Given two different elements e1 and e2, the following property is thus
not necessarily a consequence — although we might like it to be:

add(e1,empty) 6= add(e2,empty)

To obtain this, we can define an observer function, is in, that tests whether a
particular element is in a collection:

value
is in : Elem × Collection → Bool

axiom forall e,e1 : Elem, c : Collection •

94 Variant Definitions

is in(e,empty) ≡ false
is in(e,add(e1,c)) ≡ e = e1 ∨ is in(e,c)

This function will now distinguish the two collections above. That is, for e1 6= e2:

is in(e1,add(e1,empty)) = true
is in(e1,add(e2,empty)) = false

and as a consequence of this we get the desired property:

add(e1,empty) 6= add(e2,empty)

Note that we can deduce this due to the rule that for any total function f :

f(x) 6= f(y) ⇒ x 6= y

The definition of the function is in thus implies that those collections are distin-
guishable which we want to be distinguishable. The definition of the function is in
implies that collections show the expected behaviour in this respect: one can decide
whether a particular element has been added or not.
Suppose we wanted to use collections to model sets. Normally we think of a set

as an unordered collection of distinct elements. None of the above axioms, however,
prevent collections from being ordered or containing duplicates. To obtain this we
may add the following axioms:

axiom forall e,e1,e2 : Elem, c : Collection •

[unordered]
add(e1,add(e2,c)) ≡ add(e2,add(e1,c)),

[no duplicates]
add(e,add(e,c)) ≡ add(e,c)

12.3 Destructors

Recall that constructors are functions for generating values of a variant type. De-
structors are functions for extracting components from values of a variant type.
Consider the following variant definition:

type List == empty | add(head : Elem, tail : List)

The difference between this definition and the previous Collection definition is,
besides the new name List instead of Collection, the existence of the destructors
head and tail .
Like Collection, the type List contains two kinds of values:

1. the value empty
2. values of the form add(e, l) where e : Elem and l : List .

The definition is short for a sort definition, four value definitions and four axioms.
Ignoring the destructors, we get a sort definition, two value definitions and two
axioms exactly as for Collection:

type

Destructors 95

List
value

empty : List,
add : Elem × List → List,

axiom
[disjoint]

∀ e : Elem, l : List • empty 6= add(e,l),
[induction]

∀ p : List → Bool •

(p(empty) ∧ (∀ e : Elem, l : List • p(l) ⇒ p(add(e,l)))) ⇒
(∀ l : List • p(l))

Beyond these definitions, the destructors give rise to the following ones:

value
head : List

∼

→ Elem,
tail : List

∼

→ List
axiom forall e : Elem, l : List •

[head add]
head(add(e,l)) ≡ e,

[tail add]
tail(add(e,l)) ≡ l

The destructors are partial in that their behaviour is under-specified for the empty
list.
The destructors can be used to decompose List values generated by the add

constructor. As an example consider the following definition of a function that
replaces the head of a list:

value
replace head : Elem × List

∼

→ List
axiom forall e : Elem, l : List •

replace head(e,l) ≡ add(e,tail(l))
pre l 6= empty

The destructor tail has here been used to remove the old head element before
adding the new one.
The axiom defining replace head could of course also have been written without

the use of destructors:

axiom forall e,e1 : Elem, l : List •

replace head(e1,add(e,l)) ≡ add(e1,l)

Destructors are thus not needed from a notational viewpoint in order to decompose
values, but they provide a convenient way of doing it.
The occurrence of destructors in a variant definition is, however, not just a

matter of convenience. The destructor axioms, in this case head add and tail add ,
have an important effect on the properties of the constructor, in this case add :

96 Variant Definitions

the constructor must be information-preserving. That is, the list value, say l1,
generated by add(e, l) must be such that e can be recovered by head(l1) and such
that l can be recovered by tail(l1).

As a consequence, the unordered axiom:

axiom forall e1,e2 : Elem, l : List •

[unordered]
add(e1,add(e2,l)) = add(e2,add(e1,l))

is inconsistent with the destructor axiom head add if Elem contains more than
one element. To see this consider the following deduction. Given two different
elements:

e1 6= e2

By using the head add axiom, then the unordered axiom and then again the
head add axiom we can deduce the following:

e1 = head(add(e1,add(e2,l))) = head(add(e2,add(e1,l))) = e2

This is obviously inconsistent with the assumption that e1 and e2 are different.
There is a similar inconsistency with the no duplicates axiom.

The destructors thus really make List values into ordered collections of elements,
with the possibility of duplicates.

12.4 Reconstructors

The function replace head defined in the previous section can be defined in a slightly
more convenient way as a reconstructor. Below we repeat the definition of List with
the addition of the reconstructor:

type List == empty | add(head : Elem ↔ replace head, tail : List)

The occurrence of the reconstructor is short for the following definitions, to be
added to the previous ones:

value
replace head : Elem × List

∼

→ List
axiom forall e : Elem, l : List •

[head replace head]
head(replace head(e,l)) ≡ e,

[tail replace head]
tail(replace head(e,l)) ≡ tail(l)

The two axioms relate the reconstructor replace head to the destructors head and
tail . The head replace head axiom says that the head destructor recovers the new
head. The tail replace head axiom says that the tail is unaffected.

If there are no destructors, no reconstructor axioms are generated.

Forming Disjoint Unions of Types 97

12.5 Forming Disjoint Unions of Types

The types Collection and List represent ‘containers’, where a container informally
speaking is a collection of elements. Variant definitions can also be used to form a
type as a disjoint union of other types. Consider the following definition of a type
of two-dimensional figures which are either boxes or circles:

type Figure == box(length : Real, width : Real) | circle(radius : Real)

12.6 Wildcard Constructors

We have mentioned that a variant definition is short for a number of definitions
including an induction axiom. The induction axiom restricts the variant type
to containing only values generated by the constructors mentioned in the variant
definition.
Sometimes one, however, wants to be loose about what the constructors are. As

an example consider the above definition of the type Figure. Suppose that we are
not sure whether there are more figures than boxes and circles. The definition of
Figure can then alternatively be stated as follows:

type
Figure ==

box(length : Real, width : Real) | circle(radius : Real) |

The difference is the last added variant which is a wildcard variant ‘ ’. Formally,
its occurrence means that no induction axiom is generated. As a consequence, a
later implementation may have more variants. An implementation may therefore
be:

type
Figure ==

box(length : Real, width : Real) |
circle(radius : Real) |
triangle(base line : Real, left angle : Real, right angle : Real)

It is not only the number of constructors which can be left open in a variant
definition. It is also the components of a single constructor. Suppose for example
that we are not sure of how to represent a triangle. An alternative to the above is
to represent it by a base-line, a left-angle and a left-line length. This uncertainty
can be captured by ‘minimizing’ what is said about triangles as follows:

type
Figure ==

box(length : Real, width : Real) |
circle(radius : Real) |
(base line : Real)

The difference from the previous definition of Figure is that the constructor triangle

98 Variant Definitions

has been replaced by a wildcard and that the left angle and right angle components
have been left out (we only know that a base-line component is needed).
Formally, the occurrence of the wildcard instead of the triangle constructor means

that no value definition of a (triangle) constructor is generated. As a consequence,
no axioms for the destructors, in this case base line, are generated. (Recall that
axioms for destructors relate these to corresponding constructors.) As a third
consequence, no induction axiom is generated, as was also the case with the former
use of wildcard.
An implementation of the latter ‘minimized’ definition of Figure is the former

one with box , circle and triangle constructors and with no wildcards.
The uncertainty about the representation of triangles may alternatively be cap-

tured by ‘maximizing’ what is said about triangles as follows:

type
Figure ==

box(length : Real, width : Real) |
circle(radius : Real) |
(base line : Real, left angle : Real, right angle : Real,
left line : Real, right line : Real)

That is, the triangle alternative contains more components than are necessary in
order to represent triangles: all components we can think of are included. An
implementation of this ‘maximized’ definition of Figure is the following:

type
Figure ==

box(length : Real, width : Real) |
circle(radius : Real) |
triangle(base line : Real, left angle : Real, right angle : Real)

value
left line : Figure

∼

→ Real,
right line : Figure

∼

→ Real

Here we have chosen to keep base line, left angle and right angle as destructors
and to define left line and right line as separate functions. These functions can be
given axioms defining their behaviour in terms of the constructor and destructors.

12.7 The General Form of a Variant Definition

A variant definition has the general form:

type id == variant1 | ... | variantn

for n ≥ 1. Each variant is either a constant variant of the form:

id or wildcard

or a record variant of the form:

Example: Sets 99

id or wildcard(
destructor1 : type expr1 ↔ reconstructor1,
...
destructorn : type exprn ↔ reconstructorn)

for n ≥ 1. Destructors and reconstructors both take the form id or op and are
optional.

12.8 Example: Sets

Consider a specification of sets with functions for choosing and removing elements.
First we give a summary of the basic definitions following the style of section 12.2.
The exception is that an axiom is given that defines what equality means for sets.
This axiom then replaces the axioms unordered and no duplicates since these then
become consequences.

SET =
class

type
Set == empty | add(Elem,Set),
Elem

value
is in : Elem × Set → Bool

axiom forall e,e1,e2 : Elem, s,s1,s2 : Set •

[is in empty]
is in(e,empty) ≡ false,

[is in add]
is in(e,add(e1,s)) ≡ e = e1 ∨ is in(e,s),

[equality]
(s1 = s2) ≡ (∀ e : Elem • is in(e,s1) = is in(e,s2))

end

The following axioms are consequences of the above definitions:

axiom forall e,e1,e2 : Elem, s : Set •

[unordered]
add(e1,add(e2,s)) ≡ add(e2,add(e1,s)),

[no duplicates]
add(e,add(e,s)) ≡ add(e,s)

We can now define a function for choosing an arbitrary element from a set and a
function for removing an element from a set.

CHOOSE REMOVE =
extend SET with
class

value

100 Variant Definitions

choose : Set
∼

→ Elem,
remove : Elem × Set → Set

axiom forall e,e1 : Elem, s : Set •

[choose elem]
choose(s) as e post is in(e,s)
pre s 6= empty,

[remove empty]
remove(e,empty) ≡ empty,

[remove add]
remove(e,add(e1,s)) ≡

if e = e1 then remove(e,s)
else add(e1,remove(e,s))
end

end

Note in particular the axiom for choose. It returns some arbitrary element which
is just required to be in the set. Consider then the following alternative axiom for
choose:

axiom forall e : Elem, s : Set •

[choose add]
choose(add(e,s)) ≡ e

This axiom may seem harmless, but it is not (at least if we want genuine sets). It
says that the choose function returns the last inserted element. For two different
elements e1 and e2 we have:

choose(add(e1,add(e2,s))) = e1
choose(add(e2,add(e1,s))) = e2

implying that:

add(e1,add(e2,s)) 6= add(e2,add(e1,s))

We thus get an inconsistency with the unordered axiom if Elem contains more than
one element. The choose add axiom implies that a set must contain information
about which element has been added as the last one.
Of course, we are not forced to adopt the equality axiom and thereby the implied

unordered axiom. If we really want to have the choose add axiom we drop the
equality axiom. We no longer have sets, which do not have any concept of the most
recently added element, but this is just a consequence of desiring to define a choose
function that can identify the most recently added element.

12.9 Example: Keys and Data

Consider the functions needed for records in the module RECORD in section 9.10.
These functions identify records with pairs of keys and data. However, usually we
wish to avoid making this identification, as we thereby become free to implement

Example: Keys and Data 101

records using other representations. We therefore want to say that records can be
constructed from, and decomposed into, keys and data, but not that records are
necessarily pairs of keys and data. This can be achieved using a variant definition
for the type Record .
Additionally, in the module DATA in the same section is the definition of one

element of the type Data, namely not found . This, too, can be expressed using a
variant definition, which in this case expresses the fact that not found is one (but
possibly not the only) element of Data.
Putting these definitions together gives us the following.

DATA =
class

type Data == not found |
end

RECORD =
extend DATA with extend KEY with
class

type
Record == new record(key of : Key, data of : Data)

end

This is equivalent with the following, in which the variant definitions are expanded
into the equivalent value definitions and axioms.

DATA =
class

type Data
value not found : Data

end

RECORD =
extend DATA with extend KEY with
class

type
Record

value
new record : Key × Data → Record,
key of : Record → Key,
data of : Record → Data

axiom
∀ k : Key, d : Data • key of(new record(k, d)) = k,
∀ k : Key, d : Data • data of(new record(k, d)) = d,
∀ p : Record → Bool •

(∀ (k, d) : Key × Data • p(new record(k, d))) ⇒
(∀ r : Record • p(r))

end

102 Variant Definitions

No induction axiom is generated for Data since its variant definition included a
wildcard. The expansion is exactly the same as the original definition in sec-
tion 9.10.
There is an induction axiom for Record . This can be rephrased as a statement

that that new record generates all possible records. Doing this gives us the follow-
ing.

RECORD =
extend DATA with extend KEY with
class

type
Record

value
new record : Key × Data → Record,
key of : Record → Key,
data of : Record → Data

axiom
∀ k : Key, d : Data • key of(new record(k, d)) = k,
∀ k : Key, d : Data • data of(new record(k, d)) = d,
∀ r : Record • ∃ k : Key, d : Data • r = new record(k, d)

end

12.10 Example: Ordered Trees

Consider the specification of ordered binary trees of elements. A binary tree is
either:

1. Empty.
2. Composed of an element and two subtrees: a left tree and a right tree.

The ordering means that any of the elements in the left tree are less than the top
element, which again is less than any of the elements in the right tree. A function
less than represents the ordering on elements.

ORDERED TREE =
class

type
Elem,
Tree == empty | node(left : Tree, elem : Elem, right : Tree),
Ordered Tree = {| t : Tree • is ordered(t) |}

value
is ordered : Tree → Bool,
extract elems : Tree → Elem-set,
less than : Elem × Elem → Bool

axiom forall e : Elem, t1,t2 : Tree •

[is ordered empty]

Example: Ordered Trees 103

is ordered(empty) ≡ true,
[is ordered node]

is ordered(node(t1,e,t2)) ≡
(∀ e1 : Elem • e1 ∈ extract elems(t1) ⇒ less than(e1,e)) ∧
(∀ e2 : Elem • e2 ∈ extract elems(t2) ⇒ less than(e,e2)) ∧
is ordered(t1) ∧ is ordered(t2),

[extract elems empty]
extract elems(empty) ≡ {},

[extract elems node]
extract elems(node(t1,e,t2)) ≡

extract elems(t1) ∪ {e} ∪ extract elems(t2)
end

The type Tree is the type of binary trees, including the unordered ones. The
type Ordered Tree of ordered trees is defined as a subtype of Tree. Note that this
two-step approach is necessary when defining subtypes of variant types.

The function is ordered examines whether a tree is ordered.
The function extract elems returns all the elements contained in a tree.
When the goal is execution-time efficiency of membership test, ordered trees

are well-suited for modelling large sets of elements. The execution-time used for
testing whether an element belongs to an ordered tree can be kept relatively low
since subtrees can be ignored if they only contain elements smaller than or bigger
than the element in question.

Note that we allow ourselves to talk about execution-time efficiency, although
RSL is not a programming language. RSL is, however, a wide-spectrum specifica-
tion language supporting algorithm design. Since algorithmic RSL specifications
typically will be translated into programs in some programming language, we shall
feel free to consider efficiency already at the RSL level. Observe, though, that there
is no formal necessity to do so.
Consider an extension of the ORDERED TREE module with set-like functions

for adding an element to a tree, add , and for testing whether an element belongs
to a tree, is in.

SET FUNCTIONS =
extend ORDERED TREE with
class

value
add : Elem × Ordered Tree → Ordered Tree,
is in : Elem × Ordered Tree → Bool

axiom forall e,e0 : Elem, t1,t2 : Ordered Tree •

[add empty]
add(e,empty) ≡

node(empty,e,empty),
[add node]

add(e,node(t1,e0,t2)) ≡

104 Variant Definitions

if e = e0 then node(t1,e0,t2)
elsif less than(e,e0) then node(add(e,t1),e0,t2)
else node(t1,e0,add(e,t2))
end,

[is in empty]
is in(e,empty) ≡ false,

[is in node]
is in(e,node(t1,e0,t2)) ≡

if e = e0 then true
elsif less than(e,e0) then is in(e,t1)
else is in(e,t2)
end

end

The definition of the function is in utilizes the fact that trees are ordered. That is,
a subtree is ignored in the search of an element if all the elements in that subtree are
either less than or greater than the element being sought. This improves execution-
time efficiency of a search.

The efficiency of is in could further be improved if trees were always balanced.
A tree is balanced if its two subtrees have depths that at most differ by a chosen
fixed maximum. The add function should then make sure that the resulting tree
is balanced (resulting in a loss of efficiency of element addition).

Choosing the maximum to be one (1) we can obtain balanced trees as follows.

BALANCED SET FUNCTIONS =
extend SET FUNCTIONS with
class

type
Balanced Tree = {| t : Ordered Tree • is balanced(t) |}

value
is balanced : Ordered Tree → Bool,
depth : Ordered Tree → Nat,
add balanced : Elem × Balanced Tree → Balanced Tree

axiom forall e : Elem, t1,t2 : Ordered Tree, t : Balanced Tree •

[is balanced empty]
is balanced(empty) ≡ true,

[is balanced node]
is balanced(node(t1,e,t2)) ≡

abs(depth(t1) − depth(t2)) ≤ 1 ∧
is balanced(t1) ∧ is balanced(t2),

[depth empty]
depth(empty) ≡ 0,

[depth node]
depth(node(t1,e,t2)) ≡

1 + if depth(t1) > depth(t2) then depth(t1) else depth(t2) end,

Example: A Database 105

[add balanced elem]
add balanced(e,t) as rt
post extract elems(rt) = extract elems(t) ∪ {e}

end

The function is balanced examines whether a tree is balanced.
The function depth calculates the depth of a tree, which is the length of the

longest path in the tree.
The function add balanced adds an element to a tree. Note that since the type

Balanced Tree only includes balanced trees (that are also ordered by definition),
the resulting tree must be both ordered and balanced due to the result type of
add balanced .
The post-condition style used for specifying add balanced is an appropriate initial

specification of that function, since a specification of a concrete insertion algorithm
is rather more complicated.
We do not have to re-specify the function is in since the one coming from

SET FUNCTIONS is still sufficient.

12.11 Example: A Database

Consider a version of the map database from section 10.6. In that example, the
database manipulations empty , insert , remove and lookup were modelled as func-
tions, one function for each. This style has in fact been applied in all examples
until now.
An alternative is to only define a single function, say evaluate, which among its

arguments takes an input command, being either an empty command, an insert
command, a remove command or a lookup command.
The evaluate function further takes a database as argument. As a result it

returns a possibly changed database and an output.
The type of input commands is defined as the union of the different kinds of input

command. Likewise, the type of outputs is defined as the union of the different
kinds of output. Both types can be given as variant types.

VARIANT DATABASE =
class

type
Database = Key →m Data,
Key, Data,
Input ==

mk empty |
mk insert(Insert) |
mk remove(Remove) |
mk lookup(Lookup),

Insert = Key × Data,
Remove = Key,

106 Variant Definitions

Lookup = Key,
Output == lookup failed | lookup succeeded(Data) | change done

value
evaluate : Input × Database → Database × Output

axiom forall k : Key, d : Data, db : Database •

evaluate(mk empty,db) ≡ ([], change done),
evaluate(mk insert(k,d),db) ≡ (db † [k 7→ d], change done),
evaluate(mk remove(k),db) ≡ (db\{k}, change done),
evaluate(mk lookup(k),db) ≡

if k ∈ dom db then (db, lookup succeeded(db(k)))
else (db, lookup failed)
end

end

The type Output contains three variants of values. Values of the form lookup failed
and lookup succeeded(d), where d : Data, are results of evaluating a mk lookup(k)
command, where k : Key . The result lookup failed is returned if the key k is not
in the domain of the database.
The Output value change done is the result of evaluating any of the commands

mk empty , mk insert(k , d) and mk remove(k), where k : Key and d : Data. Note
that this result is not likely to be used for anything. In these cases it is only the
changed database that is of interest.
The definition of type Input contains no destructors. We could instead have

written:

type
Input ==

mk empty |
mk insert(sel insert : Insert) |
mk remove(sel remove : Remove) |
mk lookup(sel lookup : Lookup)

As can be seen from the above specification, the destructors are not needed there,
and writing them just increases the size of the specification and forces us to invent
new names for them. There are therefore good reasons for not writing them in this
example.
As stated earlier (section 12.3), the occurrence of destructors has the effect

of making the constructors (in this case mk insert , mk remove and mk lookup)
information-preserving. This is a consequence of the axioms defining the de-
structors. In the current case, however, the other axioms make mk insert and
mk remove information-preserving, so the destructors are largely superfluous.
Leaving out destructors usually makes descriptions more under-specified. De-

scriptions should generally be kept as under-specified as possible, in order not to
reduce the range of permitted implementations. Leaving out destructors, however,
needs to be done with care, because the users of a description may expect the
constructors to be information-preserving.

Example: A File Directory 107

Likewise the type Output could instead be written as follows:

type
Output ==

lookup failed | lookup succeeded(sel data : Data) | change done

Another observation concerns the two-step definition of type Input with the in-
troduction of the types Insert , Remove and Lookup. In the first step, the variant
definition, we are only concerned with identifying the different kinds of command-
s. In the second step, the definition of the types Insert , Remove and Lookup, we
further consider what these commands consist of.
We could alternatively have done all this in one step:

type
Input ==

mk empty |
mk insert(Key, Data) |
mk remove(Key) |
mk lookup(Key)

12.12 Example: A File Directory

A number of examples have been given of recursive variant definitions (Set , List
and Tree). Variant definitions can also define mutually recursive types. That is,
several types that are recursively defined in terms of each other.
Consider the specification of a hierarchical file directory. Such a directory is a

mapping from identifiers to entries. An entry is either a file or a directory.

FILE DIRECTORY =
class

type
Id, File,
Directory = Id →m Entry,
Entry == mk file(sel file : File) | mk dir(sel dir : Directory)

end

CHAPTER 13

Case Expressions

The case expression allows for the selection of one of several alternative expressions,
depending on the value of some expression.
As an example of a case expression, consider the following definition of the func-

tion error message, the body of which is a case expression:

value
error message : Nat → Text

axiom forall error code : Nat •

error message(error code) ≡
case error code of

1 → ′′
buffer is full

′′,
2 → ′′

buffer is empty
′′,

→ ′′
error

′′

end

The evaluation of the case expression is done by first evaluating the expression
error code. Depending on the obtained value, one of the texts ′′

buffer is full
′′

(if 1), ′′buffer is empty
′′ (if 2) or ′′

error
′′ (otherwise) is returned.

The general form of a case expression is:

case value expr of
pattern1 → value expr1,
...
patternn → value exprn

end

for n ≥ 1. The literals 1, 2 and the wildcard ‘ ’ are all patterns. A number of
different kinds of patterns are allowed as will be described below.
The value of value expr is matched against the patterns from top to bottom (so

that the order is significant) until a successful match is obtained whereupon the
corresponding expression is evaluated. If none of the matches are successful, the
result is under-specified.

108

Literal Patterns 109

13.1 Literal Patterns

A pattern may be a value literal. That is, a literal of type Unit, Bool, Int, Real,
Text or Char. We have already seen an example above with the literal patterns
1 and 2. Let us recapitulate the literals for each built-in type:

Unit : ()
Bool : true, false
Int : 0,1,2,...
Real : 0.0,...,6.17,...
Text : ′′

this is a text
′′,′′′′,...

Char : ′
A
′,′a′,...

A value matches a literal pattern successfully if the value equals the literal.

13.2 Wildcard Patterns

A pattern may be a wildcard pattern ‘ ’ as already illustrated in the introductory
example. Any value matches a wildcard pattern successfully. Wildcard patterns
occurring at the outermost level in a case expression should occur last, if at all, to
catch values not successfully matching previous patterns.

13.3 Name Patterns

A pattern may be a value name. A value matches a name pattern successfully if
the value equals the value represented by the name. The most typical situation is
where the name is a constant constructor defined in a variant definition.
As an example recall the definition of type Colour in chapter 12 and the definition

of the function invert . Now (with a repetition of the type definition) invert can be
written in terms of a case expression:

type
Colour == black | white

value
invert : Colour → Colour

axiom forall c : Colour •

invert(c) ≡
case c of

black → white,
white → black

end

13.4 Record Patterns

Consider the following example which defines a function for inverting all colours in
a list of colours (previous section):

110 Case Expressions

type
List == empty | add(head : Colour, tail : List)

value
invert list : List → List

axiom forall l : List •

invert list(l) ≡
case l of

empty → empty,
add(c,l1) → add(invert(c),invert list(l1))

end

The pattern add(c, l1) is a record pattern. The value l matches this pattern suc-
cessfully if l is a non-empty List value generated by add . The names c and l1 are
bound to the components of l (head and tail) and the succeeding expression is then
evaluated within the scope of these two bindings.

This can be re-stated more fomally, observing that add is a function: the value l
matches this pattern successfully if there exist values x : Colour and y : List such
that l = add(x , y). If this is the case, c is bound to x while l1 is bound to y , and
the succeeding expression is then evaluated within the scope of these two bindings.

Note that there will at most exist one pair (x , y) : Colour × List such that
l = add(x , y). This is a consequence of the occurrence of the destructors head and
tail in the definition of the variant type List . As an example where this is not the
case, consider a function for choosing an arbitrary element from a set. The set type
is defined as follows:

type
Set == empty | add(Elem,Set)

axiom forall e,e1,e2 : Elem, s : Set •

[no duplicates]
add(e,add(e,s)) ≡ add(e,s),

[unordered]
add(e1,add(e2,s)) ≡ add(e2,add(e1,s))

The function for choosing an element can be defined as follows:

type
Choose Result == set is empty | element(sel element : Elem)

value
choose : Set

∼

→ Choose Result
axiom forall s : Set •

choose(s) ≡
case s of

empty → set is empty,
add(e,s1) → element(e)

end

Record Patterns 111

The interesting observation to make here is that there may exist several pairs
of values (x , y) for which s = add(x , y). Assume for example that s equals
add(a, add(b, empty)). Due to the unordered axiom, there are at least two pairs
(x , y) such that s = add(x , y):

(x,y) = (a,add(b,empty))
(x,y) = (b,add(a,empty))

In such a case, an arbitrary choice is made between the pairs, whereupon e and
s1 are bound to the chosen x and y . We say that the record pattern is non-
deterministic. In general, any pattern containing record patterns may be non-
deterministic.
As a consequence, an application of the function choose to a set s results in the

non-deterministic choice of a member of s .
An (applicative) expression is non-deterministic if two different occurrences of

that expression may give different results. An expression is deterministic if it is
not non-deterministic. The concept of non-determinism and its relation to under-
specification is elaborated on in chapter 16.
Note that since the function choose may give non-deterministic results, its type

must involve a partial arrow. As will be explained in chapter 16, the total function
space contains only functions whose results must be deterministic, while the partial
function space also contains functions that may return non-deterministic results.
The choose function is, however, defined for all values in the Set type.
It is worth noting that the above definition of choose is not equivalent to the

following:

value
choose : Set

∼

→ Choose Result
axiom forall e : Elem, s : Set •

[choose empty]
choose(empty) ≡ set is empty,

[choose add]
choose(add(e,s)) ≡ element(e)

The choose add axiom says that choose selects the most recently added element.
This axiom is, however, inconsistent with the unordered axiom which says that the
order in which elements are added is of no importance.
A record pattern has the general form:

id(inner pattern1,...,inner patternn)

for n ≥ 1, where id represents some function of the type:

T1 × ... × Tn
∼

→ T

T is the type of the expression whose value is matched against the record pattern.
Each Ti represents values that can be matched against inner patterni .
An inner pattern is basically a pattern, but with a different meaning associated

with name patterns. In an inner pattern of the form of an identifier id , the id is

112 Case Expressions

a ‘defining occurrence’ in that it is bound as part of the pattern matching. This
is in contrast to name patterns at the outermost level: an outermost id must have
been defined somewhere else. Such an occurrence is called an ‘applied occurrence’.
In an inner pattern, an identifier can be turned into an applied occurrence by

prefixing it with =, so an inner pattern can have the form:

=id

This is called an equality pattern. As an example, consider the following function
for inverting all colours in a list of colours:

type
List == empty | add(head : Colour, tail : List)

value
invert list : List → List

axiom forall l : List •

invert list(l) ≡
case l of

empty → empty,
add(=white,l1) → add(black,invert list(l1)),
add(=black,l1) → add(white,invert list(l1))

end

13.5 List Patterns

Consider the following example of a function that calculates the sum of all the
integers in a list:

value
sum : Int∗ → Int

axiom forall l : Int∗ •

sum(l) ≡
case l of

〈〉 → 0,
〈i〉 ̂ l1 → i + sum(l1)

end

The list l matches the pattern 〈〉 successfully if l equals the empty list. If l is not
empty, l matches the next pattern 〈i〉̂l1 successfully if an x : Int and a y : Int∗

exist such that l = 〈x 〉̂y . If such values x and y exist (and they do exist here
since a list is either empty or it contains at least one element) i is bound to x and
l1 is bound to y .
A list pattern has one of two forms. That is, it has either the form of an enu-

merated list pattern:

〈inner pattern1,...,inner patternn〉 (for n ≥ 0)

or the form of a concatenated list pattern:

Product Patterns 113

〈inner pattern1,...,inner patternn〉 ̂ inner pattern (for n ≥ 0)

13.6 Product Patterns

Consider the definition of a function that calculates the ‘exclusive or’ of two
Booleans (exactly one must be true):

value
exclusive or : Bool × Bool → Bool

axiom forall b1,b2 : Bool •

exclusive or(b1,b2) ≡
case (b1,b2) of

(true,false) → true,
(false,true) → true,

→ false
end

A product pattern has the general form:

(inner pattern1,...,inner patternn) (for n ≥ 2)

As another example consider the definition of a function that determines whether
two lists match by examining pairs of corresponding elements. A function is as-
sumed which determines whether two elements match. Two lists then match if
they have the same length and if elements in corresponding positions match:

type
List = Elem∗

value
elements match : Elem × Elem → Bool,
lists match : List × List → Bool

axiom forall l1,l2 : List •

lists match(l1,l2) ≡
case (l1,l2) of

(〈〉,〈〉) → true,
(〈e1〉 ̂ t1,〈e2〉 ̂ t2) →

elements match(e1,e2) ∧ lists match(t1,t2),
→ false

end

13.7 Example: Ordered Trees

Consider a version of the ordered tree specification from section 12.10. The func-
tions is ordered and extract elems were defined by two axioms each, an axiom for
each kind of argument. In the example below, the two functions are instead defined
in terms of case expressions.

114 Case Expressions

ORDERED TREE =
class

type
Elem,
Tree == empty | node(left : Tree, elem : Elem, right : Tree),
Ordered Tree = {| t : Tree • is ordered(t) |}

value
is ordered : Tree → Bool,
extract elems : Tree → Elem-set,
less than : Elem × Elem → Bool

axiom forall t : Tree •

is ordered(t) ≡
case t of

empty → true,
node(t1,e,t2) →

(∀ e1 : Elem • e1 ∈ extract elems(t1) ⇒ less than(e1,e)) ∧
(∀ e2 : Elem • e2 ∈ extract elems(t2) ⇒ less than(e,e2)) ∧
is ordered(t1) ∧ is ordered(t2)

end,
extract elems(t) ≡

case t of
empty → {},
node(t1,e,t2) → extract elems(t1) ∪ {e} ∪ extract elems(t2)

end
end

The functions is ordered and extract elems have deterministic results, because
there are destructors for the components of the record variant of Tree.

13.8 Example: A Database

Consider a version of the database from section 12.11. In that example a function
called evaluate was defined by four axioms, one for each kind of argument. In the
example below, the function is instead defined in terms of a case expression.

VARIANT DATABASE =
class

type
Database = Key →m Data,
Key, Data,
Input ==

mk empty |
mk insert(sel insert : Insert) |
mk remove(sel remove : Remove) |
mk lookup(sel lookup : Lookup),

Example: A Database 115

Insert = Key × Data,
Remove = Key,
Lookup = Key,
Output ==

lookup failed | lookup succeeded(sel data : Data) | change done
value

evaluate : Input × Database → Database × Output
axiom forall input : Input, db : Database •

evaluate(input,db) ≡
case input of

mk empty → ([], change done),
mk insert(k,d) → (db † [k 7→ d], change done),
mk remove(k) → (db\{k}, change done),
mk lookup(k) →

if k ∈ dom db then (db, lookup succeeded(db(k)))
else (db, lookup failed)
end

end
end

The function evaluate has deterministic results, because there are destructors for
the components of the record variants of Input .

CHAPTER 14

Let Expressions

By a let expression one can define local names for particular values. There are two
kinds of let expressions, namely explicit and implicit let expressions.

14.1 Explicit Let Expressions

Consider the following definition of a function that replaces the head of a non-empty
list by its square:

value
square head : Int∗

∼

→ Int∗

axiom forall l : Int∗ •

square head(l) ≡ let h = hd l in 〈h∗h〉 ̂ tl l end
pre l 6= 〈〉

The body of the function square head contains a let expression. The expression
hd l is evaluated to an integer which is then bound to the value name h. The
expression between in and end is then evaluated within the scope of this binding.
An explicit let expression has the forms:

let let binding = value expr1 in value expr2 end

where let binding takes one of the the forms binding , record pattern or list pattern.
See chapter 13 for a description of record patterns and list patterns.
The example above is an instance of the first form. The expression value expr1

is evaluated to return a value which is then matched against the binding , record -
pattern or list pattern. If the match is successful, the expression value expr2 is then
evaluated within the scope of the bindings that occurred as part of the match. If
the match is not successful, the value of the whole let expression is under-specified.
An explicit let expression cannot be recursive. That is, the identifiers defined by

the binding , record pattern or list pattern cannot be referred to within value expr1.
Occurrences of these identifiers within value expr1 refer to definitions at an outer
level.

116

Explicit Let Expressions 117

The following equivalences hold between let expressions and case expressions:

let record pattern = value expr1 in value expr2 end ≡
case value expr1 of record pattern → value expr2 end

let list pattern = value expr1 in value expr2 end ≡
case value expr1 of list pattern → value expr2 end

Another way of defining the square head function using a let expression with a
(product) binding is:

value
square head : Int∗

∼

→ Int∗

axiom forall l : Int∗ •

square head(l) ≡ let (h,t) = (hd l,tl l) in 〈h∗h〉 ̂ t end
pre l 6= 〈〉

An example of a let expression using a record pattern is in:

type
Set == empty | add(Elem,Set)

value
choose : Set

∼

→ Elem
axiom forall s : Set •

choose(s) ≡ let add(e,) = s in e end
pre s 6= empty

Note that implementations of the choose function may non-deterministically choose
some member e from s . This can be seen by observing the equivalent case expres-
sion formulation:

axiom forall s : Set •

choose(s) ≡
case s of

add(e,) → e
end
pre s 6= empty

See chapter 13 on case expressions for a discussion of this non-determinism.

An example of a let expression using a list pattern is in:

value
square head : Int∗

∼

→ Int∗

axiom forall l : Int∗ •

square head(l) ≡ let 〈h〉 ̂ t = l in 〈h∗h〉 ̂ t end
pre l 6= 〈〉

118 Let Expressions

14.2 Implicit Let Expressions

Another kind of let expression is the implicit let expression. Consider the following
definition of a function that returns an arbitrary element from a set:

value
choose : Elem-set

∼

→ Elem
axiom forall s : Elem-set •

choose(s) ≡ let e : Elem • e ∈ s in e end
pre s 6= {}

The body of the function choose contains an implicit let expression. The expression
e between in and end is evaluated in the scope of a binding of e to a value within
Elem such that e ∈ s .
An implicit let expression has one of two forms:

let typing in value expr end
let binding : type expr • value expr1 in value expr2 end

The above example is an instance of the second form. An implicit let expression of
the second form is evaluated by evaluating value expr2 in the scope of the binding
where the identifiers in binding are non-deterministically bound to values that make
the Boolean expression value expr1 hold.
An implicit let expression of the first form is evaluated by evaluating the ex-

pression value expr within the scope of the identifiers defined in the typing . These
identifiers are only specified via their type and are therefore non-deterministically
bound to values within their respective types.
An example of an implicit let expression using a typing is in:

value some char : Unit
∼

→ Char
axiom some char() ≡ let c : Char in c end

The function some char has been defined so that a non-deterministic choice of
the character is made at the moment of application. It follows that the following
expression is not true:

some char() = some char()

Note if we had that defined some char as a constant, we would not obtain this
non-determinism:

value some char : Char

In this case some char is under-specified, but always represents the same character.
See chapter 16 for more discussion on non-determinism.

14.3 Nested Let Expressions

Often one may want to nest let expressions. Suppose that a list is represented by
a map from natural numbers (list indices) into elements, together with a pointer

Nested Let Expressions 119

(a natural number) to the head. The function add can then be defined as follows:

type
List = Nat × (Nat →m Elem)

value
add : Elem × List → List

axiom forall e : Elem, l : List •

add(e,l) ≡
let (top,map) = l in

let new top = top + 1 in
let new map = map † [new top 7→ e] in

(new top,new map)
end

end
end

A shorthand syntax allows us to avoid the nesting and instead write the axiom for
add as follows:

axiom forall e : Elem, l : List •

add(e,l) ≡
let

(top,map) = l,
new top = top + 1,
new map = map † [new top 7→ e]

in
(new top,new map)

end

A multiple let expression of the form:

let let def1,...,let defn in value expr end

for n > 1, is short for:

let let def1 in
...
let let defn in

value expr
end
...

end

which means that identifiers bound in let defi may occur in let defj if j > i .

120 Let Expressions

14.4 Example: A Resource Manager

Consider a version of the resource manager from section 8.5. Recall that the re-
source manager maintains a pool, which is a set of free resources. A function obtain
selects an arbitrary resource from the pool while the function release returns a re-
source to the pool.
In section 8.5 the function obtain was defined in terms of a post-condition. As is

explained in chapter 23, post-conditions imply determinism. That is, applied twice
to the same pool, the function obtain will return the same resource.
We can now make the function non-deterministic by defining it in terms of an

implicit let expression. We repeat the entire RESOURCE MANAGER module,
although it is only the obtain function that has been changed.

RESOURCE MANAGER =
class

type
Resource,
Pool = Resource-set

value
obtain : Pool

∼

→ Pool × Resource,
release : Resource × Pool

∼

→ Pool
axiom forall r : Resource, p : Pool •

obtain(p) ≡ let r1 : Resource • r1 ∈ p in (p\{r1},r1) end
pre p 6= {},
release(r,p) ≡ p ∪ {r}
pre r 6∈ p

end

Note that we can even avoid the problem of whether obtain is deterministic (as
specified in section 8.5 using a post-condition) or non-deterministic (as specified
above using an implicit let expression). We can use an axiom of the form:

axiom forall r : Resource, p : Pool •

let (p1,r1) = obtain(p) in p1 = p\{r1} ∧ r1 ∈ p end
pre p 6= {}

The signature of obtain indicates that it is partial — which means that it is not
specified whether it is total or not, and hence that it is not specified whether it
is non-deterministic or deterministic. The axiom still leaves the issue open: while
following closely the post-expression from section 8.5 in form it is not actually
expressed as a post-condition and so does not enforce determinism. This is probably
the best specification as it expresses the required property of obtain without forcing
the issue of determinism — it leaves as much as choice as possible to the developer.

CHAPTER 15

Union and Short Record

Definitions

There are situations where a type can be seen as a hierarchy of types. Consider
for example the following requirements specification for airport events.

1. An airport event is either an airplane event or a passenger event.
2. An airplane event is either a landing or a take off. A landing is characterized

by a flight identification and a landing time. A take off is characterized by a
flight identification.

3. A passenger event is either a reservation, a check in or a cancellation. A reser-
vation is characterized by a passenger identification and a flight identification.
A check in is characterized by a passenger identification, a flight identification
and a seat number. A cancellation is characterized by a passenger identifica-
tion and a flight identification.

15.1 Using a Layered Variant Definition

Using variant definitions the above requirements specification can be expressed as
follows. Assume the following basic types.

BASIC AIRPORT TYPES =
class

type
Flight, Passenger, Time, Seat

end

The airport types are then defined as an extension as follows.

AIRPORT TYPES =
extend BASIC AIRPORT TYPES with
class

type

121

122 Union and Short Record Definitions

Airport Event ==
mk airplane event(sel airplane event : Airplane Event) |
mk passenger event(sel passenger event : Passenger Event),

Airplane Event ==
mk landing(sel landing : Landing) |
mk take off(sel take off : Take Off),

Passenger Event ==
mk reservation(sel reservation : Reservation) |
mk check in(sel check in : Check In) |
mk cancellation(sel cancellation : Cancellation),

Landing = Flight × Time,
Take Off = Flight,
Reservation = Passenger × Flight,
Check In = Passenger × Flight × Seat,
Cancellation = Passenger × Flight

end

An immediate observation is that two layers of constructors are defined. That
is, given an f : Flight and a t : Time, we must apply two constructors in order
to obtain the airport event ‘landing flight’: mk airplane event(mk landing(f , t)).
This may appear tedious when writing functions over the Airport Event type.
Consider for example a function for extracting the flight identification of an event.
This function can be defined in terms of a nested case expression.

FLIGHT IDENTIFICATION =
extend AIRPORT TYPES with
class

value
flight identification : Airport Event → Flight

axiom forall airport event : Airport Event •

flight identification(airport event) ≡
case airport event of

mk airplane event(airplane event) →
case airplane event of

mk landing(flight,) → flight,
mk take off(flight) → flight

end,
mk passenger event(passenger event) →

case passenger event of
mk reservation(,flight) → flight,
mk check in(,flight,) → flight,
mk cancellation(,flight) → flight

end
end

end

Union Definitions 123

The above example has two layers of constructors. One can imagine examples with
three or more layers, which may become even more tedious.
The example can of course be modified by lifting the Flight component to the

top level, thereby being directly accessible (and in practice this would probably
be done). The goal here is, however, to motivate the concept of union definitions
described in the following section.

15.2 Union Definitions

RSL provides a way of avoiding the constructors from layered variant definitions.
Assume that the identifiers id1 ...idn are names for types, then a union definition
of the form:

type id = id1 | ... | idn

with n ≥ 2 is short for:

type id == id from id1(id to id1 : id1) | ... | id from idn(id to idn : idn)

That is, the shorthand allows one to omit the constructors and destructors in the
type definition. What is more important is that one may omit the constructors
when writing functions over the type id , or more formally: they can be omitted
when writing expressions and patterns. We refer to the constructors as ‘implicit
constructors’ since they can be left out.

Observe that before one replaces the union definition with the corresponding
variant definition, one must insert the implicit constructors where they have been
left out.
Let us re-specify the above example using union definitions.

AIRPORT TYPES =
extend BASIC AIRPORT TYPES with
class

type
Airport Event = Airplane Event | Passenger Event,
Airplane Event = Landing | Take Off,
Passenger Event = Reservation | Check In | Cancellation,
Landing == mk landing(sel flight : Flight, sel time : Time),
Take Off == mk take off(sel flight : Flight),
Reservation ==

mk reservation(sel passenger : Passenger, sel flight : Flight),
Check In ==

mk check in(sel passenger : Passenger, sel flight : Flight,
sel seat : Seat),

Cancellation ==
mk cancellation(sel passenger : Passenger, sel flight : Flight)

end

124 Union and Short Record Definitions

Note the definition of the types Landing , Take Off , Reservation, Check In and
Cancellation. They are all defined by variant definitions, each with only a single
alternative. We need to define these types as constructed and not as abbreviations
of Cartesian products for the following reason.
Our intention is to avoid referring to the implicit constructors introduced by the

definitions of Airport Event , Airplane Event , respectively Passenger Event . That
is, no references will be made to the constructors:

Airport Event from Airplane Event
Airport Event from Passenger Event
Airplane Event from Landing
Airplane Event from Take Off
Passenger Event from Reservation
Passenger Event from Check In
Passenger Event from Cancellation

So in order to be able to distinguish values of the type Airport Event , construc-
tors must be defined ‘at the lowest level’. Otherwise, for example, we could not
distinguish the types Reservation and Cancellation.
Note also that we have chosen to include destructors, and some of these are

identically named. There are, for example, five destructors named sel flight , cor-
responding to the following value definitions:

value
sel flight : Landing → Flight,
sel flight : Take Off → Flight,
sel flight : Reservation → Flight,
sel flight : Check In → Flight,
sel flight : Cancellation → Flight

This situation, where an identifier is defined more than once but with distinct
maximal types, is called overloading, and is described in chapter 17.
One can now define the function flight identification as follows, recalling that

implicit constructors can be left out in patterns.

FLIGHT IDENTIFICATION =
extend AIRPORT TYPES with
class

value
flight identification : Airport Event → Flight

axiom forall airport event : Airport Event •

flight identification(airport event) ≡
case airport event of

mk landing(flight,) → flight,
mk take off(flight) → flight,
mk reservation(,flight) → flight,
mk check in(,flight,) → flight,

Short Record Definitions 125

mk cancellation(,flight) → flight
end

end

Note that one cannot just write:

axiom forall airport event : Airport Event •

flight identification(airport event) ≡ sel flight(airport event)

as it is only constructors that can be left out, and not destructors which in this case
should turn the airport event into a Landing , Take Off , Reservation, Check In or
Cancellation before sel flight could be applied. It would not be statically decidable
what destructors to apply.

15.3 Short Record Definitions

Referring back to the definitions of types Landing , Take Off , Reservation, Check -
In and Cancellation we recall that they are defined as variants, each with only a
single alternative. Thus, for example Landing was defined as follows:

type Landing == mk landing(sel flight : Flight, sel time : Time)

Such a definition appears somewhat odd since there is only one alternative. A
slightly shorter form allows us to omit the constructor in the type definition. We
can thus write a short record definition:

type Landing :: sel flight : Flight sel time : Time

which is then short for:

type Landing == mk Landing(sel flight : Flight, sel time : Time)

A type definition of the form:

type
id ::

destr id1 : type expr1 ↔ recon id1
...
destr idn : type exprn ↔ recon idn

for n ≥ 1, is short for:

type
id ==

mk id(
destr id1 : type expr1 ↔ recon id1,
...
destr idn : type exprn ↔ recon idn)

Note that the constructor mk id cannot be omitted when writing functions over
the type id . As for variant definitions, destructors and reconstructors are optional.

126 Union and Short Record Definitions

We can now finally write the airport types as follows.

AIRPORT TYPES =
extend BASIC AIRPORT TYPES with
class

type
Airport Event = Airplane Event | Passenger Event,
Airplane Event = Landing | Take Off,
Passenger Event = Reservation | Check In | Cancellation,
Landing :: sel flight : Flight sel time : Time,
Take Off :: sel flight : Flight,
Reservation :: sel passenger : Passenger sel flight : Flight,
Check In :: sel passenger : Passenger sel flight : Flight sel seat : Seat,
Cancellation :: sel passenger : Passenger sel flight : Flight

end

The function flight identification can now be defined as follows.

FLIGHT IDENTIFICATION =
extend AIRPORT TYPES with
class

value
flight identification : Airport Event → Flight

axiom forall airport event : Airport Event •

flight identification(airport event) ≡
case airport event of

mk Landing(flight,) → flight,
mk Take Off(flight) → flight,
mk Reservation(,flight) → flight,
mk Check In(,flight,) → flight,
mk Cancellation(,flight) → flight

end
end

15.4 Wildcards in Union Definitions

Union definitions are allowed to contain wildcards (‘ ’) to signify that not all
alternatives are known by the specifier when the union definition is written. This
is completely analogous to writing wildcards in variant definitions (section 12.6).
As an example, a different definition of the type Airplane Event could be given

as follows:

type Airplane Event = Landing | Take Off |

This means that an airplane event may either be a landing, a take off or something
else. At the time of writing the definition, the specifier is uncertain what something
else is.

Using a Flat Variant Definition 127

A union definition may consequently have the form:

type id = id1 | ... | idn |

with n ≥ 1, and this is short for:

type id == id from id1(id to id1 : id1) | ... | id from idn(id to idn : idn) |

Section 12.6 describes what a wildcard in a variant definition means.
Note that the union definition including a wildcard still allows one to omit the

constructors when writing functions over the type id , just as is the case for a normal
union definition without wildcard (section 15.2).

15.5 Using a Flat Variant Definition

An alternative to using a union definition is of course to define the type Airport -
Event as a flat variant definition and then ignore the concepts of airplane event
and passenger event in the formal specification. This is done below (leaving out
destructors for convenience).

AIRPORT TYPES =
extend BASIC AIRPORT TYPES with
class

type
Airport Event ==

mk landing(Flight, Time) |
mk take off(Flight) |
mk reservation(Passenger, Flight) |
mk check in(Passenger, Flight, Seat) |
mk cancellation(Passenger, Flight)

end

Alternatively, if the concepts of airplane event and passenger event are importan-
t, one can define the types Airplane Event and Passenger Event as subtypes of
Airport Event . For example, for Airplane Event :

type
Airplane Event = {| e : Airport Event • is Airplane Event(e) |}

value
is Airplane Event : Airport Event → Bool

axiom forall e : Airport Event •

is Airplane Event(e) ≡
case e of

mk landing() → true,
mk take off() → true,

→ false
end

128 Union and Short Record Definitions

15.6 Example: A Database

Consider a rewriting of the database from section 13.8 using union definitions
instead of variant definitions of the types Input and Output .

UNION DATABASE =
class

type
Database = Key →m Data,
Key, Data,
Input = Empty | Insert | Remove | Lookup,
Empty == mk empty,
Insert :: sel key : Key sel data : Data,
Remove :: sel key : Key,
Lookup :: sel key : Key,
Output = Lookup Output | Change Output,
Lookup Output = Lookup Failed | Lookup Succeeded,
Lookup Failed == lookup failed,
Lookup Succeeded :: sel data : Data,
Change Output == change done

value
evaluate : Input × Database → Database × Output

axiom forall input : Input, db : Database •

evaluate(input,db) ≡
case input of

mk empty → ([], change done),
mk Insert(k,d) → (db † [k 7→ d], change done),
mk Remove(k) → (db\{k}, change done),
mk Lookup(k) →

if k ∈ dom db then (db, mk Lookup Succeeded(db(k)))
else (db, lookup failed)
end

end
end

Although the type Input only consists of one layer it has been defined by a union
definition anyway. This is to illustrate that union definitions can generally be used
as an alternative to variant definitions. Union definitions are of particular use when
there are too many layers to represent clearly in a single variant.

CHAPTER 16

Under-specification and

Non-determinism

The concepts of under-specification and non-determinism have already been intro-
duced in previous sections. Under-specification was introduced in section 3.5 and
non-determinism was introduced in section 13.4. In this chapter the two concepts
are summarized.

16.1 Under-specification

A value identifier with the definition:

value id : T

is under-specified if the associated axioms do not identify exactly one value within
T which id represents.

As an example, consider the following definitions:

value x : Int
axiom x 6= 0

The identifier x is under-specified. Every occurrence of x , however, evaluates to
the same value. For instance, the expression x − x always evaluates to 0.

An example of an under-specified function is the following:

value increase : Int → Int
axiom forall i : Int • increase(i) > i

The function increases its argument by some amount, but is under-specified with
respect to what the increase is for each argument.

129

130 Under-specification and Non-determinism

16.2 Non-determinism

An (applicative) expression is non-deterministic if two different occurrences of that
expression may return different results.

An example of a non-deterministic expression is the following:

let x : Nat • x < 3 in x end

Two occurrences of this expression may evaluate to different values. Thus, the
following expression does not necessarily evaluate to 0:

(let x : Nat • x < 3 in x end) − (let x : Nat • x < 3 in x end)

but in fact to −2 ⌈⌉ −1 ⌈⌉ 0 ⌈⌉ 1 ⌈⌉ 2. (See section 24.7 for a description of the
internal choice operator ⌈⌉.)

An example of a function that may return non-deterministic results is the fol-
lowing:

value choose : Int-set
∼

→ Int
axiom forall s : Int-set • choose(s) ≡ let i : Int • i ∈ s in i end

Note that the total function space T1 → T2 only contains functions whose results
must be deterministic, while the partial function space T1

∼

→ T2 also contains
functions that may return non-deterministic results.

The choose function can be defined to return deterministic but under-specified
results by defining it with a post-condition. As will be explained in chapter 23,
post-conditions imply determinism:

value
choose : Int-set

∼

→ Int
axiom forall s : Int-set •

choose(s) as i post i ∈ s
pre s 6= {}

16.3 Unbounded non-determinism

A non-deterministic expression is said to be unboundedly non-deterministic if there
are an infinite number of choices. For example, the following expressions are un-
boundedly non-deterministic:

let x : Int in x end
let x : Nat in true end

In RSL, unbounded non-determinism is equivalent to completely chaotic behaviour,
so these expressions are both equivalent to chaos. This may seem strange in the
second case, which might appear to reduce to true, but the set of choices of values
for x is evaluated before the expression following in.

Predicates Must be Deterministic 131

16.4 Predicates Must be Deterministic

Specification writers are advised to ensure that expressions are deterministic in
certain places. As a first example, a non-deterministic axiom always evaluates to
false. The following axiom therefore evaluates to false:

axiom let b : Bool in b end

An expression must be deterministic if it occurs as a restricting Boolean predicate
and is to evaluate to true. As a second example, the predicate following the •

within a quantified expression must be deterministic if it is to evaluate to true.
The following existential quantification therefore evaluates to false:

∃ x : Char • x = let y : Char in y end

As a third example, the predicate within a set comprehension must be deterministic
if it is to evaluate to true. The following set comprehension therefore evaluates to
the empty set:

{x | x : Char • x = let y : Char in y end}

The other places where we find predicates (considering the part of RSL described
so far) are in list comprehensions, map comprehensions, subtype expressions and
implicit let expressions. In the syntax such predicates are named ‘restrictions’.
The reason why axioms and restrictions have to be deterministic if they are to

result in true is that:

axiom value expr

is short for:

axiom value expr ≡ true

and:

• value expr

is short for:

• value expr ≡ true

where:

value expr ≡ true

is true if value expr evaluates to true and false otherwise.

CHAPTER 17

Overloading and User-defined

Operators

RSL allows for the overloading of value identifiers and operators. An identifier
or operator is overloaded at a certain point if there are several definitions of that
identifier or operator visible at that point, but with different maximal types. Some
of the predefined operators are already overloaded. As an example, consider the
less than or equal operator ≤. There is an Int ≤ and a Real ≤:

≤ : Int × Int → Bool
≤ : Real × Real → Bool

The two operators have different maximal types (recall that Int is not a subtype
of Real). The ≤ operator can occur in different contexts as illustrated by the
following two occurrences:

3 ≤ 7 = true
3.0 ≤ 7.0 = true

The first occurrence refers to the Int ≤ since the arguments are integers (without
decimal points). The second occurrence refers to the Real ≤. The task of finding
the right definition for an occurrence of an overloaded identifier or operator is
called overload resolution. Overload resolution fails unless it identifies exactly one
definition.

17.1 Overloading of Value Identifiers

Value identifiers may be overloaded. A simple example is the definition of two
constants, both named empty , one representing the empty integer set and one
representing the empty integer list:

value
empty : Int-set,
empty : Int∗

132

Overloading of Value Identifiers 133

axiom
empty = {},
empty = 〈〉

The two definitions are compatible since the maximal types are different. That is,
the maximal types are Int-infset and Intω.
Overload resolution will find the right definition for each of the following two

occurrences:

empty ∪ {1} = {1}
empty ̂ 〈1〉 = 〈1〉

The first occurrence of empty refers to the empty integer set while the second
occurrence refers to the empty integer list.
Functions may be overloaded. A simple example is the definition of two functions,

both named max , one finding the maximum of two integers, and one finding the
maximum of the members of a list:

value
max : Int × Int → Int,
max : Int∗

∼

→ Int
axiom forall i,j : Int, l : Int∗ •

max(i,j) ≡
if i ≥ j then i else j end,

max(l) ≡
case l of

〈i〉 → i,
〈i〉 ̂ l1 → max(i,max(l1))

end
pre l 6= 〈〉

The two axioms contain four occurrences of max . These are the following:

1. max(i,j)
2. max(l)
3. max(l1)
4. max(i,max(l1))

The first and the last refer to the function defined on integer pairs. The second
and third refer to the function defined on integer lists. Overload resolution will
find the right definition for each of these occurrences, and for the following two
occurrences:

max(1,7) = 7
max(〈1,7,5〉) = 7

The two definitions of max are valid since their maximal types are different. The
following two definitions are not valid:

134 Overloading and User-defined Operators

value
max : Nat × Nat → Nat,
max : Int × Int → Int

This is because they have the same maximal type, namely Int × Int
∼

→ Int.
As a final remark, the reader should note that overloaded definitions can arise

indirectly, for example as a result of several short record definitions defining iden-
tically named destructors. As an example, consider the following two definitions
taken from section 15.3:

type
Landing :: sel flight : Flight sel time : Time,
Take Off :: sel flight : Flight

These definitions are short for, amongst others, the following overloaded definitions:

value
sel flight : Landing → Flight,
sel flight : Take Off → Flight

17.2 User-defined Operators

RSL allows operators to be overloaded with meanings other than the predefined
ones. Assume as a basis for an example the definition of a type of trees:

type Tree == empty | node(left : Tree, elem : Int, right : Tree)

One can then define the elems operator to return all the elements in a tree:

value
elems : Tree → Int-set

axiom forall t : Tree •

elems t ≡
case t of

empty → {},
node(l,e,r) → elems l ∪ {e} ∪ elems r

end

In the scope of this definition, two kinds of elems operators are visible, one pre-
defined on lists with type:

elems : Tω → T-infset

for any type T , and one user-defined on trees. Overload resolution will find the
right definition for each of the following two occurrences:

elems 〈1,2〉 = {1,2}
elems node(empty,1,empty) = {1}

A shorthand for the above definition of elems is the following:

User-defined Operators 135

value
elems : Tree → Int-set
elems t ≡

case t of
empty → {},
node(l,e,r) → elems l ∪ {e} ∪ elems r

end

The syntax for RSL describes the form of such shorthand definitions of prefix
operators. All the prefix operators may be overloaded. Predefined meanings of
prefix operators must, however, not be hidden by a definition. As an example,
one cannot define elems to apply to an integer list and return an integer set, since
elems already has a predefined meaning of this type. The following value definition
is therefore not legal:

value elems : Intω → Int-infset

More formally, this value definition is illegal because the type of elems is an in-
stance of the predefined type which in section 9.6 was given to be:

elems : Tω → T-infset

Note that, due to this rule, the following definition is allowed, since the type is not
an instance of the predefined type:

value elems : Intω → Bool

Infix operators may also be overloaded. As an example, consider the following
definition of the ∈ operator that tests whether an element is in a tree:

value
∈ : Int × Tree → Bool

axiom forall i : Int, t : Tree •

i ∈ t ≡ i ∈ elems t

Overload resolution will find the right definition for each of the following two oc-
currences of ∈:

1 ∈ {1} = true
1 ∈ node(empty,1,empty) = true

A shorthand for the above type and axiom for ∈ is the following:

value
∈ : Int × Tree → Bool
i ∈ t ≡ i ∈ elems t

The syntax for RSL describes the form of such shorthand definitions of infix oper-
ators, which may all be overloaded provided, as was the case for prefix operators,
their predefined meanings are not hidden by the new definitions. Note also that
infix operators cannot be overloaded as prefix operators and vice versa.

136 Overloading and User-defined Operators

17.3 Turning Operators into Expressions

Operators cannot directly occur as expressions. The term ≤ is thus not an expres-
sion representing a less than or equal function. Any user-defined operator op can,
however, be turned into an expression by placing brackets around it as follows:
(op). As an example, assume the following value definition:

value ≤ : Char × Char → Bool

Within the scope of this definition, the term (≤) is an expression representing this
user-defined less than or equal function on characters.
To continue the example, assume further the definition of a function with the

following signature:

value is sorted : (Char × Char → Bool) × Char∗ → Bool

That is, is sorted takes as first argument a predicate on character pairs. The
following expression applies is sorted to the user-defined ≤ operator and some
character list:

is sorted((≤),〈′a′,′b′,′c′〉)

The brackets turn an operator into a function that must be applied using function
application notation. That is, for example:

(≤)(′a′,′b′) ≡ ′
a
′ ≤ ′

b
′

For any user-defined infix operator infix op, the following equivalence holds:

(infix op)(value expr1,value expr2) ≡ value expr1 infix op value expr2

A similar rule holds for any user-defined prefix operator prefix op:

(prefix op)(value expr) ≡ prefix op value expr

17.4 Occurrences of Operators

Operators are allowed to occur in many places where value identifiers represent-
ing functions are allowed to occur. Some examples will illustrate this. The first
example is a variant definition with operators occurring as constructors, destructors
and reconstructors:

type List == empty | ̂(hd : Elem ↔ † , tl : List)

Within the scope of this definition, the following expressions are well-formed for
any e : Elem and l : List :

e ̂ l
hd l
tl l
e † l

Type Disambiguation 137

The second example illustrates how the formal parameter of a function in an explicit
function definition may be an operator. The function is sorted from the previous
section can be defined as follows:

value
is sorted : (Char × Char → Bool) × Char∗ → Bool
is sorted(≤,l) ≡

∀ idx1,idx2 : Nat •

{idx1,idx2} ⊆ inds l ∧ idx1 < idx2 ⇒
l(idx1) ≤ l(idx2)

This definition is short for the following signature and axiom, where the reader
should note the bracketing of ≤ on the left hand side of ≡:

value
is sorted : (Char × Char → Bool) × Char∗ → Bool

axiom forall ≤ : Char × Char → Bool, l : Char∗ •

is sorted((≤),l) ≡
∀ idx1,idx2 : Nat •

{idx1,idx2} ⊆ inds l ∧ idx1 < idx2 ⇒
l(idx1) ≤ l(idx2)

17.5 Type Disambiguation

Recall that overload resolution must always result in identifying exactly one defini-
tion for each applied occurrence of an identifier. The following example illustrates
a situation where overload resolution fails to identify a single definition for each
identifier:

value
empty : Int-set,
empty : Int∗,
is empty : Int-set → Bool,
is empty : Int∗ → Bool

axiom
is empty(empty)

Overload resolution of the axiom will lead to identifying the following candidate
pairs of matching definitions. Either:

value
empty : Int-set,
is empty : Int-set → Bool

or:

value
empty : Int∗,
is empty : Int∗ → Bool

138 Overloading and User-defined Operators

That is, it is not possible to identify a single definition for each identifier, and
the overload resolution of the axiom therefore fails. The example can be corrected
by adding some extra type information as part of the expression constituting the
axiom. In general, a type ambiguous expression, say value expr , can be disam-
biguated by a disambiguation expression as follows:

value expr : type expr

The above example can be corrected by changing the axiom into the following (for
instance):

axiom
is empty(empty : Int-set),
is empty(empty : Int∗)

17.6 Example: The Rational Numbers

Consider the specification of rational numbers. A rational number is written a/b
where a and b are integers. The a is the numerator and the b is the denominator.

RATIONAL =
class

type
Rational

value
/ : Int × Int → Rational,
+ : Rational × Rational → Rational,
− : Rational × Rational → Rational,
∗ : Rational × Rational → Rational,
/ : Rational × Rational → Rational,
real : Rational

∼

→ Real
axiom forall n,n1,n2,d,d1,d2 : Int, r1,r2 : Rational •

(n1 / d1) + (n2 / d2) ≡ (n1 ∗ d2 + d1 ∗ n2) / (d1 ∗ d2),
r1 − r2 ≡ r1 + (r2 ∗ ((0−1)/1)),
(n1 / d1) ∗ (n2 / d2) ≡ (n1 ∗ n2) / (d1 ∗ d2),
(n1 / d1) / (n2 / d2) ≡ (n1 ∗ d2) / (d1 ∗ n2),
real (n / d) ≡ (real n) / (real d)
pre d 6= 0

end

Note that / is used to construct values of type Rational but it is not specified
whether, for example:

1/2 = 2/4

We could add such a property by an axiom but it might well only constrain possible
implementations unnecessarily. If real is the only observer of rational values then
the constraint will certainly be unnecessary.

CHAPTER 18

Variables and Sequencing

RSL allows declaration of variables as known from programming languages like
Ada and Pascal. A variable is a container capable of holding values of a particular
type. The contents of a variable can be changed by assigning a new value to the
variable. A variable can thus change contents within its lifetime.
The following module defines a variable counter and a function increase that

increases the counter by one for each call. The function additionally returns the
value of the counter after the change.

COUNTER =
class

variable counter : Nat := 0
value increase : Unit → write counter Nat
axiom increase() ≡ counter := counter + 1 ; counter

end

The following sections explain the individual declarations of the module.

18.1 Variable Declarations

A variable declaration has the form:

variable
variable definition1,
...
variable definitionn

for n ≥ 1. In our specification there is one such definition.
A variable definition has the form:

id : type expr := value expr

That is, the variable id is defined to contain values of the type represented by
type expr . The initial value of the variable is set to the value obtained by evaluating

139

140 Variables and Sequencing

value expr . The initialisation is optional and if not given explicitly, the initial value
is some arbitrary value within the specified type.
The variable counter in the example is defined to contain values of type Nat,

with the initial value zero (0).
When several variables have the same type, a multiple variable definition of the

following form can be used:

id1,...,idn : type expr

for n ≥ 2, which is short for:

id1 : type expr,
...
idn : type expr

A particular association of values with all declared variables is called a state. As
will be seen, assignment is a state changing operation.

18.2 Functions with Variable Access

The function increase from the example has the type:

Unit → write counter Nat

That is, it is a function that when applied to a value of type Unit returns a value
of type Nat. As a side-effect it writes to the variable counter . A function with
variable access, like increase, is also called an operation.
The example illustrates a typical use of the type Unit: as parameter type for

operations that only depend on the state and not on any additional parameters.
The parameter type of an operation can of course be any type. We see later
examples of operations with result type Unit, where the only interesting effect of
the operations is the way they change the state.
A function type expression for total operations has the general form:

type expr1 → access desc1 ... access descn type expr2

for n ≥ 1. An operation of this type takes arguments from the type represented
by type expr1 and returns results within the type represented by type expr2.
Each of the access descriptions access desci is either of the form:

write id1,...,idn

for n ≥ 1, expressing which variables may be written to (as well as read from), or
of the form:

read id1,...,idn

for n ≥ 1, expressing which variables may only be read from. Since totality implies
determinism (chapter 16), a total operation must change the state in a deterministic
manner, just as it must return a value in a deterministic manner.

Assignment Expressions 141

An expression with variable access is non-deterministic if two different occur-
rences of the expression, evaluated with the same arguments and in the same state,
may give different results or states.
As an example illustrating the occurrence of a read access description, consider

the definition of an operation that just returns the current value of the counter.

RETURN COUNTER =
extend COUNTER with
class

value return counter : Unit → read counter Nat
axiom return counter() ≡ counter

end

A function type expression for partial operations has the general form:

type expr1
∼

→ access desc1 ... access descn type expr2 (for n ≥ 1)

18.3 Assignment Expressions

A variable id can be assigned to by an assignment expression of the form:

id := value expr

The effect of such an expression is to assign the value of the expression to the
variable represented by id .
Our example contains one assignment expression, namely:

counter := counter + 1

There is an important point to note here. Assignment is an expression. In RSL
there is no distinction between expressions and statements as seen in programming
languages such as Ada and Pascal. In RSL there are only expressions.
Since assignment is an expression, it must in addition to its side-effect also return

a value of a certain type. The value returned by an assignment expression is the
value () of type Unit.

18.4 Sequencing Expressions

Two expressions can be combined with the sequencing combinator giving a new
composite expression:

value expr1 ; value expr2

The composite expression is evaluated by first evaluating value expr1 for the pur-
pose of its possible side-effect on variables, and then by evaluating value expr2 in
the changed state. The value returned by the composite expression is the value
returned by value expr2. The type of value expr1 must be Unit.
Our example contains the following sequencing expression:

counter := counter + 1 ; counter

142 Variables and Sequencing

18.5 Pure and Read-only Expressions

Expressions can occur in contexts where they are not allowed to refer to variables
at all. There are other contexts where they must not write to variables, although
reading from variables is allowed. We therefore from now on often use the terms
pure expression and read-only expression.
A pure expression is an expression that does not access variables. That is, a pure

expression neither reads from nor writes to variables. Examples of pure expressions
are:

5
{n | n : Nat • n > 0}

A read-only expression is an expression that does not write to variables, but it may
read from variables. As example, assume the variable definition:

variable x : Int

then the following are read-only expressions:

5
x + 1

Examples of expressions that are neither pure nor read-only are:

x := x + 1
x := x + 1 ; x

An example of an expression which is required to be pure is the initialisation
expression in a variable definition.

18.6 Quantification over States

How do we interpret axioms in the context of variables? The most natural thing is
to say that an axiom is true if it is true in any possible state satisfying the variable
definitions. A state satisfies a variable definition if it associates the variable with
a value within the variable’s type.
The ‘always’ combinator ✷ performs this universal quantification over states. An

always expression has the form:

✷ value expr

and has the type Bool. The value of the always expression is true if and only if
for all states satisfying the variable definitions, the expression value expr evaluates
deterministically to true. Otherwise, the always expression evaluates to false.
The expression value expr must not change the state, but it may depend on the

state by reading from variables. That is, value expr must be read-only. The always
expression itself is pure: it does not write to variables and it does not depend on
the current value of variables (due to the quantification).

Equivalence Expressions 143

Axioms are interpreted with a universal quantification over all states. An axiom
of the form:

axiom value expr1

is therefore short for:

axiom ✷ value expr

Since ✷ requires the expression to be read-only (see above), axioms must be read-
only.
In the general case, an axiom declaration of the form:

axiom forall typing1,...,typingm •

opt axiom naming1 value expr1,
...
opt axiom namingn value exprn

for m, n ≥ 1. is short for:

axiom
opt axiom naming1 ✷ ∀ typing1,...,typingm • value expr1,
...
opt axiom namingn ✷ ∀ typing1,...,typingm • value exprn

18.7 Equivalence Expressions

Our example contains a single axiom:

increase() ≡ counter := counter + 1 ; counter

which is an equivalence expression of the form:

value expr1 ≡ value expr2

Since this equivalence expression occurs as an axiom, it is short for:

✷(value expr1 ≡ value expr2)

The left hand side of the equivalence (value expr1) is the expression:

increase()

which represents the application of the operation increase to the unit value (). The
right hand side of the equivalence (value expr2) is the sequencing expression:

counter := counter + 1 ; counter

We now explain in more detail what equivalence ≡ means.
The expression:

value expr1 ≡ value expr2

is a Boolean expression which is evaluated in the current state. It evaluates to
true if and only if the effect of value expr1 evaluated in the current state is exactly

144 Variables and Sequencing

the same as the effect of value expr2 evaluated in the same state. That is, the two
expressions must have the same side-effects on variables as well as return the same
value. If this is not the case, the equivalence expression evaluates to false.
The equivalence also requires equivalent effects concerning chaos. That is, if one

of the expressions evaluates to chaos, the other one must also do so. Note that
an equivalence expression always evaluates to either true or false; it will never be
chaos itself.
Finally, if one of the expressions is non-deterministic, the other one must show

exactly the same non-determinism in order for the equivalence to hold.
The equivalence expression itself has no side-effects since the side-effects obtained

by evaluating the two constituent expressions are only utilized in the comparison
of effects, and are ignored thereafter. The value of the equivalence expression may,
however, depend on the state if variables are accessed. An equivalence expression
is therefore defined to be read-only.
When an equivalence expression occurs as an axiom, it says that for all states

satisfying the variable definitions, the effects of the two expressions must be the
same. This implies that any occurrence of value expr1 within the scope of the
variable definitions can be replaced by value expr2 and vice versa (assuming that
the replacement does not cause any name clashes).
The axiom from our example above says that the increase operation for any

possible state must have the same effect as the right hand side of the equivalence,
just as one would expect from reading the axiom.
In later chapters we shall see uses of equivalence where the left hand side is not

just a single function application, but a general expression. One can thus specify
operations in an algebraic style similar to that described in chapter 7 for applicative
functions.

18.8 Conditional Equivalence Expressions

An equivalence may be conditional. Such an equivalence contains a pre-condition:

value expr1 ≡ value expr2 pre value expr3

where value expr3 must be a read-only Boolean expression. This is short for:

(value expr3 ≡ true) ⇒ (value expr1 ≡ value expr2)

As an example, suppose we want to specify also a decrease operation, but only for
states where the counter is greater than zero. This could be done as follows.

DECREASE =
extend COUNTER with
class

value
decrease : Unit

∼

→ write counter Nat
axiom

decrease() ≡ counter := counter − 1 ; counter

Equivalence and Equality 145

pre counter > 0
end

We can paraphrase this axiom: In any state in which counter is greater than zero,
evaluating decrease() is equivalent to decrementing counter and then returning its
new value.

18.9 Equivalence and Equality

Consider two expressions value expr1 and value expr2. If these have no side-effects
on variables, do not evaluate to chaos, and are both deterministic, equality = and
equivalence ≡ mean the same. That is, the expression:

value expr1 = value expr2

has the same meaning as:

value expr1 ≡ value expr2

If one of the expressions has side-effects, evaluates to chaos or is non-deterministic,
the meaning of equivalence is different from the meaning of equality. The expres-
sion:

value expr1 = value expr2

is a Boolean expression evaluated as follows.
If one of the expressions evaluates to chaos, the equality expression itself eval-

uates to chaos. That is to say, equality is a strict operator. Alternatively, both
expressions (possibly non-deterministically) give a side-effect and return a value.
The value of the equality expression is then true if the two values are equal, other-
wise it is false. The side-effect of the equality expression is the combination of the
side-effects of the constituent expressions, but is not involved in the comparison.
Evaluation order is from left to right: first value expr1 is evaluated, and then

value expr2 is evaluated. This means that possible side-effects of value expr1 may
influence the effect of value expr2. There is a more comprehensive discussion on
expression evaluation order in section 19.2.
To summarize:

• An equivalence expression compares effects as well as results; equality only
compares results.

• An equivalence expression does not evaluate its constituent expressions, so
it itself has no effects; equality evaluates its constituent expressions (left to
right).

• An equivalence expression always evaluates to either true (if the effects and
results are equivalent) or false (otherwise). Equality may evaluate to any
(Boolean) expression, including non-deterministic expressions and chaos.

For example, assuming the current value of variable x is 0 :

(x := x + 1 ; 1) ≡ (x := x + 1 ; x) is equivalent to true

146 Variables and Sequencing

(x := x + 1 ; 1) = (x := x + 1 ; x) is equivalent to x := 2 ; false
(1 ⌈⌉ 2) ≡ (1 ⌈⌉ 2) is equivalent to true
(1 ⌈⌉ 2) = (1 ⌈⌉ 2) is equivalent to true ⌈⌉ false

Equality is intended to be close to the behaviour of the equality in programming
languages.

18.10 Operation Calls and the Result-type Unit

The operation increase can be called via an application expression, just like any
other function. Consider the following definition of an operation that increases the
counter and returns a Boolean value depending on a comparison of the value of the
resulting counter and the parameter.

TEST COUNTER =
extend COUNTER with
class

value increase and test : Nat → write counter Bool
axiom forall n : Nat • increase and test(n) ≡ increase() ≤ n

end

Suppose that we want to specify an operation for increasing the counter twice and
that we want to specify it in terms of two calls of the increase operation. We
observe that the following expression is not allowed:

increase() ; increase()

due to the rule (see section 18.4) that the expression before the semicolon must
have the type Unit. Instead we can specify the increase twice function as follows.

INCREASE TWICE =
extend COUNTER with
class

value increase twice : Unit → write counter Nat
axiom increase twice() ≡ let dummy = increase() in increase() end

end

We have to introduce a dummy name for the result returned by the first application
of increase. In general one should be careful when letting an operation have a
result type different from Unit. It means that such an operation cannot be called
immediately in front of a semicolon.
In our example one could easily separate the operations for increasing the counter

and for reading the counter. This is done below.

COUNTER =
class

variable
counter : Nat := 0

value

Example: A Database 147

increase : Unit → write counter Unit,
return counter : Unit → read counter Nat

axiom
increase() ≡ counter := counter + 1,
return counter() ≡ counter

end

The operation increase twice (with unchanged type) then looks as follows.

INCREASE TWICE =
extend COUNTER with
class

value increase twice : Unit → write counter Nat
axiom increase twice() ≡ increase() ; increase() ; return counter()

end

18.11 Example: A Database

Consider an imperative version of the database from section 10.6. A variable con-
taining the database is defined, and all operations then read from and write to this
variable.

DATABASE =
class

type
Key, Data

variable
database : Key →m Data

value
empty : Unit → write database Unit,
insert : Key × Data → write database Unit,
remove : Key → write database Unit,
defined : Key → read database Bool,
lookup : Key

∼

→ read database Data
axiom forall k : Key, d : Data •

empty() ≡ database := [],
insert(k,d) ≡ database := database † [k 7→ d],
remove(k) ≡ database := database \ {k},
defined(k) ≡ k ∈ dom database,
lookup(k) ≡ database(k)
pre defined(k)

end

There are several reasons for writing imperative specifications instead of applicative
specifications. Some reasons are:

148 Variables and Sequencing

1. A specification that is to be implemented in an imperative programming lan-
guage may be more naturally written in an imperative style.

2. The imperative style of specification reduces the number of parameters to
functions. Thus, a call of insert has the form:

insert(k,d)

for some k : Key and d : Data. A call of the applicative insert from sec-
tion 10.6 has an extra parameter, namely the database:

insert(k,d,db)

for some k : Key , d : Data and db : Database. Recall that the applicative
version of insert had the type:

value insert : Key × Data × Database → Database

This argument for imperative specification can be reversed to an argument
against the style: one cannot from the call of an operation see what variables
are accessed, one has to look into the type of the operation.

3. Certain problems can be said to be of an imperative nature, like the database
example. One may then prefer to model them as such.

CHAPTER 19

Expressions Revisited

All expressions are evaluated in a state. This also holds for applicative expressions.
In this chapter we briefly revisit expressions in the light of their evaluation in a
state.

19.1 Pure and Read-only Expressions

Any expression may access variables. We have already seen examples of both if
expressions and let expressions accessing variables.
There are, however, general restrictions on how variables can be accessed, as

already indicated by the introduction of pure and read-only expressions in chap-
ter 18. We do not revisit all expressions here but just give some examples. The
syntax for RSL describes the occurrences of expressions that must either be pure
or read-only.
An example of an expression occurrence that is required to be pure is the predi-

cate within a subtype expression (chapter 11):

{| binding : type expr • value expr |}

That is, value expr must be pure. Examples of expression occurrences that are
required to be read-only are the constituent expressions of a comprehended set
expression (chapter 8):

{value expr1 | typing1,...,typingn • value expr2}

That is, value expr1 and value expr2 must be read-only.

19.2 Expression Evaluation Order

Recall from chapter 18 that the two constituent expressions of an equality expres-
sion:

value expr1 = value expr2

149

150 Expressions Revisited

are evaluated from left to right. The general rule is that the constituent expressions
of a value infix expression of the form:

value expr1 infix op value expr2

are evaluated from left to right for all infix operators.
As an example, assume the variable definition:

variable x : Int

In the scope of this definition, the following equivalences hold:

(x := 1 ; x) + (x := 2 ; x) ≡ x := 2 ; 3
(x := 2 ; x) + (x := 1 ; x) ≡ x := 1 ; 3

The rule can be generalized even more: Unless otherwise stated, any list of expres-
sions is evaluated from left to right. An example is the constituent expressions of
a product expression (chapter 5):

(value expr1,...,value exprn)

19.3 If Expressions

Recall that an if expression has been described as having the form:

if value expr1 then value expr2 else value expr3 end

It thus contains both a then-branch and an else-branch. In sequential specifications,
a form without else-branch is often useful:

if value expr1 then value expr2 end

This is short for:

if value expr1 then value expr2 else skip end

where skip is a predefined side-effect free expression of type Unit. In fact:

skip ≡ ()

The reason for introducing skip when () is available is for ease of reading.
Note that since both branches of an if expression must have the same type, the

type of value expr2 must also be Unit.
As an example illustrating an if expression without an else-branch, consider an

operation for decreasing a counter. The counter is only decreased if it is greater
than zero:

variable counter : Nat
value decrease : Unit → write counter Unit
axiom decrease() ≡ if counter > 0 then counter := counter − 1 end

CHAPTER 20

Repetitive Expressions

A repetitive expression specifies that a certain expression is repeatedly evaluated
for the purpose of its side-effect. There are three forms, all typical of programming
languages: while expressions, until expressions and for expressions.
The three kinds of repetitive expressions all have result-type Unit since they are

only evaluated for the purpose of their side-effects.

20.1 While Expressions

A while expression evaluates an expression as long as some predicate is satisfied.
A while expression has the form:

while value expr1 do value expr2 end

The expression value expr1 is the controlling expression which must be of type
Bool. The expression value expr2 is the expression to be repeatedly evaluated for
the purpose of its side-effect, and must be of type Unit.
For each iteration, value expr1 is evaluated. If it evaluates to true, value expr2 is

evaluated, and a new iteration is begun. If, on the other hand, value expr1 evaluates
to false, the while expression terminates. Note the importance of considering the
concept of non-termination for repetitive expressions.
A while expression of the above form is equivalent to:

if value expr1 then
value expr2 ; while value expr1 do value expr2 end

else skip
end

Consider an operation, fraction sum, for calculating the number:

1 + 1/2 + ... + 1/n

for some non-zero natural number n. The operation delivers the result in the
variable result . An auxiliary variable, counter , is used to control the calculation.

151

152 Repetitive Expressions

FRACTION SUM =
class

variable
counter : Nat,
result : Real

value
fraction sum : Nat

∼

→ write counter, result Unit
axiom forall n : Nat •

fraction sum(n) ≡
counter := n ;
result := 0.0 ;
while counter > 0 do

result := result + 1.0/(real counter) ;
counter := counter − 1

end
pre n > 0

end

Note that the counter variable must be converted to a real number before a real
number fraction can be calculated.
Note also that the pre-condition would not be necessary here (if we extended our

definition of a fraction sum to be zero for zero n) as a while expression is equivalent
to skip if its first value expression is false.

20.2 Until Expressions

An until expression evaluates an expression until some predicate is satisfied. An
until expression has the form:

do value expr1 until value expr2 end

The expression value expr2 is the controlling expression which must be of type
Bool. The expression value expr1 is the expression to be repeatedly evaluated for
the purpose of its side-effect, and must be of type Unit. It is evaluated repeatedly
until value expr2 evaluates to true, and is evaluated at least once.
An until expression of the above form is equivalent to:

value expr1 ; while ∼value expr2 do value expr1 end

Consider a re-formulation of the fraction sum operation in terms of an until ex-
pression.

FRACTION SUM =
class

variable
counter : Nat,
result : Real

For Expressions 153

value
fraction sum : Nat

∼

→ write counter, result Unit
axiom forall n : Nat •

fraction sum(n) ≡
counter := n ;
result := 0.0 ;
do

result := result + 1.0/(real counter) ;
counter := counter − 1

until counter = 0 end
pre n > 0

end

Note that the pre-condition is necessary here: the body of an until expression is
always executed at least once.

20.3 For Expressions

A for expression ‘runs through a list’ and evaluates an expression for each list
member. A for expression in the simplest case has the form:

for binding in value expr1 do value expr2 end

The expression value expr1 must be of a list type, T ∗, for some type T . The
expression value expr2 is the one to be repeatedly evaluated and must have type
Unit.
The for expression is evaluated as follows:

1. value expr1 is evaluated to return a (possibly empty) list 〈e1,...,en〉.
2. For each value, ei , in the list, processed from left to right, value expr2 is

evaluated in the scope of the definitions obtained by matching ei against the
binding .

Consider a re-formulation of the fraction sum operation in terms of a for expression.
Since the for expression itself scans all the numbers from 1 to n, there is no need
for an auxiliary counter variable.

FRACTION SUM =
class

variable
result : Real

value
fraction sum : Nat

∼

→ write result Unit
axiom forall n : Nat •

fraction sum(n) ≡
result := 0.0 ;
for i in 〈1 .. n〉 do

154 Repetitive Expressions

result := result + 1.0/(real i)
end

pre n > 0
end

As with the while version the pre-condition may not be necessary here: a for
expression is equivalent to skip if the list expression is empty.
In an extended form of the for expression, one can state a predicate, value exprp

of type Bool, that specifies which elements from the list 〈e1,...,en〉 returned by
value expr1 lead to an evaluation of value expr2. The extended version has the
form:

for binding in value expr1 • value exprp do value expr2 end

An element ei from the list returned by value expr1 only leads to an evaluation of
value expr2 if the predicate value exprp deterministically evaluates to true (in the
scope of the bindings obtained by matching ei against the binding).
The expressions value expr1 and value exprp must be read-only.
Consider the specification of a database as a list of records, each consisting of a

key and some data.

DATABASE =
class

type
Key, Data,
Record = Key × Data,
Database = Record∗

variable
database : Database

end

The database is stored in a variable.
Suppose we want to generate reports based on the database. A report should

only involve those records that are ‘interesting’ as defined by some Boolean valued
function, is interesting , on keys. For each interesting record, the report will contain
an entry consisting of the key and a transformation of the corresponding data
element.
An operation, make report , is defined that reads the database and delivers a

report in the variable report .

REPORT =
extend DATABASE with
class

type
Report Data,
Report Record = Key × Report Data,
Report = Report Record∗

variable

For Expressions 155

report : Report
value

is interesting : Key → Bool,
transformation : Data → Report Data,
make report : Unit → read database write report Unit

axiom
make report() ≡

report := 〈〉 ;
for (key,data) in database • is interesting(key) do

report := report ̂ 〈(key,transformation(data))〉
end

end

CHAPTER 21

Local Expressions

A collection of declarations can be made local to an expression by means of a local
expression of the form:

local
declaration1 ... declarationn

in value expr end

The local expression is evaluated by evaluating value expr in the scope of the
declarations. Recall that we have seen how declarations can define types, values,
variables and axioms.
Consider a re-formulation of the module FRACTION SUM from section 20.1.

A function fraction sum is defined to calculate the number:

1 + 1/2 + ... + 1/n

for some positive natural number n. The function is defined in terms of a while
expression working on two local variables.

FRACTION SUM =
class

value
fraction sum : Nat

∼

→ Real
axiom forall n : Nat •

fraction sum(n) ≡
local

variable
counter : Nat := n,
result : Real := 0.0

value
calc fraction : Unit → write counter, result Unit

axiom
calc fraction() ≡

result := result + 1.0/(real counter) ; counter := counter − 1

156

Local Expressions 157

in
while counter > 0 do calc fraction() end ; result

end
pre n > 0

end

The variable result holds the current sum and the variable counter controls the
iteration. The local operation calc fraction performs the calculation of a single
iteration.
A local expression is capable of introducing non-determinism. The following

function non-deterministically chooses a value from a set of natural numbers.

CHOOSE =
class

value
choose : Nat-set

∼

→ Nat
axiom forall s : Nat-set •

choose(s) ≡
local

value n : Nat
axiom n ∈ s

in n end
pre s 6= {}

end

With this definition, we can not assume that, for arbitrary s :

choose(s) = choose(s)

Note, however, that the following holds:

choose(s) ≡ choose(s)

Values of a local type cannot be returned. As an example, the following expression
is not well-formed:

local
type Local T
value l : Local T

in l end

The two previous examples were well-formed: fraction sum returns the value in a
local variable result , and choose returns the value of a local value n, but the types
Real and Nat involved are not local.
Note that local expressions can be used in purely applicative specifications to

introduce local variables.

CHAPTER 22

Algebraic Definition of

Operations

Chapter 7 described how applicative functions can be defined abstractly in terms of
algebraic equivalences. Recall in particular the algebraic specification of the LIST
module from section 7.12, which is repeated below. The names of constants and
functions have been suffixed with an a to indicate that they are applicative.

LIST A =
class

type
List

value
empty a : List,
add a : Int × List → List,
head a : List

∼

→ Int,
tail a : List

∼

→ List
axiom forall i : Int, l : List •

[head add]
head a(add a(i,l)) = i,

[tail add]
tail a(add a(i,l)) = l

end

The important point to note here is that nothing has been said about how lists are
represented. The type List is a sort and the functions are defined without assuming
any particular representation of lists.

The question now arises whether an imperative sequential specification of lists
can be given that ignores representation details in a similar way. There are three
main styles of doing this and we treat each of them below.

158

Extending an Applicative Module 159

22.1 Extending an Applicative Module

The first approach is to use the entities from the applicative LIST A module in
defining the imperative sequential module. The imperative sequential module be-
comes an extension of the LIST A module.

LIST =
extend LIST A with
class

variable
list : List

value
empty : Unit → write list Unit,
is empty : Unit

∼

→ read list Bool,
add : Int → write list Unit,
head : Unit

∼

→ read list Int,
tail : Unit

∼

→ write list Unit
axiom forall i : Int •

empty() ≡ list := empty a,
is empty() ≡ list = empty a,
add(i) ≡ list := add a(i,list),
head() ≡ head a(list)
pre ∼is empty(),
tail() ≡ list := tail a(list)
pre ∼is empty()

end

A variable, list , of type List is defined. This type comes from the LIST A module
and is a sort. Nothing has been said about the representation of its values.

The operations working on the list variable are defined using calls of the cor-
responding applicative functions. Since these are defined without assuming any
particular representation, the operations share that property.

The operation is empty has been defined in order to make it possible to test
whether the list is empty. In the applicative case, we could just compare a list l
with empty a as follows:

l = empty a

if we wanted to test whether l was empty. In the imperative sequential case, empty
has been turned into an operation that resets the variable to contain the empty
list. If we want all accesses to the variable list to be done through operation calls
(which is a reasonable requirement), we must define is empty .

The approach of using an applicative specification in defining an imperative
sequential one may seem tedious, especially if the applicative one does not exist
already.

160 Algebraic Definition of Operations

22.2 Algebraic Equivalences

The second approach to abstractly specifying the imperative sequential list module
is to give algebraic equivalences between operation calls in a way very similar to
the equivalences in the applicative LIST A module.
As an example, consider the applicative axiom head add from LIST A:

axiom forall i : Int, l : List •

[head add]
head a(add a(i,l)) ≡ i

The axiom says that adding an element i to a list and then taking the head gives
the element just added. The corresponding imperative sequential axiom is:

axiom forall i : Int •

[head add]
add(i) ; head() ≡ add(i) ; i

The occurrence of add(i) on the right hand side of the equivalence is necessary
in order to make the equivalence true. Recall that in order for an equivalence to
be true, the left hand side and the right hand side must have exactly the same
side-effects.
The complete imperative sequential specification of lists is as follows.

LIST =
class

type
List

variable
list : List

value
empty : Unit → write list Unit,
is empty : Unit

∼

→ read list Bool,
add : Int → write list Unit,
head : Unit

∼

→ read list Int,
tail : Unit

∼

→ write list Unit
axiom forall i : Int •

[is empty empty]
empty() ; is empty() ≡ empty() ; true,

[is empty add]
add(i) ; is empty() ≡ add(i) ; false,

[head add]
add(i) ; head() ≡ add(i) ; i,

[tail add]
add(i) ; tail() ≡ skip

end

The variable list is defined to have type List which is a sort. Nothing has therefore

Being Implicit about Variables 161

been said about representation. The operations are defined without assuming any
particular representation of lists.
The head add axiom says that adding an element (add(i)) followed by examining

the head (head()) is equivalent to adding an element (add(i)) followed by returning
the element (i).
The tail add axiom says that adding an element (add(i)) followed by removing

the head (tail()) is equivalent to doing nothing (skip).

22.3 Being Implicit about Variables

An interesting observation about the LIST module in section 22.2 is that the
variable list is not referred to in the axioms. It is only mentioned in the operation
types where its role is to state what variables are accessed from the operations and
how they are accessed.
It therefore appears that we have said as little as possible about the variable: it is

not mentioned in the axioms and its type is a sort. There is, however, a possibility
of saying even less than that. In the third approach we are totally implicit about
what the variables are, by simply not defining them. We can modify the LIST
module in section 22.2 by removing the following definitions, observing that the
type List is only used to give a type to the variable:

type List
variable list : List

The operation types must now be modified such that they do not mention the
variable list . As an example, the type of the operation is empty was defined as
follows:

is empty : Unit
∼

→ read list Bool,

That is, its type contains the access description read list . Instead of list one can
write any in the access description to indicate that any variable defined may be
read from. An access description can thus have the form read any. The definition
of the type of is empty becomes:

is empty : Unit
∼

→ read any Bool

A write access description can similarly have the form write any indicating that
the operation may write to any variable. Note that since a variable being written
to is also regarded as being read from, only one of these two any forms need occur
in a single operation type.
After having performed these changes, and leaving the axioms unchanged, the

imperative sequential list module becomes as follows.

LIST =
class

value
empty : Unit → write any Unit,

162 Algebraic Definition of Operations

is empty : Unit
∼

→ read any Bool,
add : Int → write any Unit,
head : Unit

∼

→ read any Int,
tail : Unit

∼

→ write any Unit
axiom forall i : Int •

[is empty empty]
empty() ; is empty() ≡ empty() ; true,

[is empty add]
add(i) ; is empty() ≡ add(i) ; false,

[head add]
add(i) ; head() ≡ add(i) ; i,

[tail add]
add(i) ; tail() ≡ skip

end

The following has been gained by being implicit about variables:

• We have avoided deciding what variables there will be and what their types
will be.

• Suppose we later develop an implementation of the LIST module. Our speci-
fication then places no restriction on what the variables of an implementation
will be. In particular we are free to use one, two or more variables in an
implementation.

• The specification places no restrictions on what variables the operations are
allowed to access.

Note that any accesses can also be used in operation types even if variables have
been defined in the context. It then allows the operations to access any of the
defined variables, or more variables to be added. Again, one can see this as giving
freedom to an implementation.
A natural question is when to be implicit about variables and when to be explicit.

It is difficult to give exact rules. Very roughly, one may be implicit in the following
situations:

• One is not interested (yet) in what variables there are.
• One wants to leave freedom to a later development that is expected to be an
implementation in the formal sense.

• In large specifications it is sometimes necessary to add extra variables to be
able to define certain operations. If these operations are called by others, the
extra access(es) must be added to these other operations’ types, and this can
in turn require more access(es) to be added to yet other operations’ types.
The use of any can avoid this problem.

Being explicit, however, has its benefits. From the type of an operation one can
see exactly what variables may be accessed and how they may be accessed. This
can make imperative specifications easier to read.
A more detailed description of any accesses will be given in section 33.3.

Initialise Expressions 163

22.4 Initialise Expressions

Consider the LIST module from the previous section. Since no variables have been
explicitly defined, it has not been possible to specify what their initial values are. It
is, however, possible to specify such initialisation properties in axioms irrespective
of whether any variables have been defined or not. This is demonstrated below.
Note that section 18.1 describes how the initial value of a variable can be spec-

ified. Section 28.2 defines more precisely what initialisation means. An intuitive
understanding of the concept will do for now.
Suppose that we want to add the following property (axiom) to the LIST module

in the previous section: ‘The initial values of variables must be such that is empty()
evaluates to true’. In other words, the initial list must be empty.
For the formulation of this axiom, the initialise expression is used. This ini-

tialises all variables represented by any to their initial value. The axiom is added
as an extension of the LIST module.

INITIAL EMPTY LIST =
extend LIST with
class

axiom
initialise ; is empty() ≡ initialise ; true

end

The axiom says that initialising all variables to their initial value followed by e-
valuating is empty() is equivalent to initialising all variables and then returning
true.

22.5 Example: A Database

Consider an algebraic specification of the imperative sequential database from sec-
tion 18.11. We are implicit about variables by not defining any. As a consequence,
all access descriptions use any.

DATABASE =
class

type
Key, Data

value
empty : Unit → write any Unit,
insert : Key × Data → write any Unit,
remove : Key → write any Unit,
defined : Key → read any Bool,
lookup : Key

∼

→ read any Data
axiom forall k,k1 : Key, d : Data •

[remove empty]
empty() ; remove(k) ≡ empty(),

164 Algebraic Definition of Operations

[remove insert]
insert(k1,d) ; remove(k) ≡

if k = k1 then remove(k)
else remove(k) ; insert(k1,d)
end,

[defined empty]
empty() ; defined(k) ≡ empty() ; false,

[defined insert]
insert(k1,d) ; defined(k) ≡

if k = k1 then insert(k1,d) ; true
else let result = defined(k) in insert(k1,d) ; result end
end,

[lookup insert]
insert(k1,d) ; lookup(k) ≡

if k = k1 then insert(k1,d) ; d
else let result = lookup(k) in insert(k1,d) ; result end
end

pre k = k1 ∨ defined(k)
end

The reader should compare this specification with the algebraic specification of the
corresponding applicative module from section 7.13.

The imperative sequential database example illustrates the constructor technique
for inventing axioms, which we also saw in section 7.13. The technique used in the
imperative sequential case can be characterized as follows.

1. Identify the ‘constructor operations’ with which any database can be con-
structed. These are the operations empty and insert . Any database can thus
be generated as the side-effect of an expression of the form:

empty() ; insert(k1,d1) ; ... ; insert(kn,dn)

2. Define the remaining operations by case over the constructor operations, using
new identifiers as parameters. In the above axioms, remove, defined and
lookup are defined over the two constructor expressions:

empty()
insert(k1,d)

We thus get immediately all the left hand sides of the axioms we need:

empty() ; remove(k)
insert(k1,d) ; remove(k)
empty() ; defined(k)
insert(k1,d) ; defined(k)
empty() ; lookup(k)
insert(k1,d) ; lookup(k)

Refining Applicative Specifications into Imperative Ones 165

Note, however, that we choose to under-specify lookup; its signature includes
the partial function arrow, we do not include an axiom with left hand side
empty() ; lookup(k) and the axiom lookup insert has a pre-condition — it
only applies to defined keys.
The right hand sides of the axioms defined insert and lookup insert are

somewhat different from the corresponding applicative ones. This is due to the
requirement that the effect on the state of the left hand side of an equivalence
must be the same as the effect on the state of the right hand side. More
specifically, the call insert(k1, d) (or its equivalent) must occur on the right
hand side since it occurs on the left hand side and since it has a non-trivial
effect on the state. Note also the use of let expressions in the two axioms.
These are necessary in order to ensure that defined(k) and lookup(k) are
evaluated before insert(k1, d).

The LIST axioms (section 22.2 and section 22.3) actually have the same form. The
technique is useful in many applications, but there are of course applications where
one must be more inventive when writing axioms.

22.6 Refining Applicative Specifications into Imperative
Ones

The analogy between sequential imperative specifications like that in section 22.3
and applicative specifications can be formalized: there is a sense in which such
imperative specifications are essentially refinements of the applicative ones. Here
we illustrate the formalization in the case of lists.
An applicative specification of this kind of lists is as follows:

LIST A =
class

type
List

value
empty a : List,
add a : Int × List → List,
is empty a : List

∼

→ Bool,
head a : List

∼

→ Int,
tail a : List

∼

→ List
axiom forall i : Int, l : List •

[is empty empty]
is empty a(empty a) = true,

[is empty add]
is empty a(add a(i,l)) = false,

[head add]
head a(add a(i,l)) = i,

[tail add]

166 Algebraic Definition of Operations

tail a(add a(i,l)) = l
end

A sequential imperative specification produced by analogy with this applicative
specification is as follows.

LIST =
class

value
empty : Unit → write any Unit,
is empty : Unit

∼

→ write any Bool,
add : Int → write any Unit,
head : Unit

∼

→ write any Int,
tail : Unit

∼

→ write any Unit
axiom forall i : Int •

[is empty empty]
empty() ; is empty() ≡ empty() ; true,

[is empty add]
add(i) ; is empty() ≡ add(i) ; false,

[head add]
add(i) ; head() ≡ add(i) ; i,

[tail add]
add(i) ; tail() ≡ skip

end

This is slightly more general than the corresponding specification in section 22.3
in that is does not require that is empty and head only read from variables: they
are allowed to write to them as well. (In this instance little is gained from this
generality, but it can be useful.) LIST can be extended by defining new types,
constants and functions in the following manner.

LIST B =
extend LIST with
class

type
List = {| l : Unit → write any Unit • is list(l) |}

value
is list : (Unit → write any Unit) → Bool,
empty a : List,
add a : Int × List → List,
is empty a : List

∼

→ Bool,
head a : List

∼

→ Int,
tail a : List

∼

→ List
axiom forall i : Int, l : List •

empty a = empty,
add a(i,l) = λ() • l() ; add(i),

Refining Applicative Specifications into Imperative Ones 167

is empty a(l) =
let b : Bool • (λ() • l() ; is empty()) = (λ() • l() ; b) in b end,

head a(l) =
let i : Int • (λ() • l() ; head()) = (λ() • l() ; i) in i end,

tail a(l) = λ() • l() ; tail()
end

Though it might appear that these definitions say nothing about is list , they do in
fact constrain it; in particular the types given to empty a and add a ensure that
is list(empty) is true and that so is:

∀ i : Int, l : Unit → write any Unit • is list(l) ⇒ is list(λ() • l() ; add(i))

By contrast, because they are explicitly defined, these definitions do not constrain
the functions introduced in LIST : nothing can be proved about the functions
introduced in LIST with the aid of this extension of it that could not be proved
without the extension. For instance, because empty and add are stated in LIST
to be total functions, and because the sequential composition of two applications
of total functions is itself total, nothing new is said about empty or add by stating
that all the functions in type List are total.
Because all the functions in the type List are total it is the case that:

∀ b1, b2 • Bool •

(λ() • empty() ; b1) = (λ() • empty() ; b2) ⇒ b1 = b2

and that:

∀ b1, b2 • Bool, i : Int, l : List •

(λ() • l() ; add(i) ; b1) = (λ() • l() ; add(i) ; b2) ⇒ b1 = b2

and similarly that:

∀ i1, i2 • Int, i : Int, l : List •

(λ() • l() ; add(i) ; i1) = (λ() • l() ; add(i) ; i2) ⇒ i1 = i2

From this it follows that the functions empty a, add a, is empty a, head a and
tail a defined explicitly in LIST B satisfy all the axioms in the original applicative
LIST A. Indeed, LIST B is a refinement of LIST A, as everything that can be
proved about the latter can be proved about the former. So, by refining an abstract
type List from LIST A into (a subtype of) an operation type in LIST B we have
refined an applicative specification into a sequential imperative one.

CHAPTER 23

Post-expressions

We have just seen how operations can be defined in a very abstract way in terms
of algebraic equivalences. Another way of being abstract about operations is to
use post-expressions. We have already seen several examples of this style in the
applicative case. See for instance section 7.11.

Consider the following specification of a choose operation that returns an arbi-
trary element from a set contained in a variable. The returned element is at the
same time removed from the set, thereby changing the contents of the variable.

CHOOSE =
class

variable
set : Int-set

value
choose : Unit

∼

→ write set Int
axiom

choose() as i post i ∈ set̀ ∧ set = set̀ \{i}
pre set 6= {}

end

The pre-condition says that the operation is only specified for states where the
contents of set is a non-empty set.

The post-condition is a conjunction of two Boolean expressions. The first one:

i ∈ set̀

says that the returned i must be a member of set as this was before the call. A
‘hooked’ variable like set̀ in a post-condition refers to the contents of that variable
before calling the operation. Conversely, a normal non-hooked variable refers to
the contents of the variable after having called the operation. Such a non-hooked
variable occurs in the second part of the post-condition:

set = set̀ \{i}

168

Post-expressions 169

This says that the new set after a call must be equal to the set before the call,
except for the chosen element which has been removed.
Let us examine the meaning of a post-expression in more detail. The general

form of a post-expression without a pre-condition is:

value expr1 as binding post value expr2

where the result naming ‘as binding ’ is optional.
The post-condition value expr2 must be of type Bool, which is also the type of

the post-expression itself.
The post-expression is evaluated in the current state as follows. The expression

value expr1 is evaluated in the current state, the pre-state, thereby returning a
result, named by the binding , and a possibly changed state, the post-state. The
value of the post-expression is then true if and only if:

1. value expr1 is defined and deterministic.
2. value expr2 ≡ true when evaluated in the post-state and in the scope of

the binding . Hooked variables of the form id ,̀ however, refer to the pre-state
(and are consequently called pre-names).

The post-condition value expr2 must be read-only. Concerning the post-expression
itself, the side-effect obtained by evaluating value expr1 is only used for evaluating
the post-condition and is ignored thereafter. The post-expression is therefore read-
only. A post-expression is always defined and deterministic.
Condition 1 above says that value expr1 is defined and deterministic. In the

above CHOOSE module, value expr1 corresponds to choose(). The choose op-
eration is therefore specified by the post-condition to be defined where the pre-
condition holds and, moreover, to be deterministic. That is, two applications of
choose in the same state return the same result state and result value.
It is worth noting that as the pre-name is a technique for accessing the pre-state

its use can be replced with a let expression. For instance, the axiom for choose
could be written:

axiom
let s = set in

choose() as i post i ∈ s ∧ set = s\{i}
pre set 6= {}

end

A post-expression may include a pre-condition, which is a read-only expression of
type Bool:

value expr1 as binding post value expr2 pre value expr3

This is short for:

(value expr3 ≡ true) ⇒ value expr1 as binding post value expr2

As said before, a post-expression is evaluated in the current state. Recall, however,
that when it occurs as an axiom, it is implicitly preceded by the always combinator

170 Post-expressions

✷ implying a universal quantification over all states.

Consider the specification of an insert operation that inserts an integer into a
list contained in a variable. The contents of the variable after insertion must be
a sorted list without duplicates. Think of the variable as containing an efficient
representation of a set.

INSERT SORTED =
class

variable
list : Int∗ := 〈〉

value
is sorted : Unit → read list Bool,
insert : Int → write list Unit

axiom forall i : Int •

is sorted() ≡
(∀ idx1,idx2 : Nat •

({idx1,idx2} ⊆ inds list ∧ idx1 < idx2) ⇒
list(idx1) < list(idx2)),

insert(i) post elems list = elems list̀ ∪ {i} ∧ is sorted()
end

The operation is sorted examines the list contained in the variable and returns
true if the list is sorted in increasing order.

The post-condition for the operation insert consists of two parts. The first
part says that the elements of the new list must be those of the old list with the
addition of the new element. The example thus illustrates how the parameters of
an operation may be referred to in the post-condition.

The second part of the post-condition says that the new list must be sorted. Note
that one can call read-only operations in post-conditions. Such operation calls are
evaluated in the post-state.

Note finally that the post-expression contains no result naming or pre-condition.
The result naming is omitted since the result type is Unit. One is of course allowed
to write a result naming, but in the Unit case this makes little sense.

It is possible to use post-conditions in specifications without mentioning vari-
ables. Sequential imperative lists, for example, can be specified as follows.

LIST =
class

value
empty : Unit → write any Unit,
is empty : Unit

∼

→ read any Bool,
add : Int → write any Unit,
head : Unit

∼

→ read any Int,
tail : Unit

∼

→ write any Unit
axiom forall i : Int •

Post-expressions 171

[is empty empty]
empty() post (is empty() = true),

[is empty add]
add(i) post (is empty() = false),

[head add]
add(i) post (head() = i)

[tail add]
add(i) ; tail() ≡ skip

end

This specification illustrates how post-conditions for functions such as add may be
split over more than one axiom.
Specifications involving post-conditions can be somewhat more stringent than the

corresponding specifications involving equivalences because they are interpreted as
expressing both equivalences and requirements that make functions total. The
axioms above, however, say nothing beyond what is said in the corresponding
specification in section 22.3 because that requires empty and add to be total and
hence, from head add and tail add that head following add and tail following add
will be total.

CHAPTER 24

Channels and Communication

RSL provides means for specifying concurrent systems. More precisely, combinators
are provided for specifying the concurrent evaluation of expressions. Moreover,
communication primitives are provided so that expressions evaluating concurrently
can communicate with each other through channels.
Concurrency becomes relevant in two situations. The first situation is where the

system to be modelled is inherently concurrent. An example is a system where
a number of airport check-in counters have access to the same passenger-flight
database. This kind of concurrency could be called ‘conceptual concurrency’.
The second situation is where an inherently sequential system due to efficiency

reasons is made concurrent. An example is some number-calculation function which
is specified to perform some of its calculations concurrently to save time. This kind
of concurrency could be called ‘efficiency concurrency’.
The following module defines a one place buffer, opb, that communicates with

the surrounding world through the two channels add and get . Values of type Elem
are input from the add channel and are then output to the get channel.

ONE PLACE BUFFER =
class

type Elem
channel add, get : Elem
value opb : Unit → in add out get Unit
axiom opb() ≡ let v = add? in get!v end ; opb()

end

The following sections explain the individual declarations of the module.

24.1 Channel Declarations

A channel declaration has the form:

channel
channel definition1,

172

Functions with Channel Access 173

...
channel definitionn

for n ≥ 1. In our example specification there are two such definitions.
A channel definition has the form:

id : type expr

That is, the channel id is defined to carry values of the type represented by
type expr .
The channels add and get in the example are both defined to have the type Elem.
When several channels have the same type, a multiple channel definition of the

following form can be used:

id1,...,idn : type expr

for n ≥ 2, which is short for:

id1 : type expr,
...
idn : type expr

24.2 Functions with Channel Access

The function opb from the example has the type:

Unit → in add out get Unit

That is, it is a function that, when called, communicates with the surroundings
through the channels add and get . More specifically, it receives values from the
surroundings through the add channel and it sends values to the surroundings
through the get channel. A function with channel access, like opb, is also called a
process.
The function will only be called for its ability to communicate through add and

get , and therefore its parameter type and result type are Unit. We shall see
examples of more interesting parameter and result types later.
The process opb can be illustrated as follows:

✲ ✲ getadd opb

A type expression for total processes has the general form:

type expr1 → access desc1 ... access descn type expr2

for n ≥ 1. A function of this type takes arguments from the type represented
by type expr1 and returns results within the type represented by type expr2. In
addition, the function may access the channels mentioned in the access descriptions.
Each of the access descriptions access desci can be of the form:

in id1,...,idn

174 Channels and Communication

for n ≥ 1, expressing which channels processes of the type may input from, or it
can be of the form:

out id1,...,idn

for n ≥ 1, expressing which channels they may output to. In addition, since pro-
cesses can also access variables, access descriptions can describe access to variables
as explained in chapter 18 and in chapter 22.

A type expression for partial processes has the general form:

type expr1
∼

→ access desc1 ... access descn type expr2 (for n ≥ 1)

24.3 Communication Expressions

RSL provides two communication primitives: one for the input of a value from a
channel and one for the output of a value to a channel. In the scope of the channel
declaration:

channel id : T

an expression may specify the input of a value from a channel by an input expression
of the form:

id?

Evaluation of the expression waits until a value is output along channel id by
another process. Upon input from channel id , the received value is returned as the
result of executing the input expression. That is, the type of the input expression
is the same type T , as that of the channel.

An expression may specify the output of a value to a channel by an output
expression of the form:

id!value expr

The expression, value expr , is evaluated, and the result is output to channel id .
Evaluation of the expression waits until the value is input on channel id by another
process. The type of the expression must be the same as the type of the channel.
The type of the output expression itself is Unit.
Our example contains an input expression add? as well as an output expression

get !v .
So the process opb repeatedly inputs a value from the add channel and then

outputs the same value to the get channel. Note how the value input from the add
channel is temporarily named in a let expression. The process calls itself recursively
to obtain the repetition.
Note that input and output are just expressions. As stated earlier in connec-

tion with assignment: ‘there are only expressions’. No special syntax category
is introduced for expressing communication, just as no special syntax category is
introduced for expressing assignment.

Composing Expressions Concurrently 175

24.4 Composing Expressions Concurrently

Communication through channels is the means by which expressions evaluating
concurrently interact. Two expressions may be composed concurrently by being
put in parallel as follows:

value expr1 ‖ value expr2

The two expressions are evaluated concurrently until the evaluation of one of them
comes to an end, whereupon evaluation continues with the other. The two expres-
sions must both have type Unit, which is also the type of the composite expression
itself. As an example consider the following definitions:

channel c : Int
variable x : Int

In the scope of these definitions, the two expressions x := c? and c!5 can be put
in parallel as follows:

x := c? ‖ c!5

The evaluation of the composite expression may lead to an interaction between the
two expressions since the rightmost expression outputs the value 5 on the channel
c, which is then input from by the leftmost expression. If the communication takes
place, the effect of the above parallel expression is the following:

x := 5

Communication is synchronized: the output-specifying expression only specifies
output to the channel if the input-specifying expression simultaneously specifies
input from the channel.
Parallel attempts to input from a channel and to output to the channel do not,

however, necessarily lead to a communication. Whether it does, depends on an
internal choice. The two expressions can thus communicate with a third expression
which is put in parallel with the two. One can for example put the expression c!7
in parallel with the two expressions as follows:

(x := c? ‖ c!5) ‖ c!7

and then as one possible effect obtain:

x := 7 ; c!5

That is, the rightmost expression outputs the value 7 to the channel c. The left-
most expression inputs the value and stores it in x . After the communication, the
communication c!5 still remains to be performed.
Note, however, that the effect may also be:

x := 5 ; c!7

or the effect may even be that no communication takes place at all.
The parallel combinator is commutative as well as associative. That is:

176 Channels and Communication

value expr1 ‖ value expr2 ≡ value expr2 ‖ value expr1

value expr1 ‖ (value expr2 ‖ value expr3) ≡
(value expr1 ‖ value expr2) ‖ value expr3

Two expression evaluations occurring concurrently should be state-independent: if
one expression has write access to a variable, the other should not have access to
that variable (neither read from it, nor write to it). RSL type checking does not
enforce state-independency, but it is highly recommended.

What happens is that the two expressions are evaluated with a copy of the state
each, so a state change within one expression cannot be observed within the other
expression. Upon termination of the two expressions, a non-deterministic choice is
made between the two resulting states, provided that both are different from the
original one. If only one of the two resulting states is different from the original
state, this one is chosen.

As an example of a concurrent system, suppose that we want to use the one
place buffer as a connection between two processes called reader and writer . The
following figure illustrates the concurrent processes and the channels that connect
them:

✲ ✲ ✲ ✲ ✲ ✲input reader add opb get writer output

The reader process inputs values from the input channel and the writer process
outputs values to the output channel. Values move from the reader process to the
writer process via the one place buffer opb.

The reader and writer processes can be specified as follows.

READER WRITER =
extend ONE PLACE BUFFER with
class

type Input, Output
channel input : Input, output : Output
value

transform1 : Input → Elem,
transform2 : Elem → Output,
reader : Unit → in input out add Unit,
writer : Unit → in get out output Unit

axiom
reader() ≡ let v = input? in add!(transform1(v)) end ; reader(),
writer() ≡ let v = get? in output!(transform2(v)) end ; writer()

end

The abstract types Input and Output are the types of the input channel and the
output channel, respectively. We are abstract about the types since we want to
illustrate the concurrency and not the particular kinds of values communicated.

Composing Expressions Concurrently 177

The reader process repeatedly inputs a value v from the input channel and
outputs the value transform1(v) to the add channel. The writer process repeatedly
inputs a value v from the get channel and outputs the value transform2(v) to the
output channel. The functions transform1 and transform2 are under-specified.
We can now put the processes reader , opb and writer together in parallel, calling

the composed process system.

SYSTEM =
extend READER WRITER with
class

value system : Unit → in input, add, get out output, add, get Unit
axiom system() ≡ reader() ‖ opb() ‖ writer()

end

The type of the process system states that the process has in access as well as out
access to the channels add and get . That is, the system process may unfortunately
input from and output to both these channels as well as input from input and
output to output . To illustrate this better, we can unfold the calls of reader(),
opb() and writer() in the axiom defining system:

axiom
system() ≡

let v = input? in add!(transform1(v)) end ; reader()
‖
let v = add? in get!v end ; opb()
‖
let v = get? in output!(transform2(v)) end ; writer()

We see that the system process is ready to input from any of the three channels
input , add and get . Suppose for example that system is put in parallel as follows:

system() ‖ add!e

The effect of this expression may be:

let v = input? in add!(transform1(v)) end ; reader()
‖
get!e ; opb()
‖
let v = get? in output!(transform2(v)) end ; writer()

That is, the value e has been communicated over the add channel and the resulting
expression is ready to either output e to the get channel or input from either of
the channels input and get .
The expression may then perform an ‘internal’ communication by communicating

the value e over the get channel. In that case, the effect of the expression becomes:

let v = input? in add!(transform1(v)) end ; reader()
‖
opb()

178 Channels and Communication

‖
output!(transform2(e)) ; writer()

24.5 Hiding Channels

We have just seen how the channels add and get are part of the interface of the
system process. This is unfortunate since these channels together with the one
place buffer should really be internal. The following figure illustrates how we really
would like to regard the system process from the outside:

✲ ✲ outputinput system

That is, we want to hide the channels add and get . Consider for example the
following expression in the scope of the integer variable x :

local
channel c : Int

in x := c? ‖ c!5 end

The scope of the definition of channel c is the expression:

x := c? ‖ c!5

The channel c is not visible outside the local expression. The effect of leaving
the scope (moving beyond the end in the local expression) is that all internal
communication via local channels is forced through. In the above expression, the
communication of the value 5 over the channel c is forced through, so the effect is:

x := 5

In fact, the following equivalence holds:

local
channel c : Int

in x := c? ‖ c!5 end
≡

x := 5

We can now specify our system process such that the channels add and get are
hidden. What we must do is to define all the processes to be put in parallel and
their internal channels in a local expression. We get the following module.

SYSTEM =
class

type Input, Output
channel input : Input, output : Output
value system : Unit → in input out output Unit
axiom

system() ≡
local

External Choice 179

type Elem
channel add, get : Elem
value

opb : Unit → in add out get Unit,
transform1 : Input → Elem,
transform2 : Elem → Output,
reader : Unit → in input out add Unit,
writer : Unit → in get out output Unit

axiom
opb() ≡ let v = add? in get!v end ; opb(),
reader() ≡ let v = input? in add!(transform1(v)) end ; reader(),
writer() ≡ let v = get? in output!(transform2(v)) end ; writer()

in
reader() ‖ opb() ‖ writer()

end
end

The types Input and Output and the channels input and output are still defined
at the outermost level since all these items are part of the interface of the system
process. The rest is locally defined since it is internal.
It may seem tedious to be forced to define all subprocesses of a process within

a local expression, especially when a system consists of many subprocesses and
these perhaps themselves are composite. Chapter 32 illustrates how the module
concept can be used in combination with the local expression to model a hierarchy
of processes.

24.6 External Choice

Reconsider the axiom defining the one place buffer:

axiom
opb() ≡ let v = add? in get!v end ; opb()

An application, opb(), of the buffer process begins by offering a single kind of
communication to the surroundings: an input from the add channel. After an
input, still a single kind of communication is offered: an output to the get channel.
There are, however, situations where we want a process to offer several different

kinds of communication at the same time. The system process defined in the
module SYSTEM in section 24.4 did in fact offer several communications since the
‘internal’ channels add and get were not hidden. The call system() thus offered to
input from any of the channels input , add and get .
The external choice combinator ⌈⌉⌊⌋ serves to specify a choice between different

kinds of communications explicitly. As an example, assume the following defini-
tions:

channel c, d : Int

180 Channels and Communication

variable x : Int

Then consider the external choice expression:

x := c? ⌈⌉⌊⌋ d!5

This expression offers two communications: either an input from the c channel or
an output to the d channel. The choice is called external since it will be up to the
surroundings (i.e. other expressions executing concurrently with this one) to choose
between the two. Suppose we put this expression in parallel with the expression
c!1 as follows:

(x := c? ⌈⌉⌊⌋ d!5) ‖ c!1

A possible effect of this expression is that the value 1 is communicated over the
channel c, thereby resulting in:

x := 1

Recall, however, that parallel composition only forces communication to happen
when channels are hidden in a local expression.
The external choice combinator puts expressions together as follows:

value expr1 ⌈⌉⌊⌋ value expr2

The two expressions must have the same type which is also the type of the whole
expression. Typically, value expr1 and value expr2 each begin with some kind of
communication. Only one of the expressions will be evaluated, depending on which
kind of communication the surroundings want to do.
The external choice combinator is commutative and associative.
As an example illustrating the use of external choice, consider a specification

of a many place buffer capable of holding several elements at one time. There is
no limit on the size of the buffer, except that at any one time it can contain only
finitely many elements.
The many place buffer process, mpb, holds all buffered elements in a list. The list

is a parameter to mpb in the sense that any recursive call of mpb takes a possibly
modified list as actual parameter.

MANY PLACE BUFFER =
class

type
Elem,
Buffer = Elem∗

channel
empty : Unit,
add, get : Elem

value
mpb : Buffer → in empty, add out get Unit

axiom forall b : Buffer •

mpb(b) ≡

External Choice 181

empty? ; mpb(〈〉)
⌈⌉⌊⌋
let v = add? in mpb(b ̂ 〈v〉) end
⌈⌉⌊⌋
if b 6= 〈〉 then get!(hd b) ; mpb(tl b) else stop end

end

The buffer is connected with the surroundings by three channels. Values are added
to the buffer via the add channel and leave the buffer again via the get channel.
The empty channel makes it possible to empty the buffer. This is done by sending
a signal (the unit value () of type Unit) on the empty channel.

The axiom for mpb reads as follows. Assuming the buffer b, three kinds of
communications may be offered:

• A value (the unit value) may be input from the empty channel. Upon input,
the buffer process continues with the empty list as parameter, representing
the empty buffer.

• A value, v , may be input from the add channel. Upon input, the buffer process
continues with an extended list as parameter.

• If the list b is non-empty, the process may output the head of the list to the
get channel and then continue with the tail of the list as parameter.
The else-branch of the if expression is entered if the list b is empty. That

is, the else-branch is entered if the buffer contains no elements to be output
to the get channel. The predefined expression stop represents deadlock —
it will have no further effects. When placed in an external choice, however,
by deadlocking one choice it forces one of the others to be chosen. This is
because stop is the unit for external choice — it has the property that for
any expression value expr , the following equivalence holds:

value expr ⌈⌉⌊⌋ stop ≡ value expr

From the axiom for mpb we can deduce the following:

mpb(〈〉)
≡

empty? ; mpb(〈〉)
⌈⌉⌊⌋
let v = add? in mpb(〈〉 ̂ 〈v〉) end
⌈⌉⌊⌋
if 〈〉 6= 〈〉 then get!(hd 〈〉) ; mpb(tl 〈〉) else stop end

≡
empty? ; mpb(〈〉)
⌈⌉⌊⌋
let v = add? in mpb(〈v〉) end
⌈⌉⌊⌋
stop

≡

182 Channels and Communication

empty? ; mpb(〈〉)
⌈⌉⌊⌋
let v = add? in mpb(〈v〉) end

An empty many place buffer can put in parallel with an expression value expr as
follows:

mpb(〈〉) ‖ value expr

24.7 Internal Choice

Recall that the external choice combinator expresses a choice between two ex-
pressions. The term ‘external’ says that the surroundings may influence which
expression is selected. As an example, consider the expression:

(x := c? ⌈⌉⌊⌋ d!5) ‖ c!1

If, out of x := c? and d !5, x := c? is chosen for evaluation it will be because of
some event external to (x := c?⌈⌉⌊⌋d !5), such as c!1.
In addition to the external choice combinator, RSL provides an internal choice

combinator ⌈⌉ that specifies an internal choice between two expressions:

value expr1 ⌈⌉ value expr2

In this case, whether value expr1 is evaluated or value expr2 is evaluated depends on
an internal choice, which the surroundings cannot influence. The two expressions
must have the same type which is also the type of the whole expression.
The internal choice combinator is commutative and associative. As an example,

consider the expression:

(x := c? ⌈⌉ d!5) ‖ c!1

The expression c!1 has no influence on which of the two expressions x := c? and
d !5 are evaluated. If the internal choice falls on x := c?, the expression results in:

x := c? ‖ c!1

thereby potentially leading to a communication over c. If the internal choice on
the other hand falls on d !5, the expression results in:

d!5 ‖ c!1

thereby preventing any internal communication from taking place.
The internal choice combinator is not typically used in specifications because of

its generally undesirable behaviour. It often occurs proofs about concurrent RSL
specifications. One can, however, use the combinator when writing specifications.
Consider for example the specification of a die-thrower:

type Face Of Die == one | two | three | four | five | six
value throw die : Unit

∼

→ Face Of Die
axiom throw die() ≡ one ⌈⌉ two ⌈⌉ three ⌈⌉ four ⌈⌉ five ⌈⌉ six

Example: A Database 183

The function throw die non-deterministically returns a face of the die. The axiom
could also have been written as follows:

axiom throw die() ≡ let face of die : Face Of Die in face of die end

24.8 Example: A Database

Consider a concurrent version of the database from section 10.6. A database pro-
cess, database, is defined together with channels for communicating with it.

DATABASE =
class

type
Key, Data,
Database = Key →m Data

channel
empty : Unit,
insert : Key × Data,
remove, defined, lookup : Key,
defined res : Bool,
lookup res : Data

value
database : Database → in empty, insert, remove, defined, lookup

out defined res, lookup res Unit,
not found : Data

axiom forall db : Database •

database(db) ≡
empty? ; database([])
⌈⌉⌊⌋
let (k,d) = insert? in database(db † [k 7→ d]) end
⌈⌉⌊⌋
let k = remove? in database(db\{k}) end
⌈⌉⌊⌋
let k = defined? in defined res!(k ∈ dom db) ; database(db) end
⌈⌉⌊⌋
let k = lookup? in

if k ∈ dom db then lookup res!(db(k)) ; database(db)
else lookup res!not found ; database(db) end

end
end

An essential task when specifying a process is to decide what the channels are and
what the protocol is for their use. The specification above illustrates for example
how certain channels should be used in particular sequences: an ingoing commu-
nication on the defined channel is always followed by an outgoing communication
on the defined res channel. Likewise for the channels lookup and lookup res .

184 Channels and Communication

It is quite informative to compare the channel definitions from the example above
with the function and constant types from the applicative database in section 10.6.
This is done below by listing the channels and the corresponding applicative func-
tions and constants:

channel empty : Unit
value empty : Database

channel insert : Key × Data
value insert : Key × Data × Database → Database

channel remove : Key
value remove : Key × Database → Database

channel defined : Key, defined res : Bool
value defined : Key × Database → Bool

channel lookup : Key, lookup res : Data
value lookup : Key × Database

∼

→ Data

24.9 Example: An Interfaced Database

Suppose we want to lookup a key k in the concurrent database defined in the
previous example. We have to write two communications:

lookup!k ; ... lookup res? ...

This may seem slightly tedious. The problem is that the interface to the database
process is a set of channels. One can instead define a set of interface functions that
do all the channel communication and then recommend users to call these instead.
The module below is an extension of the concurrent DATABASE module with

the definition of such interface functions.

INTERFACED DATABASE =
extend DATABASE with
class

value
Empty : Unit → out empty Unit,
Insert : Key × Data → out insert Unit,
Remove : Key → out remove Unit,
Defined : Key → out defined in defined res Bool,
Lookup : Key → out lookup in lookup res Data

axiom forall k : Key, d : Data •

Empty() ≡ empty!(),
Insert(k,d) ≡ insert!(k,d),
Remove(k) ≡ remove!k,
Defined(k) ≡ defined!k ; defined res?,
Lookup(k) ≡ lookup!k ; lookup res?

end

Imperative Processes 185

Note that the two interface functions Defined and Lookup both have result types
different from Unit.
An interaction that before (with a channel interface) had the following form,

assuming a k : Key and a db : Database:

(lookup!k ; x := lookup res?) ‖ database(db)

is written as follows when using the interface function Lookup:

(x := Lookup(k)) ‖ database(db)

The use of interface functions shortens specifications. In addition, they represent
information hiding so that the user of (in this case) INTERFACED DATABASE
is not required to know about the details of channel communication; how this can
be done without any mention of channels at all is discussed in section 27.3.

24.10 Imperative Processes

The many place buffer process, mpb, defined in the module MANY PLACE -
BUFFER in section 24.6 is parameterized with respect to the buffer contents.
That is, it has the type:

value mpb : Buffer → in empty, add out get Unit

Changes to the buffer contents are reflected in recursive calls of mpb with different
actual parameter values.
An alternative is to keep the buffer contents in a variable which the process then

continuously modifies by means of assignments. We could make this variable global
to the module or make it local to the mpb process. We will give the latter case
as an example. The former is only a small adaptation, but would also suggest the
need to be able to hide the variable within the module so that only the process
mpb could access it. Hiding will be described in section 29.2.

MANY PLACE BUFFER =
class

type
Elem

channel
empty : Unit,
add, get : Elem

value
mpb : Unit → in empty, add out get Unit

axiom
mpb() ≡

local
type Buffer = Elem∗

variable buffer : Buffer := 〈〉
in

186 Channels and Communication

while true do
empty? ; buffer := 〈〉
⌈⌉⌊⌋
let v = add? in buffer := buffer ̂ 〈v〉 end
⌈⌉⌊⌋
if buffer 6= 〈〉 then get!(hd buffer) ; buffer := tl buffer
else stop
end

end
end

end

The parameter type of mpb has become Unit.
We could have defined mpb in terms of a local recursive process, but it is natural

when using assignments and sequencing to use a while expression.

CHAPTER 25

Expressions Revisited

In this chapter we very briefly revisit some of the applicative and imperative ex-
pressions introduced earlier in the context of concurrency.

25.1 Pure and Read-only Expressions

In chapter 18 the concepts of pure expressions and read-only expressions were
introduced. These concepts need a redefinition.
A pure expression is an expression that does not access variables and that does

not communicate on channels.
A read-only expression is an expression that does not write to variables and that

does not communicate on channels. It may, however, read from variables.
The syntax for RSL describes the occurrences of expressions that must either be

pure or read-only.

25.2 Equivalence Expressions

An equivalence expression (chapter 18) of the form:

value expr1 ≡ value expr2

requires the two constituent expressions to represent the same possible commu-
nication behaviour in order to hold. The equivalence expression itself does not
communicate since it is only the potential communications of the two constituent
expressions that are compared. An equivalence expression is therefore still read-
only.

187

CHAPTER 26

Comprehended Expressions

The combinators ⌈⌉⌊⌋, ⌈⌉ and ‖ are all associative and commutative. It is therefore
possible to define their distribution through a set of values. These distribution are
defined in RSL as comprehended expressions, and take the general form:

infix combinator {value expr1 | typing1,...,typingn • value expr2}

for n ≥ 1, where the infix combinator is one of the three infix combinators ‖ , ⌈⌉⌊⌋
and ⌈⌉.
The main use of comprehended expressions is with object arrays (presented in

chapter 32), but we give here simple examples of them that do not use object
arrays. The function throw die from section 24.7 could be written:

type Face Of Die == one | two | three | four | five | six
value throw die : Unit

∼

→ Face Of Die
axiom throw die() ≡ ⌈⌉ { t | t : Face Of Die }

(The missing restriction in the comprehended expression is equivalent to • true.)
However, as noted previously, the internal choice operator is rarely used in speci-

fications because we usually want our systems to behave more predictably.
Consider the following definitions.

channel
c1, c2 : Text

type
Index = {| i : Int • i ∈ {1,2} |}

value
put : Index → Text → out {c1,c2} Unit,
get : Index → in {c1,c2} Text,
put all : Text → out {c1,c2} Unit,
get one : Unit → in {c1,c2} Text

axiom forall t : Text, i : Index •

put(i)(t) ≡
case i of

188

Comprehended Expressions 189

1 → c1!t,
2 → c2!t

end,
get(i)(t) ≡

case i of
1 → c1?,
2 → c2?

end,
put all(t) ≡ ‖ { put(i)(t) | i : Index },
get one() ≡ ⌈⌉⌊⌋ { get(i) | i : Index }

The function put all is intended to output a text to all the channels. It does this
using a parallel comprehended expression.
The function get one is intended to get a text from one channel or the other. It

does this using an external choice comprehended expression.
Note that any one evaluation of put all(t) will (if it terminates) output t to all

the channels in some order. Any one evaluation of get one() will (if it terminates)
input from only one channel.
If the set in a comprehended expression is empty then the comprehended expres-

sion reduces to the unit for the combinator — stop for ⌈⌉⌊⌋, swap for ⌈⌉ and skip
for ‖. stop (deadlock) was introduced in section 24.6; skip (the value in Unit)
was introduced in section 19.3; swap is a completely under-specified expression —
it may terminate or not, may deadlock, may behave non-deterministically.
If the set in a comprehended expression is a singleton the comprehended expres-

sion is equivalent to the single expression in the set.

CHAPTER 27

Algebraic Definition of Processes

Processes can be defined abstractly in terms of algebraic equivalences. We have
already seen how this can be done for applicative functions (chapter 7) and for
operations (chapter 22).

In order to be able to compare with the applicative and imperative case, we
shall specify a concurrent list module abstractly. Recall the algebraic specification
of the LIST A module from section 7.12, which is repeated below. Constants and
functions have been suffixed with an a to indicate that they are applicative.

LIST A =
class

type
List

value
empty a : List,
add a : Int × List → List,
head a : List

∼

→ Int,
tail a : List

∼

→ List
axiom forall i : Int, l : List •

[head add]
head a(add a(i,l)) = i,

[tail add]
tail a(add a(i,l)) = l

end

There are four main styles of specifying a concurrent list module abstractly and we
treat each of them below. The first two styles (extending an applicative module
and using algebraic equivalences with explicit channels) correspond closely to the
first two styles outlined for the imperative sequential case in chapter 22. The third
and fourth styles (being implicit about channels and using subtypes) correspond
(the latter more than the former) to the third style in the imperative sequential
case.

190

Extending an Applicative Module 191

27.1 Extending an Applicative Module

The first approach is to use the entities from the applicative LIST A module in the
definition of the concurrent module. The concurrent module becomes an extension
of the LIST A module.

LIST =
extend LIST A with
class

channel
is empty : Bool,
add, head : Int,
tail : Unit

value
list : List → in add, tail out is empty, head Unit

axiom forall l : List •

list(l) ≡
is empty!(l = empty a) ; list(l)
⌈⌉⌊⌋
let i = add? in list(add a(i,l)) end
⌈⌉⌊⌋
if ∼(l = empty a) then head!(head a(l)) ; list(l) else stop end
⌈⌉⌊⌋
if ∼(l = empty a) then tail? ; list(tail a(l)) else stop end

end

A list process, list , which communicates with its surroundings via the channels
is empty , add , head and tail is defined.
The process is parameterized with its ‘state’, which has the type List . This type

comes from the LIST A module and is a sort. Nothing has been said about the
representation of its values.
The process behaviour following communication on the channels is defined using

calls of the corresponding applicative functions from LIST A. Since these are
defined without assuming any particular representation, the process shares that
property.
The approach of using an applicative specification in defining a concurrent one

may seem tedious, especially if the applicative one does not exist beforehand.

27.2 Algebraic Equivalences

The second approach to abstract specification of the concurrent list module is to
give algebraic equivalences between process communications in a way very similar
to the equivalences in the applicative LIST A module.
As an example, consider the applicative axiom head add from LIST A:

axiom forall i : Int, l : List •

192 Algebraic Definition of Processes

[head add]
head a(add a(i,l)) ≡ i

The axiom says that adding an element i to a list and then taking the head gives
the element just added.
In the concurrent case, we have to write a bit more. First of all, we define a

variable to hold the value returned from the head channel:

variable head res : Int

We could then attempt to state the axiom as follows:

axiom forall i : Int, l : List •

[head add]
list(l) ‖ (add!i ; head res := head?) ≡

list(l) ‖ (add!i ; head res := i)

The axiom is supposed to make the following two interactions equivalent:

• Left hand side: send a value i to the process on the add channel and then
store in head res the value received from the head channel.

• Right hand side: send the value i to the process on the add channel and then
store i in head res .

In other words: the head channel always gives the element last added on the add
channel. In addition, a communication on the head channel does not affect the
state of the process.
The variable head res is introduced to ensure that the two arguments of ‖ have

the type Unit.
The axiom is, however, inappropriate. The reason is that ‖ does not prevent

external communication, so it allows other expressions evaluating concurrently to
interfere. Such an interfering expression could perform an add !i1 in between add !i
and head res := head?.
In other words, if the above axiom is to hold, then the following property must

also hold (equivalence implies substitutability):

∀ i,i1 : Int, l : List •

add!i1 ‖ (list(l) ‖ (add!i ; head res := head?)) ≡
add!i1 ‖ (list(l) ‖ (add!i ; head res := i))

When list is as in the concurrent LIST module in section 27.1, for the left hand
side of this derived equivalence, a possible evaluation sequence is:

1. list(l) accepts the communication add !i , thereby resulting in:

add!i1 ‖ list(add a(i,l)) ‖ head res := head?

2. list(add a(i , l)) accepts the communication add !i1, thereby resulting in:

list(add a(i1,add a(i,l))) ‖ head res := head?

3. list(add a(i1, add a(i , l))) accepts the communication head?, thereby result-
ing in:

Algebraic Equivalences 193

head res := i1 ; list(add a(i1,add a(i,l)))

This final expression is obviously not acceptable as an evaluation sequence of the
right hand side of the derived equivalence — head res contains the wrong value.
The conclusion must therefore be that the original axiom should not hold.
The solution is to introduce a new combinator that is more ‘aggressive’ than

the parallel combinator in forcing communication between the two expressions to
happen. The interlocking combinator –‖ does exactly that. An expression of the
form:

value expr1 –‖ value expr2

is evaluated by evaluating the two constituent expressions (both having type Unit)
interlocked concurrently: the two expressions are evaluated concurrently until the
evaluation of one of them comes to an end, whereupon evaluation continues with
the other (just like ‖). However: during the concurrent evaluation, any external
communication is prevented. In our example above, add !i1 is the external commu-
nication that should be prevented. The type of the whole expression is Unit.
The interlocking combinator may best be explained by stating some equivalences

between expressions using it.
Assume the following definitions:

value e,e1,e2 : T
channel c,c1,c2 : T
variable x : T

Then the following equivalence holds:

x := c? –‖ c!e ≡ x := e

That is: since the two expressions x := c? and c!e can communicate, they will
communicate.
The corresponding equivalence for the parallel combinator is somewhat more

complicated:

x := c? ‖ c!e ≡ (x := e) ⌈⌉ ((x := c? ; c!e) ⌈⌉⌊⌋ (c!e ; x := c?) ⌈⌉⌊⌋ (x := e))

That is, the two expressions may communicate, leading to:

x := e

Whether they do depends on an internal choice. Alternatively, it will be up to the
surroundings to make an external choice between communications. Note that in
this case, the surroundings can choose to let the two expressions communicate.
Another example involving the external choice combinator is the following:

(x := c1? ⌈⌉⌊⌋ c2!e2) –‖ c1!e1 ≡ x := e1

That is: the interlocking combinator forces the external choice of the expression
x := c1?.
These equivalences show how the interlocking combinator leaves no possible com-

munications outstanding. In the reverse case, where both of the interlocked expres-

194 Algebraic Definition of Processes

sions want to communicate, but not with each other, the result is a deadlock. This
is illustrated by the following equivalence:

x := c1? –‖ c2!e ≡ stop

The corresponding equivalence for the parallel combinator is as follows:

x := c1? ‖ c2!e ≡ (x := c1? ; c2!e) ⌈⌉⌊⌋ (c2!e ; x := c1?)

That is: since the two expressions cannot communicate with each other, they can
only communicate with the surroundings.
The interlocking combinator is well suited for illustrating the difference between

external choice and internal choice. Recall the equivalence given above for external
choice and then compare with the following one for internal choice:

(x := c1? ⌈⌉ c2!e2) –‖ c1!e1 ≡ x := e1 ⌈⌉ stop

That is: if the internal choice falls on the expression x := c1?, then a communication
takes place (resulting in x := e1). If on the other hand, the internal choice falls on
c2!e2, then both interlocked expressions want to communicate, but not with each
other, and the result is a deadlock.
The interlocking combinator is commutative but it is not associative (by contrast

with the parallel combinator).
The interlocking combinator can now be used to correctly write the head add

axiom:

axiom forall i : Int, l : List •

[head add]
(list(l) –‖ add!i) –‖ head res := head? ≡

(list(l) –‖ add!i) –‖ head res := i

Note that the expression list(l) –‖ add !i is itself a processs, namely the process
representing the list which has had integer i added to its ‘state’ l .
The complete concurrent specification of lists becomes:

LIST =
class

type
List

channel
is empty : Bool,
add, head : Int,
tail : Unit

variable
is empty res : Bool,
head res : Int

value
empty : List,
list : List → in add, tail out is empty, head Unit

axiom forall i : Int, l : List •

Being Implicit about Channels 195

[is empty empty]
list(empty) –‖ is empty res := is empty? ≡

list(empty) –‖ is empty res := true,
[is empty add]

(list(l) –‖ add!i) –‖ is empty res := is empty? ≡
(list(l) –‖ add!i) –‖ is empty res := false,

[head add]
(list(l) –‖ add!i) –‖ head res := head? ≡

(list(l) –‖ add!i) –‖ head res := i,
[tail add]

(list(l) –‖ add!i) –‖ tail!() ≡ list(l),
[add list]

∃ l′ : List • ✷ list(l) –‖ add!i ≡ list(l′)
end

The last axiom is special to this kind of specification. We noted above that the
expression list(l) –‖ add !i is intended to be the list process whose ‘state’ is the result
of adding i to the state l . But there is nothing in the specification to ensure that
it is a process of the appropriate type, i.e. willing to do the communications that
the list process is willing to do. In the corresponding applicative specification we
had an add a function with result type List . The axiom add list represents this
information about the ‘result type’ of the interactions on this channels.
So why do we need this axiom for add only, and not for tail , say? It turns out

that we are using interactions on add like a ‘constructor’ for the list process, as we
can see from the structure of the axioms (just as we used the constant empty a and
the function add a as constructors for applicative lists). Hence these are sufficient;
everything else is defined in terms of them. The constant empty is defined to be of
type List ; for the function add we need this axiom.
The parameter type of the list process is List which is a sort. Nothing has

therefore been said about representation. The axioms likewise assume no particular
representation of lists.

27.3 Being Implicit about Channels

Until now we have been abstract only about data representation. There is, however,
a possibility of being even more abstract than that. In the third approach we are,
additionally, implicit about what the channels are, by simply not defining them.
Instead, the technique is to define the interface to the list process as a set of
interface functions (see section 24.9) and then to state their properties in terms of
the interlocking combinator.
In this way we can modify the LIST module in section 27.2 by removing the

following definitions:

channel
is empty : Bool,

196 Algebraic Definition of Processes

add, head : Int,
tail : Unit

The list process type must now be modified so that it does not mention the chan-
nels. Recall that it had the following definition:

list : List → in add, tail out is empty, head Unit

Instead of channel names one can write any in the access description to indicate
that any channel defined may be communicated on. An access description can thus
have one of the forms in any and out any.
The definition of the type of list becomes:

list : List → in any out any Unit

The interface functions must also have any accesses. As an example let us consider
the add and head interface functions which could be given the types:

add : Int → in any out any Unit
head : Unit → in any out any Int

The interlocking combinator (unlike ‘;’) requires its argument expressions to both
have type Unit. This results in the awkward use of extra ‘result’ variables in the
LIST module in section 27.2.
This use of extra variables can be eliminated quite easily by noting that we are

actually interested in what happens when the results of applying is empty and head
are used subsequently. This subsequent use can be described by quantifying over
‘test functions’ having the types Bool

∼

→ Unit (in the case of is empty) and Int
∼

→
Unit (in the case of head). These types contain enough functions to discriminate
between all possible Booleans and integers; for instance if b1 : Bool and b2 : Bool
then, if l is not λ() • chaos, the definition

value
test bool : Bool

∼

→ Unit
axiom

test bool = λ b2 : Bool • if b1 = b2 then skip else chaos end

provides a function test bool such that:

(✷ (l() –‖ test bool(b1) ≡ l() –‖ test bool(b2))) ⇒ b1 = b2

or, equivalently, such that:

(λ() • l() –‖ test bool(b1)) = (λ() • l() –‖ test bool(b2)) ⇒ b1 = b2

Though it would be possible to introduce test functions in the axioms handling
functions (such as tail) returning results of type Unit, doing so is unnecessary.
It would have been possible to use test functions in the corresponding sequential

specification in section 22.3, but they would merely obscure it. The concurrent
version is as follows:

LIST =
class

Using Subtypes 197

type
List

value
empty : List,
is empty : Unit

∼

→ in any out any Bool,
add : Int

∼

→ in any out any Unit,
head : Unit

∼

→ in any out any Int,
tail : Unit

∼

→ in any out any Unit,
list : List → in any out any Unit

axiom forall i : Int, l : List,
test bool : Bool

∼

→ Unit, test int : Int
∼

→ Unit •

[is empty empty]
list(empty) –‖ test bool(is empty()) ≡

list(empty) –‖ test bool(true),
[is empty add]

(list(l) –‖ add(i)) –‖ test bool(is empty()) ≡
(list(l) –‖ add(i)) –‖ test bool(false),

[head add]
(list(l) –‖ add(i)) –‖ test int(head()) ≡

(list(l) –‖ add(i)) –‖ test int(i),
[tail add]

(list(l) –‖ add(i)) –‖ tail() ≡ list(l),
[add list]

∃ l′ : List • ✷ list(l) –‖ add(i) ≡ list(l′)
end

27.4 Using Subtypes

The previous specification in section 27.3 holds the ‘state’ in a type List which
appears as a parameter to the function list . There was no such corresponding type
in the corresponding imperative sequential specification in section 22.3.
We can eliminate this type by introducing instead a type of list processes, which is

a subtype of all the processes that may access the variables and channels identified
by any. We can imagine different values of this type representing different ‘states’.
This we do next, for our fourth version.

LIST =
class

type
List = {| l : Unit → in any out any write any Unit • is list(l) |}

value
is list : (Unit → in any out any write any Unit) → Bool,
empty : List,
is empty : Unit

∼

→ in any out any Bool,

198 Algebraic Definition of Processes

add : Int
∼

→ in any out any Unit,
head : Unit

∼

→ in any out any Int,
tail : Unit

∼

→ in any out any Unit
axiom forall i : Int, l : List,

test bool : Bool
∼

→ Unit, test int : Int
∼

→ Unit •

[is empty empty]
empty() –‖ test bool(is empty()) ≡

empty() –‖ test bool(true),
[is empty add]

(l() –‖ add(i)) –‖ test bool(is empty()) ≡
(l() –‖ add(i)) –‖ test bool(false),

[head add]
(l() –‖ add(i)) –‖ test int(head()) ≡

(l() –‖ add(i)) –‖ test int(i),
[tail add]

(l() –‖ add(i)) –‖ tail() ≡ l(),
[add list]

∃ l′ : List • ✷ l() –‖ add(i) ≡ l′()
end

The following has been gained by being implicit about channels and using inter-
face functions:

• We have avoided deciding what channels there will be and what their types
will be.

• Suppose we later develop an implementation of the LIST module from sec-
tion 27.3 or 27.4. Our specification then places no restriction on what the
channels of an implementation will be.

• The specification places no restrictions on what channels the processes are al-
lowed to access. The implementation of abstract interface functions in terms
of concrete interface functions that do explicit channel communication is some-
times referred to as event refinement. This is particularly useful in that we
can decide later what protocols to use, such as designing external choices over
inputs only if the programming language we want to finally implement in en-
forces such a restriction. (We could design in this way from the start, but
only at the cost of a less abstract and less re-usable specification.)

Note that any accesses can also be used in process types even if channels have been
defined. It then allows the processes to access any of the defined channels. Again,
one can see this as giving freedom to an implementation.

A natural question is when to be implicit about channels and when to be explicit.
It is difficult to give exact rules. Very roughly, one may be implicit in the following
situations:

• One is not interested (yet) in what channels there are.
• One wants to leave freedom to a later development which is expected to be-

Example: A Database 199

come an implementation in the formal sense. The freedom to do event refine-
ment is particularly important.

Being explicit, however, has its benefits. From the type of a process one can see
exactly what channels may be accessed and how they may be accessed. This can
make concurrent specifications easier to read.
A more detailed description of any accesses will be given in section 33.3.

27.5 Example: A Database

Consider an algebraic specification of a concurrent database. We will be implicit
about channels by not defining any. Consequently, we must define a set of interface
functions.

DATABASE =
class

type
Key, Data,
Database =

{| db : Unit → in any out any write any Unit • is database(db) |}
value

is database : (Unit → in any out any write any Unit) → Bool,
empty : Database,
insert : Key × Data

∼

→ in any out any Unit,
remove : Key

∼

→ in any out any Unit,
defined : Key

∼

→ in any out any Bool,
lookup : Key

∼

→ in any out Data
axiom forall k,k1 : Key, d : Data, db : Database,

test bool : Bool
∼

→ Unit, test data : Data
∼

→ Unit •

[remove empty]
empty() –‖ remove(k) ≡ empty(),

[remove insert]
(db() –‖ insert(k1,d)) –‖ remove(k) ≡

if k = k1 then db() –‖ remove(k)
else (db() –‖ remove(k)) –‖ insert(k1,d)
end,

[defined empty]
empty() –‖ test bool(defined(k)) ≡

empty() –‖ test bool(false),
[defined insert]

(db() –‖ insert(k1,d)) –‖ test bool(defined(k)) ≡
if k = k1 then (db() –‖ insert(k1,d)) –‖ test bool(true)
else (db() –‖ test bool(defined(k))) –‖ insert(k1,d)
end,

[lookup insert]

200 Algebraic Definition of Processes

(db() –‖ insert(k1,d)) –‖ test data(lookup(k)) ≡
if k = k1 then (db() –‖ insert(k1,d)) –‖ test data(d)
else (db() –‖ test data(lookup(k))) –‖ insert(k1,d)
end,

[insert database]
∃ db′ : Database • ✷ db() –‖ insert(k,d) ≡ db′()

end

The concurrent database example illustrates the constructor technique for inventing
axioms, which we have previously seen applied in the imperative sequential case
as well as in the applicative case. The technique used in the concurrent case with
interface functions can be characterized as follows:

1. Identify the ‘constructor functions’ by which any database can be constructed.
These are the processes empty and insert . Any database can thus be generated
by an expression of the form:

empty() –‖ insert(k1,d1) –‖ ... –‖ insert(kn,dn)

2. Define the remaining processes by case over the constructor processes, using
new identifiers as parameters. In the above axioms, remove, defined and
lookup are defined over the two constructor expressions:

empty()
db() –‖ insert(k1,d)

We thus get immediately all the left hand sides of the axioms we need. That
is:

empty() –‖ remove(k)
(db() –‖ insert(k1,d)) –‖ remove(k)
empty() –‖ test bool(defined(k))
(db() –‖ insert(k1,d)) –‖ test bool(defined(k))
empty() –‖ test data(lookup(k))
(db() –‖ insert(k1,d)) –‖ test data(lookup(k))

Note, however, that we choose to under-specify the effect of lookup and so we
do not include an axiom with left hand side empty() –‖ test data(lookup(k)).
The right hand sides of the axioms defined insert and lookup insert are

somewhat different from the corresponding applicative ones. This is due to the
requirement that the effect on the state of the left hand side of an equivalence
must be the same as the effect on the state of the right hand side. More
specifically, the call insert(k1, d) (or its equivalent) must occur on the right
hand side since it occurs on the left hand side and since it has a non-trivial
effect on the state. The use of test functions allows values which do not have
type Unit to be returned by function calls which appear as arguments of –‖.

The LIST axioms in section 27.4 actually have the same form.
The technique is useful in many applications, but there are of course applications

where one must be more inventive when writing axioms.

Refining Applicative Specifications into Imperative Ones 201

27.6 Refining Applicative Specifications into Imperative
Ones

The analogy between concurrent imperative specifications like that in section 27.4
and applicative specifications can be formalized: there is a sense in which such
concurrent imperative specifications are essentially refinements of the applicative
ones. Here we illustrate the formalization in the case of lists.

An applicative specification of this kind of list is as follows.

LIST A =
class

type
List

value
empty a : List,
add a : Int × List → List,
is empty a : List

∼

→ Bool,
head a : List

∼

→ Int,
tail a : List

∼

→ List
axiom forall i : Int, l : List •

[is empty empty]
is empty a(empty a) = true,

[is empty add]
is empty a(add a(i,l)) = false,

[head add]
head a(add a(i,l)) = i,

[tail add]
tail a(add a(i,l)) = l

end

A concurrent imperative specification produced by analogy with this applicative
specification is as follows.

LIST =
class

type
List = {| l : Unit → in any out any write any Unit • is list(l) |}

value
is list : (Unit → in any out any write any Unit) → Bool,
empty : List,
is empty : Unit

∼

→ in any out any Bool,
add : Int

∼

→ in any out any Unit,
head : Unit

∼

→ in any out any Int,
tail : Unit

∼

→ in any out any Unit
axiom forall i : Int, l : List,

202 Algebraic Definition of Processes

test bool : Bool
∼

→ Unit, test int : Int
∼

→ Unit •

[is empty empty]
empty() –‖ test bool(is empty()) ≡

empty() –‖ test bool(true),
[is empty add]

(l() –‖ add(i)) –‖ test bool(is empty()) ≡
(l() –‖ add(i)) –‖ test bool(false),

[head add]
(l() –‖ add(i)) –‖ test int(head()) ≡

(l() –‖ add(i)) –‖ test int(i),
[tail add]

(l() –‖ add(i)) –‖ tail() ≡ l(),
[add list]

∃ l′ : List • ✷ l() –‖ add(i) ≡ l′()
end

LIST can be extended by defining new types, constants and functions in the fol-
lowing manner.

LIST B =
extend LIST with
class

value
empty a : List,
add a : Int × List → List,
is empty a : List

∼

→ Bool,
head a : List

∼

→ Int,
tail a : List

∼

→ List
axiom forall i : Int, l : List •

empty a = empty,
add a(i,l) = λ() • l() –‖ add(i),
is empty a(l) =

let b : Bool • ∀ test bool : Bool
∼

→ Unit •

(λ() • l() –‖ test bool(is empty())) = (λ() • l() –‖ test bool(b))
in b end,

head a(l) =
let i : Int • ∀ test int : Int

∼

→ Unit •

(λ() • l() –‖ test int(head())) = (λ() • l() –‖ test int(i))
in i end,

tail a(l) = λ() • l() ; tail()
end

The axioms of LIST B ensure that is list(empty) is true and that so is:

∀ i : Int, l : Unit → in any out any write any Unit •

is list(l) ⇒ is list(λ() • l() –‖ add(i))

Refining Applicative Specifications into Imperative Ones 203

LIST B does not constrain the functions introduced in LIST : nothing can be
proved about the functions introduced in LIST with the aid of this extension of it
that could not be proved without the extension.
Because all the functions in the type List are total, so in particular λ() • chaos

is not in the type List , it is the case that:

∀ b1, b2 • Bool •

(∀ test bool : Bool
∼

→ Unit •

(λ() • empty() –‖ test bool(b1)) = (λ() • empty() –‖ test bool(b2))
) ⇒ b1 = b2

and that:

∀ b1, b2 • Bool, i : Int, l : List •

(∀ test bool : Bool
∼

→ Unit •

(λ() • (l() –‖ add(i)) –‖ test bool(b1)) =
(λ() • (l() –‖ add(i)) –‖ test bool(b2))

) ⇒ b1 = b2

and similarly that:

∀ i1, i2 • Int, i : Int, l : List •

(∀ test int : Int
∼

→ Unit •

(λ() • (l() –‖ add(i)) –‖ test int(i1)) =
(λ() • (l() –‖ add(i)) –‖ test int(i2))

) ⇒ i1 = i2

From this it follows that the functions empty a, add a, is empty a, head a and
tail a defined explicitly in LIST B satisfy all the axioms in the original applicative
LIST A. Indeed, LIST B is a refinement of LIST A, as everything that can be
proved about the latter can be proved about the former. So, by refining an abstract
type List from LIST A into (a subtype of) a process type in LIST we have refined
an applicative specification into a concurrent imperative one.

CHAPTER 28

Modules

Modules are the means by which to decompose specifications into comprehensible
and reusable units. A module is basically a named collection of declarations. A
moduleM1 can be used to define another moduleM2, meaning that the declarations
of M1 are used to define M2.
As we shall see, there are two kinds of modules: objects and schemes. All the

modules shown so far in this tutorial are actually schemes. Modules are the only
entities that can be defined at the outermost level of a specification. In other words,
a specification is a collection of module declarations.
Before introducing objects and schemes, the concept of a basic class expression

is described. Class expressions are fundamental in the definition of both objects
and schemes.

28.1 Basic Class Expressions

The kernel module concept is that of a class expression. The basic form of a class
expression is:

class
declaration1
...
declarationn

end

for n ≥ 0. That is, a collection of declarations enclosed by the keywords class and
end.
We have seen many examples of basic class expressions, and we have seen ex-

amples of type, value, variable, channel and axiom declarations. As we shall see,
class expressions are entities in their own right, and can therefore also be defined
in declarations (of schemes).
A class expression represents a class (essentially a set) of models. Each model

associates an entity (value, type, variable, channel or module) with each identifier

204

Objects 205

defined within the class expression. There may be more than one model because
identifiers may be under-specified.
As an example consider the following class expression:

class
value i : Int
axiom i = 1 ∨ i = 2

end

This class expression represents the class containing two models, corresponding to
the fact that i is under-specified. The class can be illustrated as follows:

{ [i 7→ 1] , [i 7→ 2] }

The class represented by a basic class expression is the class containing all models
that satisfy the declarations. Each of the two models above satisfies the declara-
tions. Take for example the first model:

[i 7→ 1]

This model satisfies the declaration of i as an integer since i is bound to a value
within Int. The model also satisfies the axiom that i must be either 1 or 2 since i
is bound to 1. Similarly for the second model.
In fact, this description is a simplification. In order to allow extension (adding

new definitions) as implementations we define the models of a class expression to
include all possible extensions. This means that the class of models of any class
expression is infinite. But we can characterize the classes of models for our simple
example as all containing an association of the value i to either 1 or 2.
Class expressions may also have other forms, as we shall see in subsequent sec-

tions. The other forms can, however, usually be expanded into equivalent basic
class expressions. We refer to the category of class expressions as class expr .
In the following we see how one can give names to models (giving objects) and

class expressions (giving schemes).

28.2 Objects

An object is essentially a named model chosen from a class of models represented
by some class expression. As an example, consider the following object.

object
LIST :

class
variable

list : Int∗

value
empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : Int → write list Unit,

206 Modules

head : Unit
∼

→ read list Int,
tail : Unit

∼

→ write list Unit
axiom forall i : Int •

empty() ≡ list := 〈〉,
is empty() ≡ list = 〈〉,
add(i) ≡ list := 〈i〉 ̂ list,
head() ≡ hd list
pre ∼is empty(),
tail() ≡ list := tl list
pre ∼is empty()

end

The object has a name, LIST , and it provides a number of named entities, list ,
empty , is empty , add , head and tail . One may say that the object is an ‘instance’
of the class expression, a phrasing that perhaps supports the reader’s intuition.

All variables defined in the class expression are initialised to their initial value.
In the above class expression no specification of an initial list value has been given,
so an arbitrary value within Int∗ is assigned to the list variable. If, instead, the
variable definition is given as:

variable list : Int∗ := 〈〉

then the initial value will be the empty list.

The entities within one object can be referred to from another object. All refer-
ences must be prefixed with the object name, in this case LIST . In the case of, for
example, the entity empty , the reference is LIST .empty . Such a reference is called
a qualified identifier. Note that this entity is an operation. If one wants to evaluate
this operation one has to write LIST .empty(). In general, a reference may be of
the form id1.id2 where id1 is the object name and where id2 is the entity name.

As an example of an object that refers to the LIST object, consider an object
providing an operation that applies an integer-to-integer function to all members
of the list currently contained in the LIST .list variable.

object
LIST APPLY :

class
value

apply : (Int → Int) → write LIST.list Unit
axiom forall f : Int → Int •

apply(f) ≡
if ∼ LIST.is empty() then

let first = LIST.head() in
LIST.tail() ; apply(f) ; LIST.add(f(first))

end
end

end

Objects 207

The operation LIST APPLY .apply accesses the variable LIST .list via the opera-
tions defined within LIST . It is important to note that there is only one variable
defined above, namely LIST .list , and that this variable is the one accessed and
eventually modified by LIST APPLY .apply as well as by all the LIST operations.
An object may also define operators. As an example, recall the specification of

rational numbers from section 17.6, which is repeated below, here defined as an
object.

object RATIONAL :
class

type
Rational

value
/ : Int × Int → Rational,
+ : Rational × Rational → Rational,
− : Rational × Rational → Rational,
∗ : Rational × Rational → Rational,
/ : Rational × Rational → Rational,
real : Rational

∼

→ Real
axiom forall n,n1,n2,d,d1,d2 : Int, r1,r2 : Rational •

(n1 / d1) + (n2 / d2) ≡ (n1 ∗ d2 + d1 ∗ n2) / (d1 ∗ d2),
r1 − r2 ≡ r1 + (r2 ∗ ((0−1)/1)),
(n1 / d1) ∗ (n2 / d2) ≡ (n1 ∗ n2) / (d1 ∗ d2),
(n1 / d1) / (n2 / d2) ≡ (n1 ∗ d2) / (d1 ∗ n2),
real (n / d) ≡ (real n) / (real d)
pre d 6= 0

end

All the operators defined within RATIONAL can only be accessed by prefixing
them with RATIONAL, just as is the case for identifiers, although the syntax
is slightly different. In the case of for example the + operator, the reference is
RATIONAL.(+). Such a reference is called a qualified operator. The obtained
entity is a function that must be applied using function application notation. Recall
from section 17.3 how user-defined operators are turned into functions by bracketing
them. Thus, an application of + to the two rational numbers r1 and r2 has the
form RATIONAL.(+)(r1, r2). In general, a reference may be of the form id .(op)
where id is the object name and where op is the operator.
As an example of an object that refers to the RATIONAL object, consider one

providing a function for multiplying all the rational numbers which are members
of a list.

object
RATIONAL MULT :

class
value

multiply : RATIONAL.Rational∗ → RATIONAL.Rational

208 Modules

axiom forall l : RATIONAL.Rational∗ •

multiply(l) ≡
case l of

〈〉 → RATIONAL.(/)(1,1),
〈r〉 ̂ l1 → RATIONAL.(∗)(r,multiply(l1))

end
end

Objects are essentially entities just like types, values, variables and channels. They
are therefore defined in declarations. An object declaration has the form:

object
object definition1,
...
object definitionn

for n ≥ 1. An object definition (in the simple form we have seen so far) has the
form:

id : class expr

That is, the identifier id is defined to represent some arbitrary model belonging to
the class of models represented by the class expr .
Since objects are defined in declarations, they may be defined inside class ex-

pressions in a nested manner. Chapter 31 illustrates this in more detail.

28.3 Schemes

An object represents a model, arbitrarily chosen from the class of models repre-
sented by some class expression. In some situations it is convenient to be able to
manipulate class expressions on their own before defining objects. A prerequisite
for doing this is that one can name class expressions.
A named class expression is called a scheme. As an example we can define a

scheme corresponding to the class expression defining the LIST object above.

scheme
LIST S =

class
variable

list : Int∗

value
empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : Int → write list Unit,
head : Unit

∼

→ read list Int,
tail : Unit

∼

→ write list Unit
axiom forall i : Int •

Schemes 209

empty() ≡ list := 〈〉,
is empty() ≡ list = 〈〉,
add(i) ≡ list := 〈i〉 ̂ list,
head() ≡ hd list
pre ∼is empty(),
tail() ≡ list := tl list
pre ∼is empty()

end

The suffix S is used in the scheme-name so that we are able to distinguish it from
the object. Note that this is just a convention used in this particular context, and
is therefore neither a naming required by RSL nor a suggested style.
The scheme LIST S is defined to be an abbreviation for its defining class ex-

pression. Every occurrence of the name LIST S , called a scheme instantiation, can
thus be replaced with the class expression (and vice versa).
As an example we can define two list objects, each an instance of the LIST S

scheme.

object
LIST1 : LIST S,
LIST2 : LIST S

These definitions are exactly equivalent to the following, where the two occurrences
of the scheme-name LIST S have been replaced with its defining class expression.

object
LIST1 : class ... end,
LIST2 : class ... end

In this way we have defined two objects defining two different variables. That is,
the variable LIST1.list is different from LIST2.list .
It is important to note that the two object definitions above could have been

obtained without introducing a scheme. One would then instead be forced to write
the expanded forms sketched above. Such a style both requires more writing and
blurs the fact that the two objects are instances of the same class expression.
Schemes are entities just like types, values, variables, channels and objects. They

are therefore defined in declarations. A scheme declaration has the form:

scheme
scheme definition1,
...
scheme definitionn

for n ≥ 1. A scheme definition (in the simple form we have seen so far) has the
form:

id = class expr

That is, the identifier id is defined to be an abbreviation for the class expr .

210 Modules

As mentioned earlier, all the modules shown in chapters 3–27 of this tutorial are
schemes.

28.4 Extension

One can in RSL build a class expression in successive steps, at each step adding
declarations with the extend operator.
As an example, suppose we want to gradually build up the scheme LIST S . In

the first step we decide what the state is. That is, we define the basic scheme
LIST STATE .

scheme
LIST STATE =

class
variable list : Int∗

end

In the second step we identify all the operations on the state, but we ignore any
axioms defining properties of the operations. The addition of the operations is
expressed as an extension of the LIST STATE scheme.

scheme
LIST OPERATIONS =

extend LIST STATE with
class

value
empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : Int → write list Unit,
head : Unit

∼

→ read list Int,
tail : Unit

∼

→ write list Unit
end

Such an extension can be expanded into a basic class expression by simply com-
bining the declarations of the extended class expression with the new ones. The
above one can therefore be expanded into the following scheme definition.

scheme
LIST OPERATIONS =

class
variable

list : Int∗

value
empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : Int → write list Unit,
head : Unit

∼

→ read list Int,

Extension 211

tail : Unit
∼

→ write list Unit
end

In the third and final step we add axioms defining properties of the operations.

scheme
LIST S =

extend LIST OPERATIONS with
class

axiom forall i : Int •

empty() ≡ list := 〈〉,
is empty() ≡ list = 〈〉,
add(i) ≡ list := 〈i〉 ̂ list,
head() ≡ hd list
pre ∼is empty(),
tail() ≡ list := tl list
pre ∼is empty()

end

This scheme-definition is exactly equivalent to the original definition of LIST S ,
where the state, the operations and the axioms were defined in one basic class
expression.

The general form of an extending class expression is:

extend class expr1 with class expr2

The class expression class expr1 is typically a scheme name, while the class expres-
sion class expr2 is typically a basic class expression of the form:

class
declaration1
...
declarationn

end

The constituent class expressions must be compatible. They are compatible if
all their definitions are compatible. Two definitions are compatible if they define
distinct identifiers and operators or if they are both value definitions defining the
same identifier or operator but with distinguishable maximal types.

So if for example the scheme S1 defines a type named T , and if the scheme S2

also defines a type named T , then the following extension is not well-formed:

extend S1 with S2

Suppose each of the class expressions class expri (i ∈ {1, 2}) can be expanded into
a basic class expression of the form:

class
declarationi,1

212 Modules

...
declarationi,ni

end

Then the extension above can be expanded into:

class
declaration1,1
...
declaration1,n1

declaration2,1
...
declaration2,n2

end

CHAPTER 29

Renaming and Hiding

In addition to the extend operator there are two more operators available on class
expressions, namely renaming and hiding.

29.1 Renaming

A class expression may be renamed giving a new class expression with old names
replaced by new names. As an example, consider the following renaming of the
LIST S scheme making it into a stack scheme.

scheme
STACK S =

use stack for list, push for add, top for head, pop for tail
in LIST S

A renaming class expression can be expanded into a basic class expression. The
result of the expansion is as follows.

scheme
STACK S =

class
variable

stack : Int∗

value
empty : Unit → write stack Unit,
is empty : Unit → read stack Bool,
push : Int → write stack Unit,
top : Unit

∼

→ read stack Int,
pop : Unit

∼

→ write stack Unit
axiom forall i : Int •

empty() ≡ stack := 〈〉,
is empty() ≡ stack = 〈〉,
push(i) ≡ stack := 〈i〉 ̂ stack,

213

214 Renaming and Hiding

top() ≡ hd stack
pre ∼is empty(),
pop() ≡ stack := tl stack
pre ∼is empty()

end

The general form of a renaming class expression is:

use
idnew1

for idold1 , ... ,idnewn
for idoldn

in class expr

for n ≥ 1. The new names appear to the left of for while the old names appear
to the right. In the case where an overloaded identifier is to be renamed, a type
expression must be given in order to disambiguate it:

use
..., idnew for idold : type expr, ...

in class expr

29.2 Hiding

Identifiers defined within a class expression may be hidden so that one cannot refer
to them outside the class expression.
As an example we can hide make the variable list in the LIST S scheme. This

is a common encapsulation technique which prevents variables from being accessed
except through their associated operations.

scheme ENCAPSULATED LIST S = hide list in LIST S

In order to illustrate what hiding means, two illegal uses of the
ENCAPSULATED LIST S are shown below. In the first example, we extend the
scheme with an operation that illegally refers to the hidden list variable.

scheme
ILLEGAL S =

extend ENCAPSULATED LIST S with
class

value length : Unit → read list Nat
axiom length() ≡ len list

end

In the second example, an object is first defined as an instance of the scheme
ENCAPSULATED LIST S .

object ENCAPSULATED LIST : ENCAPSULATED LIST S

Then another object is defined that illegally refers to the hidden list variable.

object
ILLEGAL :

Hiding 215

class
value length : Unit → read ENCAPSULATED LIST.list Nat
axiom length() ≡ len ENCAPSULATED LIST.list

end

Suppose an operation is to be defined, which may call the operations defined
in ENCAPSULATED LIST . The type of this operation must include an ac-
cess description stating the fact that the variables (in this case one variable) of
ENCAPSULATED LIST are accessed. This description must not mention list ,
which is hidden in ENCAPSULATED LIST . The variables of ENCAPSULATED -
LIST can instead be referred to in accesses by:

ENCAPSULATED LIST.any

That is, a reference to the particular list variable is avoided. The type of the calling
operation must therefore include an access description of the form:

read ENCAPSULATED LIST.any

if it just calls the read-only operations (is empty and head). Alternatively it must
include an access description of the form:

write ENCAPSULATED LIST.any

if it calls operations modifying the list variable (empty , add and tail). As an
example, consider the following object.

object
LIST APPLY :

class
value

apply : (Int → Int) → write ENCAPSULATED LIST.any Unit
axiom forall f : Int → Int •

apply(f) ≡
if ∼ ENCAPSULATED LIST.is empty() then

let first = ENCAPSULATED LIST.head() in
ENCAPSULATED LIST.tail() ;
apply(f) ;
ENCAPSULATED LIST.add(f(first))

end
end

end

The general form of a hiding class expression is:

hide id1,...,idn in class expr

for n ≥ 1. In the case where an overloaded identifier is to be hidden, a type
expression must be given in order to disambiguate it:

hide ..., id : type expr, ... in class expr

216 Renaming and Hiding

A hiding class expression cannot immediately be expanded into a basic class ex-
pression, since hiding is not a concept expressible in basic class expressions. One
can therefore say that the general form of class expression is:

hide id1,...,idm in
class

declaration1
...
declarationn

end

The above definition of the ENCAPSULATED LIST S scheme is thus equivalent
to the following definition.

scheme
ENCAPSULATED LIST S =

hide list in
class

variable
list : Int∗

value
empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : Int → write list Unit,
head : Unit

∼

→ read list Int,
tail : Unit

∼

→ write list Unit
axiom forall i : Int •

empty() ≡ list := 〈〉,
is empty() ≡ list = 〈〉,
add(i) ≡ list := 〈i〉 ̂ list,
head() ≡ hd list
pre ∼is empty(),
tail() ≡ list := tl list
pre ∼is empty()

end

The other operators on class expressions (extension and renaming) should really
have been defined on this general form. This has, however, been avoided to obtain
simpler explanations.
Another typical use of hiding is the hiding of auxiliary functions by means of

which more central functions are defined.
Note that hiding in RSL only restricts visibility. The names hidden are not

available outside the class expression but its properties are unchanged.

CHAPTER 30

Parameterized Schemes

The modules in chapter 29 specify lists with element type Int. A more general
solution would be to turn the element type into a parameter, thereby making it
possible to specify lists with arbitrary element types.
RSL allows for such parameterization by allowing schemes to be parameterized

with objects.

30.1 Simple Parameterization and Instantiation

A parameterized version of lists is the following.

scheme
PARAM LIST(E : class type Elem end) =

class
variable

list : E.Elem∗

value
empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : E.Elem → write list Unit,
head : Unit

∼

→ read list E.Elem,
tail : Unit

∼

→ write list Unit
axiom forall e : E.Elem •

empty() ≡ list := 〈〉,
is empty() ≡ list = 〈〉,
add(e) ≡ list := 〈e〉 ̂ list,
head() ≡ hd list
pre ∼is empty(),
tail() ≡ list := tl list
pre ∼is empty()

end

217

218 Parameterized Schemes

The PARAM LIST scheme is parameterized over the list element type Elem. More
precisely, the scheme may be instantiated with any object, that at least defines a
type named Elem. (See section 30.5 for details of the necessary relation between
formal and actual scheme parameters.) When instantiated with such an object,
the result will be a class expression referring to that object.
A definition of a parameterized scheme can have the form:

id(id1 : class expr1, ..., idn : class exprn) = class expr

for n ≥ 1. Such a scheme has n parameters. If oid1 ... oidn are identifiers represent-
ing objects, then the scheme may be instantiated with these objects in a scheme
instantiation as follows:

id(oid1, ..., oidn)

Note, that one must ensure that each oidi satisfies the parameter requiremen-
t class expri . What that means in general will be explained later. In case of
PARAM LIST , this scheme may be instantiated with an object that at least pro-
vides a type named Elem.
Let us instantiate the scheme with an object. Consider for example the following

object providing a type Elem representing the integers.

object INTEGER : class type Elem = Int end

The PARAM LIST scheme can now be instantiated with INTEGER as follows.

object INTEGER LIST : PARAM LIST(INTEGER)

That is, the INTEGER LIST object is defined to represent some arbitrary model
within the class represented by the class expression PARAM LIST (INTEGER).
This class expression can be expanded into a basic class expression by replacing all
occurrences of the formal parameter name E within the class expression defining
PARAM LIST with INTEGER. The whole object definition can therefore be
expanded into the following.

object
INTEGER LIST :

class
variable

list : INTEGER.Elem∗

value
empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : INTEGER.Elem → write list Unit,
head : Unit

∼

→ read list INTEGER.Elem,
tail : Unit

∼

→ write list Unit
axiom forall e : INTEGER.Elem •

empty() ≡ list := 〈〉,
is empty() ≡ list = 〈〉,

Naming of Parameter Requirements 219

add(e) ≡ list := 〈e〉 ̂ list,
head() ≡ hd list
pre ∼is empty(),
tail() ≡ list := tl list
pre ∼is empty()

end

The INTEGER LIST object can now be used to maintain a list of integers. Using
the following expression, one can, for example, initialise the list to contain the
single integer 1:

INTEGER LIST.empty() ; INTEGER LIST.add(1)

The instantiation of the PARAM LIST scheme with the INTEGER object can be
done safely since the scheme requires an object defining a type Elem and since the
object actually provides such a type. Section 30.5 will explain in more detail when
instantiations of parameterized schemes are safe.

We have seen how a scheme can be instantiated with objects represented by
identifiers. There are, however, other ways of representing objects as we shall see
later. Therefore we introduce the category object expr of object expressions. The
generalized syntax for instantiation of parameterised schemes is therefore:

id(object expr1, ..., object exprn) (for n ≥ 1)

30.2 Naming of Parameter Requirements

The parameter requirement of the PARAM LIST scheme is the class expression:

class type Elem end

Typically one defines such requirements as schemes and one then writes scheme
names as parameter requirements. We can define a scheme in this style as follows.

scheme ELEMENT = class type Elem end

We can now define the parameterized scheme as follows.

scheme PARAM LIST(E : ELEMENT) = class ... end

This style is somewhat more pleasant than writing a basic class expression (includ-
ing keywords class and end) at the place where ELEMENT occurs.

30.3 Object Fittings

There are situations where the object with which we want to instantiate a param-
eterized scheme provides names different to the ones required by the parameter
requirement. In this case the object must be subjected to a fitting at instantiation
time.

220 Parameterized Schemes

Suppose for example that we wish to define a list of database commands. We
first define a database command object that provides the type of commands. The
database is assumed to associate natural numbers with texts.

object COMMAND :
class

type
Key = Nat,
Data = Text,
Command ==

mk empty | mk insert(Key, Data) | mk remove(Key) | mk lookup(Key)
end

Before instantiating the PARAM LIST scheme with this object, we notice that
the type name Command is different from the required type name Elem. We
further notice that the object defines more names than required. That is, besides
Command , the following names are defined: Key , Data, mk empty , mk insert ,
mk remove and mk lookup.
The extra names are not a problem since the requirement just defines a minimal

name space, allowing for extra names to be defined in the actual parameter object.
The difference between the actual name (Command) and the required name

(Elem) is a problem. To resolve it, we must fit the COMMAND object at in-
stantiation time to provide the name Elem instead of Command . This is done
below.

object COMMAND LIST : PARAM LIST(COMMAND{Command for Elem})

The interesting part is the object expression:

COMMAND{Command for Elem}

This object expression represents an object which is equivalent to the COMMAND
object, except that it provides the name Elem instead of the name Command : it
‘fits’ the object expression COMMAND to a context expecting the name Elem, not
the name Command .
The general form of a fitting object expression is:

object expr{renaming}

where the renaming has the form:

idactual1 for idformal1, ..., idactualn for idformaln

for n ≥ 1. The object represented by object expr is fitted such that each idactuali
is renamed into idformali .
In the case where an overloaded identifier is to be fitted, a type expression must

be given in order to disambiguate it as follows:

object expr{..., idactual : type expr for idformal, ...}

Since the fitted object expression itself represents an object, one can access its
entities using the ‘dot’-notation. One can for example access the type Elem as

Object Fittings 221

follows:

COMMAND{Command for Elem}.Elem

Due to this property, we can expand the scheme instantiation into a basic class
expression by replacing all occurrences of the formal parameter name E with the
object expression COMMAND{Command for Elem}. The technique of replacing
formal parameter names by actual parameters can be performed for all kinds of
instantiations of parameterized schemes with objects. Section 30.1 illustrated the
technique in the simplest case.
This expansion gives the following object (focusing on the variable definition).

object
COMMAND LIST :

class
variable list : COMMAND{Command for Elem}.Elem∗

...
end

The next observation is that the following equivalence holds:

COMMAND{Command for Elem}.Elem ≡ COMMAND.Command

That is, looking up the name Command in the object COMMAND is equivalent
to looking up the name Elem in the fitted object. In general:

id{...,ida for idf ,...}.idf ≡ id.ida

Utilizing this equivalence, we can finally expand our object definition into the
following, fully expanded definition.

object
COMMAND LIST :

class
variable

list : COMMAND.Command∗

value
empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : COMMAND.Command → write list Unit,
head : Unit

∼

→ read list COMMAND.Command,
tail : Unit

∼

→ write list Unit
axiom forall e : COMMAND.Command •

empty() ≡ list := 〈〉,
is empty() ≡ list = 〈〉,
add(e) ≡ list := 〈e〉 ̂ list,
head() ≡ hd list
pre ∼is empty(),
tail() ≡ list := tl list

222 Parameterized Schemes

pre ∼is empty()
end

The COMMAND LIST object can now be used to maintain a list of commands.
One can for example modify the list by the following expression:

COMMAND LIST.empty();
COMMAND LIST.add(COMMAND.mk empty);
COMMAND LIST.add(COMMAND.mk insert(1,′′one′′))

30.4 More Complex Parameter Requirements

The parameter requirement ELEMENT of the PARAM LIST scheme is simple
in the sense that it only requires a single type. A parameter requirement may be
more complex; it may, for instance, require some functions to be defined over that
type. In fact, since the requirement is a class expression, any kind of entity can be
required and axioms can be given that express required properties.
As an example, suppose we want to extend PARAM LIST with an operation,

is ordered , for testing whether the current contents of the list variable is an ordered
list. That is, whether any list element is ‘less than or equal to’ the successor element
in the list.
In order to specify is ordered , the ordering on list elements must be known. That

is, it must be known what ‘less than or equal to’ means. The following entities are
therefore required as parameters:

type Elem
value leq : Elem × Elem → Bool

The function leq is the element ordering function. We would like to require that
for any e1, e2 : Elem, leq(e1, e2) is true if and only if e1 ‘is less than or equal to’
e2. This requirement must in RSL be stated more formally, and this is what we do
below.
First, it turns out that in order to specify the properties of leq , we must know

what equivalence means on Elem. That is, we must know when two elements
are equivalent. The following scheme extends the ELEMENT scheme with an
equivalence function, eq , and defines its required properties.

scheme
EQUIVALENCE =

extend ELEMENT with
class

value
eq : Elem × Elem → Bool

axiom forall e,e1,e2,e3 : Elem •

[eq reflexive]
eq(e,e),

[eq transitive]

More Complex Parameter Requirements 223

eq(e1,e2) ∧ eq(e2,e3) ⇒ eq(e1,e3),
[eq symmetric]

eq(e1,e2) ⇒ eq(e2,e1)
end

The three axioms define three fundamental properties of equivalence. Try to sub-
stitute = for eq and see that = satisfies the axioms. Equality is thus an example
of an equivalence in the above sense.

The next step is to extend EQUIVALENCE with an ordering function, leq , and
define its required properties.

scheme
PARTIAL ORDER =

extend EQUIVALENCE with
class

value
leq : Elem × Elem → Bool

axiom forall e1,e2,e3 : Elem •

[leq reflexive]
eq(e1,e2) ⇒ leq(e1,e2),

[leq transitive]
leq(e1,e2) ∧ leq(e2,e3) ⇒ leq(e1,e3),

[leq antisymmetric]
leq(e1,e2) ∧ leq(e2,e1) ⇒ eq(e1,e2)

end

The axioms define three fundamental properties of a ‘partial ordering’; partial in
the sense that two elements do not need to be ordered with respect to each other.
Try to substitute equality on texts for eq and ‘is-a-prefix-of’ on text pairs for leq ,
and see that ‘is-a-prefix-of’ then satisfies the axioms, therefore being a partial
ordering.

The PARTIAL ORDER scheme constitutes the complete parameter requiremen-
t. The parameterized list scheme can now be written as follows.

scheme
PARAM ORDERED LIST(T : PARTIAL ORDER) =

extend PARAM LIST(T) with
class

value
is ordered : Unit → read list Bool

axiom
is ordered() ≡

(∀ idx1,idx2 : Nat •

{idx1,idx2} ⊆ inds list ∧ idx1 < idx2 ⇒
T.leq(list(idx1),list(idx2)))

end

224 Parameterized Schemes

PARAM ORDERED LIST (T : PARTIAL ORDER) is, interestingly enough, de-
fined as an extension of PARAM LIST (T). The above scheme definition is e-
quivalent to the following, where the instantiation PARAM LIST (T) has been
expanded, followed by an expansion of the extend.

scheme
PARAM ORDERED LIST(T : PARTIAL ORDER) =

class
variable

list : T.Elem∗

value
empty : Unit → write list Unit,
is empty : Unit → read list Bool,
add : T.Elem → write list Unit,
head : Unit

∼

→ read list T.Elem,
tail : Unit

∼

→ write list Unit
axiom forall e : T.Elem •

empty() ≡ list := 〈〉,
is empty() ≡ list = 〈〉,
add(e) ≡ list := 〈e〉 ̂ list,
head() ≡ hd list
pre ∼is empty(),
tail() ≡ list := tl list
pre ∼is empty()

value
is ordered : Unit → read list Bool

axiom
is ordered() ≡

(∀ idx1,idx2 : Nat •

{idx1,idx2} ⊆ inds list ∧ idx1 < idx2 ⇒
T.leq(list(idx1),list(idx2)))

end

A list of texts can be defined in the following way. First, a text object is defined
that provides all the entities Elem, eq and leq .

object
TEXT :

class
type

Elem = Text
value

eq : Text × Text → Bool,
leq : Text × Text → Bool

axiom forall t1,t2 : Text •

eq(t1,t2) ≡ t1 = t2,

Actual versus Formal Parameters 225

leq(t1,t2) ≡ (∃ t : Text • t1 ̂ t = t2)
end

The eq function is defined to be just text equality. This function obviously satisfies
the required eq axioms in EQUIVALENCE .
The leq function is defined such that leq(t1, t2) is true if and only if t1 is a prefix

of t2. This function satisfies all the required leq axioms in PARTIAL ORDER.
An object defining a list of texts can be defined as follows.

object TEXT LIST : PARAM ORDERED LIST(TEXT)

The TEXT LIST object can now be used to maintain a list of texts. As an
example, consider the following expression that inserts four texts into an empty
list and then evaluates to true since the resulting list is ordered:

TEXT LIST.empty();
TEXT LIST.add(′′formalism′′);
TEXT LIST.add(′′formal′′);
TEXT LIST.add(′′form′′);
TEXT LIST.add(′′for′′);
TEXT LIST.is ordered()

30.5 Actual versus Formal Parameters

There is a relation that must hold between an actual and a formal parameter for a
scheme application to be well formed. Note that a formal scheme parameter takes
the form identifier : class expression and an actual parameter is an object, which
has an associated class expression. The relation is that the class expression of
the actual parameter must ‘statically implement’ the class expression of the formal
parameter. (The term statically implement is chosen because static implementation
is the statically decidable part of the RSL implementation relation.)
To explain the static implementation relation we first generalize the notion of

‘signature’ to the signature of a class. We have already used the term for the
association of a name and its type in a value definition. We can similarly have
a signature for a variable or channel — they have names and types. For type
definitions we can say the signature of a sort definition (which is just a new type
name) is merely the name of the new type. For a type abbreviation the signature
associates the name of the new type with the type it is an abbreviation for. Since
variant type definitions can be expanded to sort definitions plus some value and
axiom declarations, and union and short record definitions can be expanded to
variant definitions, we can give signatures to all type definitions. Axiom definitions
have no signatures.
For schemes and objects we create a signature by associating the name of the

scheme or object with, instead of a type, the class represented by its class expres-
sion, together with the classes of parameters for parameterized schemes, and the
type of the index for object arrays (see chapter 32).

226 Parameterized Schemes

Having defined a notion of signature for all kinds of definition we can collect
these separate signatures (tagged with the kind of definition they come from) and
generate a signature for any basic class expression. If we also include in the notion
of signature a list of those entities that are hidden we can thus generate a signature
for any class expression.
There is also a notion of ‘maximal class’ that corresponds directly to the notion

of ‘maximal type’. One can obtain the maximal class of a class expression basically
by ignoring all axioms and taking the maximal versions of all types and classes
mentioned, just as one can obtain the maximal type of a type expression by ignoring
the predicates that define subtypes and taking the maximal versions of any types
mentioned. So we have a notion of ‘maximal signature’ involving only maximal
classes and types.
The static implementation relation is now simple to formulate: class expr2 stat-

ically implements class expr1 if the maximal signature of class expr1 is included in
the maximal signature of class expr2. That is class expr2 must provide (at least)
all the schemes, objects, types, variables, channels and values that class expr1 does,
with the same maximal classes or types.
If a fitting is applied to an actual scheme parameter, the condition is that the class

expression of the object to which the fitting is applied must statically implement
the class expression of the formal parameter when the fitting is applied to it as a
renaming. For example, we can use:

COMMAND{Command for Elem}

as an actual parameter when the formal was E : ELEMENT if the class expression
of the object COMMAND statically implements:

use Command for Elem in ELEMENT

This last class expression expands to:

class type Command end

and this is indeed statically implemented by the class expression defining COM -
MAND .
If there are several formal parameters then there must be the same number of

actuals and formals, the first actual statically implementing the first formal and so
on.

30.6 The Implementation Relation

We have described in this chapter a notion of ‘static implementation’. There is
a corresponding notion of (full) implementation or ‘refinement’ for which static
implementation can be seen as just a part. In fact, class expr 2 implements or
refines class expr 1 if both the following hold:

• class expr 2 statically implements class expr 1.
• The theory of class expr 1 is provable in class expr 2.

The Implementation Relation 227

The ‘theory’ of a class expression is the collection of axioms that can be deduced
from its definitions (including its axioms). To take a simple example, consider the
following schemes:

S = class type T value x, y : T axiom x 6= y end
S1 = class type T = Int value x : T = 1, y : Int = 2 end
S2 = class value x : Int = 1, y : Int = 2 end
S3 = class type T = Int value x : T = 1, y : T = 1 end
S4 = class type T, U value x : T, y : U end
S5 = class type T = Int, U = Int value x : T = 1, y : U = 2 end

S1 implements S ; its signature includes that of S and it satisfies the theory of S
that x is different from y .
S2 does not statically implement S (it defines no type T) and therefore S2 cannot

implement S . S2 is implemented by S1.
S3 statically implements S but does not implement it since it does not satisfy

the theory of S that x is different from y .
S4 does not statically implement S as its signature is different (x and y have

different types) and therefore S4 cannot implement S .
S5 implements S ; its signature includes that of S and it satisfies the theory of S

that x is different from y . S5 also implements S1, S2 and S4.
It is obviously a good idea to check that an actual parameter fully implements

the formal, just as it is a good idea to check that a negative integer is not used as an
actual parameter to a function defined only for natural numbers, but in neither case
is the specification technically ill-formed. Well-formedness is defined as abiding by
the static conditions that can be checked by a type checker.
To characterize implementation in a little more detail we have to describe what

the ‘theory’ of the various kinds of class expression and their various constituent
declarations are. Loosely, the ‘theory’ of a class expression is all the information,
expressed as axioms, we ignore in calculating its maximal signature.
Apart from hiding (which does not change the theory), all class expressions can

be expanded into basic class expressions — essentially collections of declarations.
So most of the definition reduces to the properties of declarations. We outline what
is involved for each kind of declaration.

30.6.1 Refinement for schemes and objects

For scheme and object declarations the theory is the defining class expressions (plus
any parameters for schemes, which are also expressed in terms of class expressions,
and array parameters for object arrays). So checking that a new scheme or object
definition implements an old one is a question of checking the relation between
their class expressions. Similarly for scheme parameters, except that the relation
for these is co-gradient — the class expression of the old parameter must implement
the class expression of the new. For object arrays the set of new indices must include
the old — we can make the array larger.

228 Parameterized Schemes

30.6.2 Refinement for variables and channels

The only theory for variables and channels is subtype information (if any) in their
types and (for variables) any initialisation. Hence the checks are that the type of
a new variable or channel must be a subtype of the type of the old variable or
channel, and if an old variable had an initialisation then the new one must have
an initialisation to an equivalent value.
It may seem strange to allow the reduction of the type of a variable or channel.

What happens if we reduce its type while assigning or communicating values now
outside that type? The answer is that we get a contradiction, which produces
the empty set of models. This is a refinement, according to our definition, but a
singularly useless one. So the freedom to reduce the types of variables or channels
is rarely used.

30.6.3 Refinement for types

Since variant type definitions expand into sort definitions (just new type names),
plus some value and axiom declarations, and union and short record definitions
expand into variant definitions, there are really only two kinds of type declaration
— sort and abbreviation definitions. For the first there is no theory — it just
introduces a new type name. For the second the theory is that the new type name
is equivalent to the type expression it is an abbreviation for. Hence the new type
declaration must be an abbreviation definition for the same type.
Note that this refinement rule for types is more restrictive than that found in,

for example, VDM. In RSL if we write:

type Set = Elem-set

we cannot later refine it to:

type Set = Elem∗

even though there is a well known retrieve function from lists to sets. The reason
for the restriction is that we want to be able to substitute refinements for the
originals — this is one of the main purposes of doing refinement, and we want to
be able to refine parts of a system separately. Clearly we cannot just replace the
first of these with the second — almost any expression involving values of the type
Set will no longer even type check!
So instead of the first we either have to use an abstract definition for Set :

type Set == empty | add(Elem, Set)

or else we can use a ‘representation function’:

type Set
value rep : Set → Elem-set

rep is initially only given a signature (and is hidden). To get an implementation
where sets are lists we could implement rep as elems. The techniques for data

The Implementation Relation 229

refinement are then very similar to those for VDM.

30.6.4 Refinement for values

A value declaration can always be expanded into a value declaration involving only
maximal types and one or more axioms. The theory is then precisely these axioms.
For example, the declarations:

value
x : Int = 2,
y : Nat • y < 3

are equivalent to:

value
x : Int,
y : Int

axiom
x = 2,
y ≥ 0 ∧ y < 3

For functions there is a little more to do: total functions can only be refined by
total functions and if there are accesses in the old then the new can only have a
subset of those accesses. (Otherwise, for example, the property that a function
cannot affect a variable could be lost.)
Note that as a result of the way that function definitions are expanded into

axioms we obtain the refinement rules for functions that we might expect: domains
may be increased, pre-conditions weakened, post-conditions strengthened.

30.6.5 Refinement for axioms

The axioms are precisely the theory. So we have to show that the old axioms hold
in the new class expression.
Implementation is of most importance in development of specifications, and is

described in full in [12]. Its formal definition in terms of proof rules is in [37].

CHAPTER 31

Module Nesting

RSL allows for nesting of modules. That is, schemes and objects can be defined
within class expressions. As an example, suppose we want to define a single object,
say INTEGER LIST , providing a variable capable of containing integer lists. This
can be done as follows by instantiating the parameterized PARAM LIST scheme
shown earlier.

object
INTEGER LIST :

class
object

INTEGER : class type Elem = Int end,
LIST : PARAM LIST(INTEGER)

...
end

The INTEGER object (which is necessary since schemes can be instantiated with
objects only) is defined nested in the class expression defining INTEGER LIST ,
as is the LIST object itself.

Within the class expression defining INTEGER LIST , at the position of the
three dots, one can refer to the INTEGER and LIST objects and their contents.
At the position of the three dots, the expression LIST .add therefore represents the
add operation on lists.

Outside the class expression, one has to prefix all references by INTEGER LIST .
The expression INTEGER LIST .LIST .add thus represents the add operation on
lists.
Note that with the possibility of nesting objects one has a choice between exten-

sion (with the extend operator) and nesting. That is, suppose we want to write a
class expression that, among other things, provides all the entities from the scheme
LIST S . This can either be done by extending LIST S :

extend LIST S with class ... end

230

Module Nesting 231

or by defining a nested instance of LIST S :

class object L : LIST S ... end

The local instance implies that the entities of LIST S are all prefixed with the
object name L. This may be preferred when LIST S is clearly a subconcept of the
new class expression.
Alternatively, one may want to avoid the prefixing by using the extend operator

instead. This may be the case when LIST S is not a clear subconcept of the class
expression, but rather a ‘step on the way’.
Schemes can also be defined in a nested manner, although this does not occur

very often in practice.

CHAPTER 32

Object Arrays

We have seen how one can define a model as a member of a class represented by
a class expression. The model may be identified by an object identifier. If several
models are wanted, each being a member of the same class, one may define just as
many object identifiers.
In some situations it is useful to be allowed to define an arbitrary number of

models of the same class. The concept of an object array gives exactly this possi-
bility, each model being identified by an object identifier common to them all and
some additional distinct index value.
In order to motivate the concept of an object array we study a small example,

first expressed without object arrays.

32.1 Formulation without Object Arrays

Suppose we want to define a scheme that defines two lists plus a function for moving
elements between the two lists. We can create the two lists by defining two objects
which are models of the LIST S scheme.

scheme
TWO LISTS =

class
object

L1, L2 : LIST S
type

List No = {| n : Nat • 1 ≤ n ∧ n ≤ 2 |}
value

move : List No × List No
∼

→ write L1.list, L2.list Unit
axiom forall m,n : List No •

move(m,n) ≡
case (m,n) of

(1,2) →

232

Formulation with Object Arrays 233

if ∼ L1.is empty() then
let head 1 = L1.head() in

L1.tail() ; L2.add(head 1)
end

end,
(2,1) →

if ∼ L2.is empty() then
let head 2 = L2.head() in

L2.tail() ; L1.add(head 2)
end

end
end

pre m 6= n
end

The scheme defines two local instances, L1 and L2, of the LIST S scheme. The
type List No contains the values 1 and 2 corresponding to the two objects.

The operation move removes the head of one list and inserts it as the head of
the other list. The source and target of the move are parameters to the operation.

The observations to make here are as follows:

1. The axiom defining move includes a tedious case expression where the case
branches differ only with respect to some indexing.

2. If there had been more than two instances, it would have been even more
tedious to write down all the object definitions and case branches.

3. There is no possibility of letting the number of instances depend on some
parameter.

32.2 Formulation with Object Arrays

With object arrays, the above three problems can be solved. Assume the type
definition from the example above:

type List No = {| n : Nat • 1 ≤ n ∧ n ≤ 2 |}

An object array corresponding to the above situation may then be defined as fol-
lows.

object L[i : List No] : LIST S

This definition defines two models of the LIST S scheme, identified by L[1] and
L[2], respectively. The two models deal with two different variables L[1].list and
L[2].list . The variable L[i].list , for i : List No, is accessed through the operations
L[i].op where op is any operation defined in LIST S .

The definition of an object array has the general form:

id[typing1,...,typingn] : class expr

234 Object Arrays

for n ≥ 1. Note here that a list of typings can be expanded into a single typing of
the form:

binding : type expr

Any object definition can therefore be expanded into a definition of the form:

id[binding : type expr] : class expr

By this definition the identifier id is bound to an array of models. The index type
of the array is the type represented by type expr . Each index value belonging to
the index type is mapped to a model. The model is an arbitrary one belonging to
the class represented by the class expression — evaluated in scope of the definitions
obtained by matching the index value against the binding . That is, the scope of
the identifiers defined by the binding is class expr .
The application of an object array to an index value within the index type has

the form:

id[value expr]

This is an object expression that represents a model of which the entities can be
obtained by the dot-notation. In the syntax such an object expression is called
an element object expression, indicating that it represents a particular element
(model) of an object array. Note that two applications of an object array to the
same index give the same model. That is, the choice of model for each index is
made only once.
As a special case, an object application of the form:

id[value expr1,...,value exprn]

for n ≥ 2 is short for:

id[(value expr1,...,value exprn)]

The whole specification can now be written as follows, using an object array.

scheme
TWO LISTS =

class
object

L[i : List No] : LIST S
type

List No = {| n : Nat • 1 ≤ n ∧ n ≤ 2 |}
value

move : List No × List No
∼

→ write {L[i].list | i : List No} Unit
axiom forall m,n : List No •

move(m,n) ≡
if ∼ L[m].is empty() then

let head m = L[m].head() in
L[m].tail() ; L[n].add(head m)

end

Making the Size a Parameter 235

end
pre m 6= n

end

The axiom defining the move operation is straightforward. The type of the move
operation includes the write access:

{L[i].list | i : List No}

That is, the operation has write access to all variables L[i].list where i is a member
of the type List No. Stated another way, the operation has write access to the
variables L[1].list and L[2].list .

32.3 Making the Size a Parameter

The size of an object array may depend on a parameter. As an example, we can
parameterize our scheme with the size of the object array. For that purpose, a
parameter requirement must be defined, for example as follows.

scheme SIZE = class value size : Nat axiom size ≥ 2 end

The scheme may now be parameterized with the size.

scheme
MANY LISTS(S : SIZE) =

class
object

L[i : List No] : LIST S
type

List No = {| n : Nat • 1 ≤ n ∧ n ≤ S.size |}
value

move : List No × List No
∼

→ write {L[i].list | i : List No} Unit
axiom forall m,n : List No •

move(m,n) ≡
if ∼ L[m].is empty() then

let head m = L[m].head() in
L[m].tail() ; L[n].add(head m)

end
end

pre m 6= n
end

Note that the only change made in the defining class expression is in the definition
of the type List No where the upper limit is represented by S .size.

It is worth considering for this example what the result would be if we had
not included the condition in the parameter SIZE that size is at least two, thus
allowing it to be one or zero.

236 Object Arrays

If size is one then MANY LISTS is consistent but of little use. The type List no
contains only one value, there is only one object in the array L and the axiom for
move can never be applied since the pre-condition can never be satisfied.
If size is zero then the type List no is empty, as is the array L, and the axiom

for move can never be applied since no arguments can be found for it.
So in this case weakening the parameter requirement did no harm (provided we

are happy that the specifications in the cases of ‘one list’ and of ‘no lists’ satisfy our
interpretation of the requirements). In general, however, one needs to be careful
about allowing such degenerate cases.

32.4 Object Arrays as Scheme Parameters

The parameter of a scheme may be an object array. Below we go through an
example illustrating this kind of scheme parameterization. Object arrays as scheme
parameters typically occur in specification of concurrent systems and therefore our
example is of this kind.
Our aim is to specify a general broadcasting process. A broadcasting process

is a process that inputs values from a single input channel, and then outputs the
values to several output channels, each ending in some user process. The system
can be pictured as follows, assuming the number of users to be three:

❩
❩
❩
❩❩⑦

✚
✚
✚
✚✚❃

✲✲ ✲

✲

✲

user 3

user 2

user 1

broadcast

The first thing we specify is the broadcast process. We shall eventually also specify
the rest of the system in order to show how things are put together.
The broadcast process, or rather the scheme defining it, is chosen to be param-

eterized with the kind of data transmitted on the channels. We therefore need a
parameter requirement of the following form.

scheme DATA = class type Data end

In addition, the broadcast process is chosen to be parameterized with the channel
it inputs from and the channels it outputs to. We therefore need a parameter
requirement of the form below.

scheme CHANNEL(D : DATA) = class channel c : D.Data end

This requirement is parameterized with respect to the type of the channel. A
specific requirement is obtained by instantiating the parameterized one with an
actual channel type as we shall see below.
The number of output channels associated with the broadcast process is also

Object Arrays as Scheme Parameters 237

made a parameter. This is done by parameterizing with an array of output channels
where the array index type is an additional parameter satisfying the following
requirement.

scheme INDEX = class type Index end

The specification of the broadcast process can now be written as follows.

scheme
BROADCAST(

I : INDEX,
D : DATA,
IN : CHANNEL(D),
OUT[i : I.Index] : CHANNEL(D)) =

class
value

broadcast : Unit → in IN.c out {OUT[i].c | i : I.Index} Unit
axiom

broadcast() ≡
while true do

let data = IN.c? in ‖{OUT[i].c!data | i : I.Index} end
end

end

The parameters of the BROADCAST scheme can be described as follows.
The type I .Index contains all the indices of the output-channel array OUT .

The type D .Data is the type of the data transmitted on all channels. The channel
IN.c is the channel that the broadcast process inputs from. Each of the channels
OUT [i].c, where i : I .Index , is an output channel of the broadcast process.
Note the dependence between the parameters: I and D are referred to in the

definition of IN and OUT . This dependence expresses a required sharing between
parameters: the I referred to in the definition of OUT is exactly the I given as the
first scheme parameter. Likewise for D . This ensures, for example, that the types
of input and output data are the same, as there is only one object D and hence
only one type D .Data.
The general form of a parameterized scheme definition can now be described to

be:

scheme id(object definition1,...,object definitionn) = class expr

for n ≥ 1. Recall that an object definition either has the form:

id : class expr

or the form:

id[typing1,...,typingn] : class expr

for n ≥ 1. Let us now examine the definition of the broadcast process, starting
with its type. The process inputs from the IN.c channel and outputs to any of the

238 Object Arrays

OUT [i].c channels where i : I .Index . The out access is described by the access
description:

out {OUT[i].c | i : I.Index}

The axiom expresses that the process repeats the following forever: input a value
from the IN .c channel and then output the value on each of the OUT [i].c channels
where i : I .Index .
The output is expressed by the comprehended expression:

‖{OUT[i].c!data | i : I.Index}

This expression represents the parallel composition of all the processes:

OUT[i].c!data

where i : I .Index . Suppose for example that I .Index contains the values i1, i2 and
i3, then the above expression is equivalent to the following:

OUT[i1].c!data ‖ OUT[i2].c!data ‖ OUT[i3].c!data

Since the outputs are put in parallel, they will all be carried out at some point in
time, and the result is broadcasting.
The expression value expr2 is a restriction of type Bool. As an example we

could have made the broadcasting more selective by restricting the receiving user
processes to those satisfying some predicate p : I .Index → Bool:

‖{OUT[i].c!data | i : I.Index • p(i)}

We can now illustrate how the broadcasting process can be put in parallel with a
number of user processes. First, we need to decide on the number of users, and
thereby the number of output channels to these. That is, the index type must be
determined. Let it be the numbers from 1 to 3.

object ACTUAL INDEX :
class type Index = {| i : Nat • 1 ≤ i ∧ i ≤ 3 |} end

The data transmitted on channels are chosen to be of type Text.

object ACTUAL DATA : class type Data = Text end

The input channel to the broadcast operation is defined as follows.

object ACTUAL IN : CHANNEL(ACTUAL DATA)

Each user process inputs from a channel and outputs to another.

scheme USER(D : DATA, IN : CHANNEL(D), OUT : CHANNEL(D)) =
class value user : Unit → in IN.c out OUT.c Unit end

The collection of channels output to by the user processes is represented as an array
of channels.

object
ACTUAL OUT[i : ACTUAL INDEX.Index] : CHANNEL(ACTUAL DATA)

The final system can be specified as follows.

Object Arrays as Scheme Parameters 239

object SYSTEM :
class

value
system : Unit → in ACTUAL IN.c

out {ACTUAL OUT[i].c | i : ACTUAL INDEX.Index}
Unit

axiom
system() ≡

local
object

ACTUAL MID[i : ACTUAL INDEX.Index] :
CHANNEL(ACTUAL DATA),

ACTUAL BROADCAST :
BROADCAST(ACTUAL INDEX, ACTUAL DATA,

ACTUAL IN, ACTUAL MID),
ACTUAL USER[i : ACTUAL INDEX.Index] :

USER(ACTUAL DATA, ACTUAL MID[i], ACTUAL OUT[i])
in

ACTUAL BROADCAST.broadcast()
‖
‖{ACTUAL USER[i].user() | i : ACTUAL INDEX.Index}

end
end

The system process is defined in terms of a local expression where all the internal
channels, represented by the channel array ACTUAL MID , are local, and thereby
hidden. The internal channels are those connecting the broadcast process with the
user processes.

The internals of the system process are treated as a ‘black box’ as indicated by
the following figure:

✲

✲

✲

✲ ✲✚
✚
✚✚❃

❩
❩
❩❩⑦ ACTUAL OUT[3].c

ACTUAL OUT[2].c

ACTUAL OUT[1].c

ACTUAL IN.c

system

broadcast

user 1

user 2

user 3

The hiding of internal channels is also reflected in the type of the system process
which does not mention the hidden channels.

The objects ACTUAL BROADCAST and ACTUAL USER must be defined also
in the local expression since they interact through the channels in the locally defined

240 Object Arrays

ACTUAL MID object.
Note the definition of the object ACTUAL USER:

ACTUAL USER[i : ACTUAL INDEX.Index] :
USER(ACTUAL DATA, ACTUAL MID[i], ACTUAL OUT[i])

The index identifier i bound to the left of ‘:’ is referred to in the class expression
occurring to the right of ‘:’. Each ACTUAL USER[i] is defined to be an instance
of:

USER(ACTUAL DATA,ACTUAL MID[i],ACTUAL OUT[i])

Note finally that the instantiations of the schemes BROADCAST and USER can
be expanded into basic class expressions by replacing formal parameter names with
actual parameters, just as we saw in section 30.1.

32.5 Object Array Fittings

There may be situations where the object array with which we want to instantiate
a parameterized scheme provides different names than the ones required by the
parameter requirement. In this case the object array must be subjected to a fitting
at instantiation time.
As an example, consider the broadcast example from the previous section, and

in particular the definition of the system process. The parameter requirement of
BROADCAST , formulated in terms of CHANNEL, requires each output channel to
be named c. Suppose another name is used instead as actual parameter. Assume,
therefore, the following scheme.

scheme OTHER CHANNEL(D : DATA) =
class channel other c : D.Data end

The definitions local to the system process may now be written as follows.

object
ACTUAL MID[i : ACTUAL INDEX.Index] :

OTHER CHANNEL(ACTUAL DATA),
ACTUAL BROADCAST :

BROADCAST(ACTUAL INDEX, ACTUAL DATA,
ACTUAL IN, ACTUAL MID{other c for c}),

ACTUAL USER[i : ACTUAL INDEX.Index] :
USER(ACTUAL DATA, ACTUAL MID[i]{other c for c},

ACTUAL OUT[i])

The channels connecting the broadcast process and the user processes are now
named other c instead of c. The matching between actual names and required
names are performed by the two object expressions:

ACTUAL MID{other c for c}

as parameter to BROADCAST and:

Object Array Fittings 241

ACTUAL MID[i]{other c for c}

as parameter to USER.
The first one fits each model in the object array. The second one fits model i in

the object array.
In order to illustrate what the exact meanings of the above definitions are, we

can expand the scheme instantiations into basic class expressions by simply replac-
ing formal parameter names with actual parameters. Note that replacement of
formal parameter names by actual parameters is always possible for instantiations
of parameterized schemes; see also sections 30.1 and 30.3.
In connection with expanding the instantiation of BROADCAST , we must do

the following replacements:

I → ACTUAL INDEX
D → ACTUAL DATA
IN → ACTUAL IN
OUT → ACTUAL MID{other c for c}

In connection with expanding the instantiation of USER, we must do the following
replacements:

D → ACTUAL DATA
IN → ACTUAL MID[i]{other c for c}
OUT → ACTUAL OUT[i]

The expanded object definitions now become as follows.

object
ACTUAL MID[i : ACTUAL INDEX.Index] :

class
channel other c : ACTUAL DATA.Data

end,
ACTUAL BROADCAST :

class
value

broadcast : Unit →
in ACTUAL IN.c
out {ACTUAL MID{other c for c}[i].c |

i : ACTUAL INDEX.Index} Unit
axiom

broadcast() ≡
while true do

let data = ACTUAL IN.c? in
‖{ACTUAL MID{other c for c}[i].c!data |

i : ACTUAL INDEX.Index}
end

end
end,

242 Object Arrays

ACTUAL USER[i : ACTUAL INDEX.Index] :
class

value
user : Unit →

in ACTUAL MID[i]{other c for c}.c
out ACTUAL OUT[i].c Unit

end

The class expression defining ACTUAL BROADCAST contains a name of the
form:

ACTUAL MID{other c for c}[i].c

This is a perfectly valid name in RSL. It represents the channel obtained by first
fitting the ACTUAL MID object array, then indexing with the index value i , and
then looking up c in the resulting model.
The class expression defining ACTUAL USER contains a name of the form:

ACTUAL MID[i]{other c for c}.c

Assuming the same i , the two names actually represents the same channel. This
follows from the fact that:

ACTUAL MID{other c for c}[i] = ACTUAL MID[i]{other c for c}

That is, one can just swap the indexing and the fitting. Note further that the
following holds:

ACTUAL MID[i]{other c for c}.c ≡ ACTUAL MID[i].other c

Based on these observations we can finally expand the object definitions into the
following.

object
ACTUAL MID[i : ACTUAL INDEX.Index] :

class
channel other c : ACTUAL DATA.Data

end,
ACTUAL BROADCAST :

class
value

broadcast : Unit →
in ACTUAL IN.c
out {ACTUAL MID[i].other c | i : ACTUAL INDEX.Index} Unit

axiom
broadcast() ≡

while true do
let data = ACTUAL IN.c? in

‖{ACTUAL MID[i].other c!data | i : ACTUAL INDEX.Index}
end

Anonymous Object Arrays 243

end
end,

ACTUAL USER[i : ACTUAL INDEX.Index] :
class

value
user : Unit →

in ACTUAL MID[i].other c
out ACTUAL OUT[i].c Unit

end

It should now be clear that the broadcast process communicates with the user
processes over the channels ACTUAL MID [i].other c where i is of type ACTUAL -
INDEX .Index .

32.6 Anonymous Object Arrays

So far it has been described how one can define an object array in an object
definition. One has to give a name to the object.
RSL provides means of writing an object array without giving it a name. This is

appropriate in certain contexts involving scheme instantiation — as is illustrated
below.

The example to be used is that of a cross-bar switch. A cross-bar switch can be
illustrated by the following figure:

✲

✲

✲

✲

✲

✡
✡
✡
✡
✡✡✣

✟✟✟✟✯

❍❍❍❍❥

❏
❏
❏
❏
❏❏❫

❍❍❍❍❥

✟✟✟✟✯

q3

q2

q1

p2

p1

A number of processes, here p1 and p2, are connected with a number of other
processes, here q1, q2 and q3, in the following way. Each p process inputs from
one channel and outputs to all the q processes. That is, each p process is connected
with every q process. The q processes in turn output on some channels.
The channels of the system can thus be divided into three groups, as follows:

1. The input channels going into the p processes.
2. The connection channels connecting p and q processes.
3. The output channels going out from the q processes.

The specification is parameterized with respect to the number of p processes, say
m, and the number of q processes, say n. As we shall see, we need anonymous
object arrays to specify the connection between a single p process and all the q
processes. Note that there are m × n connection channels.

244 Object Arrays

First, we specify a scheme for the p processes. Note that we assume the schemes
INDEX , DATA and CHANNEL from section 32.4.

scheme
P(N : INDEX, D : DATA, IN : CHANNEL(D),

OUT[n : N.Index] : CHANNEL(D)) =
class

value
p : Unit → in IN.c out {OUT[n].c | n : N.Index} Unit

end

A p process inputs from a channel and outputs to as many channels as there are q
processes, as indicated by the number of elements in the type N .Index .
The scheme for q processes becomes very similar.

scheme
Q(M : INDEX, D : DATA, IN[m : M.Index] : CHANNEL(D),

OUT : CHANNEL(D)) =
class

value
q : Unit → in {IN[m].c | m : M.Index} out OUT.c Unit

end

A q process inputs from as many channels as there are p processes, as indicated
by the number of elements in the type M .Index .
Let us now create a specific system with two p processes and with three q pro-

cesses. The actual data transmitted on channels is text.

object ACTUAL DATA : class type Data = Text end

The number of p and q processes are represented by the objects M and N respec-
tively.

object
M : class type Index = {| i : Nat • 1 ≤ i ∧ i ≤ 2 |} end,
N : class type Index = {| i : Nat • 1 ≤ i ∧ i ≤ 3 |} end

The input channels going into the p processes and the output channels going
out from the q processes are represented by the object arrays ACTUAL IN and
ACTUAL OUT respectively.

object
ACTUAL IN[m : M.Index] : CHANNEL(ACTUAL DATA),
ACTUAL OUT[n : N.Index] : CHANNEL(ACTUAL DATA)

The channels connecting the p and q processes are defined as follows.

object
CONNECTION[m : M.Index, n : N.Index] : CHANNEL(ACTUAL DATA)

The channel:

Anonymous Object Arrays 245

CONNECTION[x,y].c

connects the p process identified by x with the q process identified by y .
We can now define the collection of actual p processes as follows.

object
ACTUAL P[m : M.Index] :

P(N, ACTUAL DATA, ACTUAL IN[m],
[|n : N.Index • CONNECTION[m,n]|])

The process ACTUAL P [m].p inputs from the channel ACTUAL IN [m].c. The
output channels of the process are represented by the anonymous object array:

[|n : N.Index • CONNECTION[m,n]|]

The object array maps each n in N .Index into the object CONNECTION [m, n].
Recall that the channel CONNECTION [m, n].c connects the p process identified
by m with the q process identified by n.
An anonymous object array, also called an array object expression, has the gen-

eral form:

[|typing1,...,typingn • object expr|]

for n ≥ 1. Note here that a list of typings can be expanded into a single typing of
the form:

binding : type expr

Any anonymous object array can therefore be expanded into:

[|binding : type expr • object expr|]

The index type of the object array is the type represented by type expr . Each index
value belonging to the index type is mapped to a model. The model is obtained
by evaluating the object expr in the scope of the definitions obtained by matching
the index value against the binding . That is, the scope of the identifiers defined by
the binding is object expr .
The collection of actual q processes can defined in a similar way.

object
ACTUAL Q[n : N.Index] :

Q(M, ACTUAL DATA, [|m : M.Index • CONNECTION[m,n]|],
ACTUAL OUT[n])

The p and q processes can now be put in parallel by the following expression:

‖{ACTUAL P[m].p() | m : M.Index}
‖
‖{ACTUAL Q[n].q() | n : N.Index}

In order to illustrate the meaning of having anonymous object arrays as scheme par-
ameters we expand the instantiation of the P scheme by replacing formal parameter
names by actual parameters. That is, we must do the replacements:

246 Object Arrays

N → N
D → ACTUAL DATA
IN → ACTUAL IN[m]
OUT → [|n : N.Index • CONNECTION[m,n]|]

What we obtain is the following.

object
ACTUAL P[m : M.Index] :

class
value

p : Unit →
in ACTUAL IN[m].c
out {[|n : N.Index • CONNECTION[m,n]|][n].c | n : N.Index} Unit

end

The interesting part is the name:

[|n : N.Index • CONNECTION[m,n]|][n].c

This is a valid name, in RSL, and it represents the channel obtained as follows.
Apply the object array:

[|n : N.Index • CONNECTION[m,n]|]

to the index n, and obtain the model:

CONNECTION[m,n]

Then look up c in this model. Following this reasoning we can finally expand the
object definition into:

object
ACTUAL P[m : M.Index] :

class
value

p : Unit →
in ACTUAL IN[m].c
out {CONNECTION[m,n].c | n : N.Index} Unit

end

Similarly the other object definition can be expanded into the following.

object
ACTUAL Q[n : N.Index] :

class
value

q : Unit →
in {CONNECTION[m,n].c | m : M.Index}
out ACTUAL OUT[n].c Unit

end

CHAPTER 33

The Name Space

The following sections summarize the syntax for names, object expressions and
access descriptions, the latter occurring in function types. These categories are re-
lated in that they all describe references to named entities: types, values, variables,
channels, objects and schemes.

The categories of names and object expressions are defined recursively in terms
of each other. The category of access descriptions is defined in terms of names.

33.1 Names

A name can be of one of four forms:

• An identifier representing some type, value, variable, channel, scheme or ob-
ject:

id

Examples:

head
LIST

• A user-defined operator turned into a value that may be applied using ordinary
function-application notation:

(op)

Examples:

(+)
(hd)

• The looking up of an identifier in a model represented by an object expression:

object expr.id

Examples:

247

248 The Name Space

LIST.add
INTEGER LIST.LIST.add
COMMAND{Command for Elem}.Elem
L[m].add
ACTUAL MID{other c for c}[i].c
ACTUAL MID[i]{other c for c}.c
[|n : N.Index • CONNECTION[m,n]|][n].c

• The looking up of a user-defined operator in a model represented by an object
expression:

object expr.(op)

Example:

RATIONAL.(+)

33.2 Object Expressions

An object expression represents a model or an array of models. Remember that ob-
ject expressions also occur as actual parameters to schemes. The description below
outlines all the possible object expressions. Note that when an object expression
occurs in front of a dot ‘.’ in a name as indicated above, it must represent a model
and not an array.

An object expression may have one of four forms:

• A name representing either a model or an array:

name

Examples:

LIST
INTEGER LIST.LIST
ACTUAL OUT

• The application of an array represented by an object expression to a sequence
of index values, the result being a model:

object expr[value expr1,...,value exprn] (for n ≥ 1)

Example:

ACTUAL OUT[i]

• An anonymous array:

[|typing1,...,typingn • object expr |] (for n ≥ 1)

Example:

[|n : N.Index • CONNECTION[m,n]|]

• The fitting of a model or an array, represented by an object expression:

Access Descriptions 249

object expr{renaming}

Examples:

COMMAND{Command for Elem}
ACTUAL MID{other c for c}
ACTUAL MID[i]{other c for c}

33.3 Access Descriptions

Remember that function type expressions may include access descriptions. That
is, a function type expression with accesses has the general form (in case of total
functions):

type expr1 → access desc1 ... access descn type expr2

for n ≥ 1. Each access description access desci has the form:

access mode access1,...,accessn

for n ≥ 1, where an access mode is one of the following:

read
write
in
out

An access is of one of five forms:

• The reference to a variable or a channel represented by a name:

name

Examples:

list
LIST.list
OUT[i].c

• The reference to any variable or channel defined within the narrowest enclosing
class expression:

any

It is worth noting that the scope of an unqualified any may extend beyond the
immediate class expression due to its later extension. For example, consider
the following class expression.

extend
class value f : Unit → write any Unit end

with
class variable v : Int end

Then the the variable v is included in the write access of function f . Hence
the extent of an unqualified any is really only fixed when its class expression

250 The Name Space

is used to form an object.
This may seem surprising (though it is rarely of concern). There is a proof

theoretic reason for it — that extended class expressions should be able to be
expanded. The one above is equivalent to:

class
value f : Unit → write any Unit
variable v : Int

end

There is also a methodological reason. Part of the idea behind any is that it
is objects that give structure to the total state (collections of variables) and
channels in a system. Hence it is reasonable that the extent of an occurrence
of any should be fixed when its class expression is used to make an object.

• The reference to any variable or channel defined within a model represented
by an object expression:

object expr.any

Example:

ABSTRACT LIST.any

• The reference to a collection of variables or channels through a comprehension:

{access | typing1,...,typingn • value expr} (for n ≥ 1)

Examples:

{OUT[i].c | i : I.Index}
{OUT[i].c | i : I.Index : p(i)}

• The reference to a collection of variables or channels through an enumeration:

{access1,...,accessn}

where n ≥ 0.
The braces { and } have no particular meaning. They just provide a con-

venient notation for grouping accesses into ‘sets’ in special cases. The following
two type expressions represent exactly the same type, for any types T1 and
T2 and for any defined variables x and y :

T1 → write x,y T2

T1 → write {x,y} T2

Note that an enumerated access may have the form {} representing the ‘empty
set of variables or channels’. Any function type can thus be represented by a
type expression containing read, write, in and out access descriptions. As
a special case, the following two type expressions represent the same type:

T1 → T2

T1 → read {} write {} in {} out {} T2

Part II

RSL Reference Description

CHAPTER 34

Reference Introduction

Sections 34.3–34.4 outline the syntactic structure and documentation conventions
of part II, the RSL Reference Description, while sections 34.5–34.6 outline basic
static and dynamic semantic concepts.

34.1 Purpose

The purpose of part II is to describe the RAISE Specification Language, RSL.
The description is intended for looking up information rather than for sequential
reading. It is reference rather than tutorial material.

34.2 Target Group

The target group of part II is users of RSL. But note that this is reference material;
some familiarity with part I of this manual will be necessary before part II is useful.

34.3 Structure of Part II Chapters

Part II is formally structured over the syntax of RSL (see below). The introduction
is followed by special chapters on declarative constructs, scope, visibility and over-
loading. After those chapters follow chapters on each of the main syntax categories
of RSL:

• Specifications
• Declarations
• Class expressions
• Object expressions
• Type expressions
• Value expressions
• Bindings
• Typings

253

254 Reference Introduction

• Patterns
• Names
• Identifiers and operators
• Infix combinators
• Connectives

34.4 Documentation Conventions

The language description is centred around the syntax of RSL. The syntax defines
the syntactically correct strings of the language. The strings are divided into
syntax categories with the top syntax category containing all syntactically correct
RSL specifications. Each syntax category is defined by a rule. The rules of the
syntax are grouped into chapters in this part (II). Each chapter consists of some
or all of the following sections:
Syntax
Terminology
Context-independent Expansions
Scope and Visibility Rules
Context Conditions
Context-dependent Expansions
Attributes
Meaning

The contents of these sections are described below and the conventions used are
explained.

Syntax Contains one or more syntax rules each of the form:

category name ::=
alternative1|
...
alternativen

where n ≥ 1. This rule introduces the syntax category named category name
and defines that category as the union of the strings generated by the alter-
natives. As an example consider:

set type expr ::=
finite set type expr|
infinite set type expr

Each alternative consists of a sequence of tokens where a token is of one of
three kinds:

• A keyword in bold font such as ‘Bool’
• A symbol such as ‘(’.
• A subcategory name such as ‘value expr’, possibly prefixed with a text
such as ‘logical-’ in italics.

Documentation Conventions 255

The strings generated by an alternative are those obtained by concatenating
keywords, symbols and strings from subcategories — in the order of appear-
ance. As examples consider:

finite set type expr ::=
type expr-set

map type expr ::=
type expr →m type expr

The convention below is used for defining optional presence (‘nil-x’ represents
absence of ‘x’): For any syntax category name ‘x’ the following rule is assumed:

opt-x ::=
nil-x|
x

The conventions below are used for defining repetition: For any syntax cate-
gory name ‘x’ the following rules are assumed:

x-string ::=
x|
x x-string

x-list ::=
x|
x , x-list

x-list2 ::=
x , x|
x , x-list2

x-choice ::=
x|
x | x-choice

x-choice2 ::=
x | x|
x | x-choice2

Note that ‘|’ is an RSL symbol in ‘x | x’ and ‘x | x-choice2’.

x-product2 ::=
x × x|
x × x-product2

x-product ::=
x|

256 Reference Introduction

x × x-product

If ‘opt’ occurs together with ‘string’ or ‘list’, ‘opt’ has the lower precedence.
That is, for any syntax category name ‘x’ the following rules are assumed:

opt-x-string ::=
nil-x-string|
x-string

opt-x-list ::=
nil-x-list|
x-list

Similarly, if ‘nil’ occurs together with ‘string’ or ‘list’, ‘nil’ has the lower
precedence.
The conventions below are used for indicating context conditions:
If a category name appearing in an alternative is prefixed with a word in

italics, then this word indicates a context condition, as explained in the tables
34.1–34.7 on pages 257–259. As an example consider the following syntax
rule, where the context condition is that the maximal type of the constituent
value expression must be Bool:

axiom prefix expr ::=
• logical-value expr

If a category name appearing in an alternative is prefixed with several words
in italics separated by underscores, then each of the words indicates a context
condition. As an example consider the following syntax rule, where the context
conditions are that the constituent value expression must be read-only and
have the maximal type Bool:

restriction ::=
• readonly logical-value expr

If a category name appearing in an alternative is prefixed with a text con-
taining several words in italics separated by ‘ or ’, then this text indicates a
context condition which is the disjunction of each of the individual context
conditions (i.e. one of the context conditions must be fulfilled). As an exam-
ple consider the following syntax rule, where the context condition is that the
constituent name must represent a value or a variable:

value expr ::=
value or variable-name

Terminology Contains definitions of terms, etc. When a term is being defined it
is written in italics.

Context-independent Expansions Contain expansions of constructs. When a
construct is given a context-independent expansion in terms of other con-
structs its scope and visibility rules, context conditions, attributes and mean-
ing are not stated — they are given by the scope and visibility rules, context

Static Correctness 257

conditions, attributes and meaning of its expansion.
It is implicitly assumed that all constructs containing comments (belonging

to the syntactic category comment) have a context-independent expansion to
the construct obtained by removing the comments.

Scope and Visibility Rules Contain scope and visibility rules. The conventions
used in the description of these are explained in sections 35.2–35.3.

Context Conditions Contain a description of the conditions that syntactically
correct strings must satisfy in order to be statically correct. Note that as a
convenience some of these conditions are also indicated by italicized prefixes
in the syntax rules, as described above.

Context-dependent Expansions Contain expansions of constructs. When a
construct is given a context-dependent expansion in terms of other constructs
its attributes and meaning are not stated — they are given by the attributes
and meaning of its expansion. Its context conditions are those stated plus
those of its expansion.

Attributes Contain a description of attributes that statically correct strings have.
Attributes are used to describe context conditions.

Meaning Contains a description of the meaning of statically correct strings.

prefix context condition

element the object expr must represent a model
array the object expr must represent an object array

Table 34.1: Prefixes of object expr and the context conditions they indicate

prefix context condition

unit the maximal type of the value expr must be Unit

logical the maximal type of the value expr must be Bool

integer the maximal type of the value expr must be Int

list the maximal type of the value expr must be a list type
map the maximal type of the value expr must be a map type
function the maximal type of the value expr must be a function type
pure the value expr must be pure
readonly the value expr must be read-only

Table 34.2: Prefixes of value expr and the context conditions they indicate

34.5 Static Correctness

This section presents an overview of the common context conditions of RSL.
A syntactically correct string is statically correct if its context conditions hold.

The description static indicates that static correctness can be checked decidably

258 Reference Introduction

prefix context condition

pure the restriction must be pure

Table 34.3: Prefixes of restriction and the context conditions they indicate

prefix context condition

pure the set limitation must be pure

Table 34.4: Prefixes of set limitation and the context conditions they indicate

(i.e. by a terminating mechanical process). This means that we need to distinguish
between what is statically true and what might be proved to be actually true. In
particular we need to distinguish between static types (which we call ‘maximal’)
and actual types of expressions, and between static accesses (the variables and
channels an expression can access) and the actual accesses.
The main context conditions are:

1. All definitions having the same scope must be compatible.
2. All applied occurrences of operators and identifiers must be within the scopes

of their definitions and these definitions must be visible.
3. It must be possible to associate uniquely and consistently a ‘maximal’ type

with each operator and identifier representing a value, variable or channel.
4. The accesses to variables and channels of the bodies of explicit function defi-

nitions must be allowed by the access descriptions in their signatures.

1. The first condition about compatible definitions prevents things like:

type
T = Int,
T = Bool

In general different identifiers must be used for different things. There are some
exceptions to this — see chapter 36 on overloading.

prefix context condition

pure the maximal type of the name must be a pure function type
type the name must represent a type
value the name must represent a value
variable the name must represent a variable
channel the name must represent a channel
scheme the name must represent a scheme
object the name must represent an object

Table 34.5: Prefixes of name and the context conditions they indicate

Semantics 259

prefix context condition

value the id must represent a value

Table 34.6: Prefixes of id and the context conditions they indicate

prefix context condition

associative the infix combinator must be associative
commutative the infix combinator must be commutative

Table 34.7: Prefixes of infix combinator and the context conditions they indicate

2. The second condition about definitions being visible is similar to the standard
rule in block structured programming languages. But note that RSL does not have
any ‘define before use’ rule. More details about scope and visibility can be found
in chapter 35.

3. The third condition about type consistency bans expressions like ‘1 + true’.
The rule is concerned with ‘maximal’ types since, for example, it is statically

undecidable whether a particular integer expression will evaluate to give a natural
number. So it is not against the context conditions to, for example, divide by zero
or to take the head of an empty list, but the meaning of such an expression is
typically under-specified in the semantics of RSL (which means that the specifier
may not predict how the final implementation will behave).

4. The fourth condition ensures that the actual accesses made to variables and
channels in the bodies of functions correspond to the accesses allowed in their
signatures. So a function is only allowed to read a variable if it has read (or write)
access to it, only allowed to write to a variable if it has write access to it, only
allowed to input from a channel if it has input access to it and only allowed to
output to a channel if it has output access to it.

34.6 Semantics

The semantics (meaning) of strings is only defined if they are syntactically and
statically correct. Otherwise, they are literally meaningless.
The semantics of RSL is defined in terms of ‘classes’ of ‘models’. This section

provides an introduction to these terms.
A basic class expression consists of a string of declarations. Declarations may

introduce identifiers or operators of various kinds, and they may express properties
of these identifiers or operators. For example, the variable declaration:

variable v : Int

260 Reference Introduction

introduces the identifier v, says that its kind is variable and that its type is integer.
The value declaration:

value x : Nat

introduces the identifier x, says that its kind is value and that its type is a natural
number, an integer that is not negative. The axiom declaration:

axiom x > 2

introduces no new identifiers, but expresses the property that the value of x is
greater than 2.
In the semantic world used to define the semantics of RSL there are denotation-

s, which are things of kinds that correspond to the kinds of things that can be
declared in RSL — schemes, objects, types, values, variables and channels — but
with precise denotations or meanings. So the RSL integer literal 3 represents a
denotation, but the notion of ‘some integer greater than 2’ does not represent a
particular denotation but rather a whole collection of them — that represented by
3, that represented by 4, etc.
A ‘model’ in the semantic world is an association of identifiers and operators

of various kinds with denotations, such as the association of the value identifier x
with the denotation represented by 3.
It is clear that many class expressions will have more than one model. For

example:

class
value x : Int
axiom x > 2

end

will have a model in which x is associated with the denotation represented by 3,
one in which x is associated with the denotation represented by 4, etc. But the
collection of possible models is enlarged further by including possible ‘extensions’.
The class expression above will also have models in which there is additionally
an integer variable v, others in which there is additionally a Boolean variable v,
and so on. In fact the models of a class expression are all the possible models
that conform to it in associating (at least) the identifiers and operators it declares
with denotations of the appropriate kind having the properties it declares. Such a
collection of models is known as a ‘class’, and so the semantics of a class expression
is a class of models.

CHAPTER 35

Declarative Constructs, Scope

and Visibility Rules

35.1 Declarative Constructs

A declarative construct is a language construct representing one or more defini-
tions. A definition introduces an identifier or operator for an entity such as a
scheme, an object, a type, a value, a variable, a channel or an axiom. Examples
of declarative constructs are module decl, decl, formal scheme parameter, formal -
array parameter, formal function application, axiom quantification, class expr, object -
expr, set limitation, list limitation, lambda parameter, result naming, let def, binding,
single typing, typing, pattern, qualification
Note that for some declarative constructs the definitions they represent are de-

termined by the context. For instance, for a pattern the definitions are determined
by the context in which the pattern occurs. For such constructs the maximal types
of the identifiers and/or operators introduced by the definitions are determined by
a maximal type given by the context. Such a maximal type is called a maximal
context type for (or of) the declarative construct.
A definition has an associated region of RSL text, called the scope of the defini-

tion. Within this scope, and only there, there are points where its entity may be
referred to using its identifier or operator. By the scope of a declarative construct
is meant the scope of its definitions. The scope rules of the language determine the
scope of definitions.
A definition is said to be visible at a point of an RSL text if its entity may

be referred to using its identifier or operator at that point. At such a point the
identifier or operator is said to represent the entity or to be a name of the entity.
The visibility rules of the language determine the visibility of definitions.
Two definitions are said to be compatible if they introduce distinct identifiers or

operators or if they are both value definitions introducing the same identifier or
operator but with distinguishable maximal types. Two declarative constructs are
said to be compatible if all the definitions they represent are compatible.

261

262 Declarative Constructs, Scope and Visibility Rules

The context conditions stated in connection with the individual syntax categories
ensure that at each point of an RSL text all visible definitions are compatible.

35.2 Scope Rules

We describe conventions governing the description of scope rules.
The scope of a declarative construct may depend on the context in which it

occurs. Therefore for each construct containing a declarative construct the scope
of this must be given. This is done in the sections called ‘Scope and visibility rules’
using the following conventions:

1. For a declarative construct occurring immediately within a non-declarative
construct the scope is always explicitly stated. This is for instance the case
for the declarations in a local expression:

local
value x : Int = 3

in x + 2 end

The scope of the definition of x is the local declaration string and the value
expression x + 2.

2. For a declarative construct occurring immediately within a declarative con-
struct there are the following possibilities:

(a) The scope is explicitly stated. This is for instance the case for the typings
in an object definition:

object O[i : Int] :
class

variable v : Int := i − 7
end

The scope of the definition of i is the class expression.
(b) An immediate scope is stated. This is for instance the case for the decla-

rations in a basic class expression. In this case the scope is the immediate
scope plus possible extensions. The extensions depend on the context for
the outer declarative construct and are given for all occurrences of it, such
as for the first class expression in an extending class expression:

scheme S =
extend

class
value x : Int = 3,

end
with

class
value y : Int = x

end

Visibility Rules 263

The immediate scope of the definition of x is the declaration string in
the first class expression. The total scope of x is this region plus the the
declaration string in the second class expression.

(c) No scope is given. This is for instance the case for the value definitions
in a value declaration. In this case it is implicitly understood that the
scope of the inner construct is given by the scope of the immediately
enclosing outer construct in which it occurs. For example:

value
x : Int = y,
y : Int

The scope of the value definition of x is equal to the the scope of the
whole value declaration.

35.3 Visibility Rules

The visibility rules are:

1. A definition is not visible outside its scope.
2. A definition is potentially visible throughout its scope. However, there may

be places in the scope, where the definition is hidden, that is: not visible.
For instance, if the identifier or operator introduced by a definition is also
introduced by another definition in an inner scope then the outer definition
is hidden throughout the scope of the inner definition. If both definitions are
value definitions the outer is not hidden if the maximal types of the two values
are distinguishable.

First an example with two variables v :

class
variable v : Bool := true
axiom

local
variable v : Int := 3

in v = 7 end
end

The scope of the variable definition v : Bool := true is the whole class expression,
while the scope of the local variable definition v : Int := 3 is just the local dec-
laration string and the value expression v = 7. Therefore, according to visibility
rule number 2, in the value expression v = 7 only the local variable definition is
visible. In fact an inner definition of v will always hide an outer one within the
inner scope unless they are both values. Consider, for example:

class
value v : Bool = true
axiom

264 Declarative Constructs, Scope and Visibility Rules

local
value v : Int = 3

in v end
end

In the local expression the local value definition does not hide the outer value
definition as the maximal types of the two value definitions are distinguishable.
Both value definitions are visible in the local expression and in fact the occurrence
of v must (since axioms are Boolean expressions) be of the outer definition.

CHAPTER 36

Overloading

36.1 General

An identifier or operator is said to be overloaded at a certain point if there are
several definitions of that identifier or operator which are visible at that point.

Only value identifiers and operators are allowed to be overloaded.

Note that all operators have one or more predefined meanings which have the
whole specification as their scope and which cannot be hidden — except that they
are hidden (not visible) within the operator part of qualified operators (see section
46.3). This implies that if the user defines an operator to have a maximal type
distinguishable from the maximal types of the predefined meanings of the operator
then — at points where both the user definition and the predefined meanings of the
operator are visible — the operator is overloaded. The user is not allowed to define
an operator to have a maximal type indistinguishable from one of the maximal
types of the predefined meanings of the operator — see the context conditions in
chapter 47.

36.2 Overload Resolution

For a specification to be useful there must be a unique legal interpretation of
each identifier and operator, where by an interpretation is meant a corresponding
definition. Now, an occurrence of an overloaded identifier or operator has several
possible interpretations (namely one for each visible definition of it) and therefore
the problem is to find its legal corresponding definition (if it has any).

Considering the context of the identifier or operator, some of the possible in-
terpretations may be illegal according to the context conditions. In general the
more context one considers the more information (context conditions) exists to
eliminate illegal interpretations. But if the context (a construct) considered is a
value expression which has the same maximal type for several different possible
interpretations of the constituent overloaded identifiers and operators then further

265

266 Overloading

context will never make it possible to choose one of these interpretations over the
other ones. Therefore all such interpretations are illegal.
More formally, for a given construct the legal interpretations of the applied oc-

currences of identifiers and operators are found in the following way:

1. If the construct has no subconstructs then consider all combinations of pos-
sible interpretations of the identifiers and operators. Otherwise consider all
combinations of interpretations which are legal for subconstructs of the con-
struct.

2. Then remove those combinations which do not satisfy the context conditions
for the construct.

3. Finally, if the construct is a value expression (belongs to the syntactic cate-
gory value expr) then remove those combinations for which the construct has
indistinguishable maximal types.

The combinations of interpretations obtained in this way contain those interpreta-
tions of the applied occurrences of the identifiers and operators which are legal for
the construct.
The overloading is said to be resolvable if there is exactly one legal interpretation

of each identifier and operator in its innermost enclosing ‘resolving context’.
A resolving context is one of the following:

• The value expr in a list limitation
• The value expr in an explicit let
• The value expr in a case expr
• The value expr in a post expr
• A defined item which is just an id or op
• A specification

Example 1:

class
value

v : Int,
v : Bool

axiom
v

end

The occurrence of v in the axiom is overloaded — it has two possible interpretations:
either it is an integer or it is a Boolean. However, only the latter interpretation
satisfies the context condition that an axiom must have the maximal typeBool, and
hence only this interpretation is legal. As there is exactly one legal interpretation
the overloading is resolvable.
Example 2:

class
value

Overload Resolution 267

+ : Bool × Bool → Bool,
v : Real

axiom
true + false ≡ true,
v ≡ 1.7 + 2.2

end

The two occurrences of the operator, +, in the axioms are overloaded — each
of the occurrences has three possible interpretations: it is the predefined integer
addition (having the maximal type Int × Int

∼

→ Int) or it is the predefined real
addition (having the maximal type Real × Real

∼

→ Real) or it is the user-defined
Boolean addition (having the maximal typeBool ×Bool

∼

→ Bool). Only the user-
defined one satisfies the context conditions for the first occurrence, while only the
predefined real addition satisfies the context conditions for the second occurrence.
As for each of the two occurrences of + there is exactly one legal interpretation the
overloading is resolvable.
Example 3:

value
v : Int,
v : Bool,
f : Int → Int,
f : Bool → Nat

axiom
f(v) ≡ 7

There are two combinations of interpretations for f and v satisfying the context
conditions. These are:

1. f : Int → Int, v : Int
2. f : Bool → Nat, v : Bool

However, for both combinations the maximal type of f (v) is the same, namely Int,
and hence the value expression f (v) has no legal interpretations. Therefore the
overloading is not resolvable.
Example 4:

type
B,
C,
A = B | C

value
b : B,
v : B,
v : C,
f : A → Bool,
/* illegal */ a : A = v

axiom

268 Overloading

/* legal */ f(b),
/* illegal */ f(v)

In the first axiom the identifier b has exactly one legal interpretation, b : B . (It is
legal as there is an implicit coercion A from B which converts the value expression
b of maximal type B to a value expression A from B(b) of maximal type A.) Hence
the overloading is resolvable.
In the second axiom the identifier v has two possible interpretations, v : B and

v : C . Both of these satisfy the context conditions, but for both interpretations
the maximal type of the value expression f (v) is the same. Therefore there are no
legal interpretations of v in the value expression f (v). Hence the overloading is not
resolvable.
In the definition of a the identifier v has two possible interpretations, v : B and

v : C . Both of these satisfy the context conditions and the maximal types are
different. Therefore both interpretations are legal. Hence the overloading is not
resolvable.

CHAPTER 37

Specifications

Syntax

specification ::=
module decl-string

module decl ::=
scheme decl |
object decl

Terminology A module is either an object or a scheme.

Scope and Visibility Rules In a specification the scope of the constituent mod-
ule decl-string is the module decl-string itself. Note that this means that the order
of definitions is immaterial — an object or a scheme may be used before it is
defined.

Context Conditions The constituent module decls must be compatible.

Meaning A specification stands for one or more module definitions.

269

CHAPTER 38

Declarations

38.1 General

Syntax

decl ::=
scheme decl |
object decl |
type decl |
value decl |
variable decl |
channel decl |
axiom decl

Terminology A declaration is a list of definitions all of the same kind – scheme,
object, type, value, variable, channel or axiom. Each definition normally introduces
an identifier or operator for an entity of that kind. Furthermore, it normally states
one or more properties of that entity.

Attributes Except for axiom definitions, each kind of definition has an associated
maximal definition. The specific maximal definition is defined for each kind of
definition in the relevant section.

38.2 Scheme Declarations

Syntax

scheme decl ::=
scheme scheme def-list

scheme def ::=
opt-comment-string id opt-formal scheme parameter = class expr

270

Scheme Declarations 271

formal scheme parameter ::=
(formal scheme argument-list)

formal scheme argument ::=
object def

Terminology A scheme is either a class or a parameterized class.
A parameterized class is a mapping from lists of objects to classes: each object

list is mapped to a class.
The maximal class of a scheme is the maximal class of the class expression in

the scheme’s definition.
A scheme def is cyclic if the opt-formal array parameter or class expr depends on

the scheme introduced by the scheme def itself.
A construct depends on a scheme, S , if it, when disregarding restrictions in

subtype expressions, refers to S or to any scheme having a definition in which the
opt-formal scheme parameter or class expr depends on S .

Scope and Visibility Rules In a scheme def the scope of the opt-formal sche-
me parameter is the opt-formal scheme parameter itself and the class expr.

Context Conditions In a scheme decl the constituent scheme defs must be com-
patible.
In a formal scheme parameter the constituent formal scheme arguments must be

compatible.
A scheme def must not be cyclic.

Attributes In a scheme def the maximal class of the id is the maximal class of
the constituent class expr and if there is a formal scheme parameter present then the
id has also a formal scheme parameter which is the formal scheme parameter.
The maximal definition of a scheme def is obtained from the original by replacing

the object definitions in its formal scheme parameter (if any) by the corresponding
maximal object definitions and the constituent class expr by the corresponding
maximal class expression.

Meaning A scheme def introduces the id for a scheme.

• A scheme def of the form:

id = class expr

introduces the constituent id for a class. The class is the one represented by
the class expr.

• A scheme def of the form:

id(formal scheme argument-list) = class expr

introduces the constituent id for a parameterized class.
A parameterized class may be applied to a list of objects in a scheme in-

stantiation as described in section 39.6. That section describes which actual
parameters are allowed and what the class resulting from the instantiation is.

272 Declarations

38.3 Object Declarations

Syntax

object decl ::=
object object def-list

object def ::=
opt-comment-string id opt-formal array parameter : class expr

formal array parameter ::=
[typing-list]

Terminology An object is either a model or an array of models.
An array of models — also termed an array — is a mapping from values to

models: each value is mapped to a single model.
The maximal class of an object is the maximal class of the class expression in

the object’s definition.
The index type of an array is the type of values, all of which are mapped to a

model by the array. An index value is a value within the index type.
An array maps any two distinct index values into two models that do not have

component objects, variables or channels in common. However, in the context
conditions, these are not distinguished.

Scope and Visibility Rules In an object def the scope of the opt-formal array-
parameter is the class expr.

Context Conditions In an object decl the constituent object defs must be com-
patible.

Attributes In an object def the maximal class of the id is the maximal class of
the class expr and if there is a formal array parameter then the id has also a maximal
index type which is the maximal index type of the formal array parameter.
The maximal index type of a formal array parameter is the maximal type of the

typing-list.
The maximal definition of an object def is obtained by replacing its index type

expression (if any) by the corresponding maximal type expression and its class expr
by the corresponding maximal class expression.

Meaning An object def introduces the id for an object.

• An object def of the form:

id : class expr

introduces the constituent id for a model. The model is an arbitrary one
belonging to the class represented by the class expr.

• An object def of the form:

id[typing-list] : class expr

Type Declarations 273

introduces the constituent id for an array of models. The index type of the
array is the type represented by the typing-list. Each index value belonging
to the index type is mapped to a model. The model is an arbitrary one
belonging to the class represented by the class expr — evaluated in scope of
the definitions given by matching the index value against the binding also
represented by the typing-list.
An array may be applied to an index value in an element object expression

as described in section 40.3.

No two defined objects have component objects, variables or channels in common.

38.4 Type Declarations

Syntax

type decl ::=
type type def-list

type def ::=
sort def |
variant def |
union def |
short record def |
abbreviation def

Context Conditions In a type decl the constituent type defs must be compati-
ble.

38.4.1 Sort Definitions

Syntax

sort def ::=
opt-comment-string id

Terminology A sort — or synonymously abstract type — is a type with no
predefined value literals and no predefined operators other than = and 6=.

Attributes The maximal type of the constituent id is the type represented by
the id.
A sort definition is maximal.

Meaning A sort def introduces the id for a sort.
Since a sort is not provided with predefined value literals or operators other than

= and 6= for generating and manipulating its values, the writers of specifications
must define such values themselves. Their definitions may indirectly state proper-
ties about the sort. If for example two values of the same sort are defined and they

274 Declarations

are specified to be different, then indirectly the sort is required to contain at least
two values.

38.4.2 Variant Definitions

Syntax

variant def ::=
opt-comment-string id == variant-choice

variant ::=
constructor |
record variant

record variant ::=
constructor (component kind-list)

component kind ::=
opt-destructor type expr opt-reconstructor

constructor ::=
id or op |

destructor ::=
id or op :

reconstructor ::=
↔ id or op

Context-independent Expansions A variant def is short for defining an ab-
stract type, its constructors, destructors and reconstructors. The following de-
scribes how a variant def of the form:

type id == variant1| ... |variantn

is short for a sort definition, some value definitions and some axioms. The de-
scription deals in turn with constructors, destructors, reconstructors, disjointness
axioms and induction axioms. The following example is used throughout:

type Tree == empty | node(left : Tree, val : Elem ↔ repl value, right : Tree)

• Constructors
Tree has two variants, one of which is a constant variant and one a record -

variant.
The destructors and reconstructors are dealt with below, and so we ignore

them here.

Type Declarations 275

A series of declarations can now be constructed that the original declaration
is short for. First, there is an abstract type declaration for the variant type
being defined:

type id

For the example this declaration would be:

type Tree

Secondly, for each variant, indexed by i say, where the constructor coni is not
a wildcard ‘ ’, a value declaration is obtained.
If the variant is a constant variant, say coni , the following value declaration

is obtained:

value coni : id

which simply says that coni is a (constant) value of type id . For the example
one obtains the single value declaration:

value empty : Tree

If the variant is a record variant having ni component kinds, say:

coni(Ti,1, ..., Ti,ni)

the following value declaration is obtained:

value coni : Ti,1 × ... × Ti,ni → id

which says that coni is a total function from the product of its component
types to the type id . The function coni constructs values of type id from
values of its component types (as indicated by the name ‘constructor’ of its
syntactic category).
For the example one obtains the single value declaration:

value node : Tree × Elem × Tree → Tree

constant variants and record variants which have wildcards for their construc-
tors do not generate any value declarations (except for any destructors or
reconstructors attached to the components of a record variant).

• Destructors
Each destructor desti ,j introduced in a record variant:

coni(..., desti,j : Ti,j, ...)

generates first a value declaration:

value desti,j : id
∼

→ Ti,j

For the example one obtains the following declaration:

value
left : Tree

∼

→ Tree,
val : Tree

∼

→ Elem,
right : Tree

∼

→ Tree

276 Declarations

If the constructor coni is not a wildcard, it also generates an axiom of the
following form:

axiom
∀ x1 : Ti,1, ..., xni : Ti,ni

•

desti,j(coni(x1, ..., xni)) ≡ xj

For the example one obtains the axioms:

axiom
∀ x1 : Tree, x2 : Elem, x3 : Tree •

left(node(x1, x2, x3)) = x1,
∀ x1 : Tree, x2 : Elem, x3 : Tree •

val(node(x1, x2, x3)) = x2,
∀ x1 : Tree, x2 : Elem, x3 : Tree •

right(node(x1, x2, x3)) = x3,

• Reconstructors
Each reconstructor reconi ,j introduced in a record variant:

coni(..., ... Ti,j ↔ reconi,j, ...)

generates first a value declaration:

value reconi,j : Ti,j × id
∼

→ id

For the example one obtains, for the one reconstructor repl val :

value repl val : Elem × Tree
∼

→ Tree

If there are destructors associated with the variant then for each destructor
desti ,k there is an axiom relating it to the reconstructor reconi ,j . For the case
when j and k are equal one obtains the axiom:

∀ xj : Ti,j, x : id •

desti,j(reconi,j(xj,x)) ≡ xj

which shows that a destructor recovers the component value changed by a
corresponding reconstructor.
When j and k are different one obtains the axiom:

∀ xj : Ti,j, x : id •

desti,k(reconi,j(xj,x)) ≡ desti,k(x)

which expresses the fact that changing a component value by a reconstructor
does not affect other components.
In the example, one obtains the following three axioms:

axiom
∀ x2 : Elem, x : Tree •

left(repl val(x2,x)) ≡ left(x),
∀ x2 : Elem, x : Tree •

val(repl val(x2,x)) ≡ x2,

Type Declarations 277

∀ x2 : Elem, x : Tree •

right(repl val(x2,x)) ≡ right(x)

• Disjointness axioms
Disjointness axioms state that different constructors map into different val-

ues. For any two distinct constructors coni and conj , the following disjointness
axiom is generated:

axiom
∀ xi,1 : Ti,1, ..., xi,ni : Ti,ni

•

∀ xj,1 : Tj,1, ..., xj,nj : Tj,nj
•

coni(xi,1,...,xi,ni) 6= conj(xj,1,...,xj,nj)

(In this definition, for any variant, index k , say, that is a constant variant, nk

is taken to be zero and one obtains the subexpression conk in the inequality.)
The example gives the following disjointness axiom:

axiom
∀ x1 : Tree, x2 : Elem, x3 : Tree •

empty 6= node(x1,x2,x3)

• Induction axioms
Provided there are no variants with wildcard constructors in the type def-

inition one also obtains an induction axiom. (The removal of the induction
axiom is the main reason for using wildcard variants — they allow one to add
further variants, or components of variants later, and obtain implementation.
If there were an induction axiom, making such additions would negate it and
so could not give implementation.)
If there is no recursion in the type, i.e. none of the component types in any

variants involve id , then the induction axiom is simple:

axiom
∀ f : id → Bool •

(
(∀ x1 : T1,1, ..., xn1 : T1,n1

•

f(con1(x1,...,xn1)))
∧ ... ∧
(∀ x1 : Tn,1, ..., xnn : Tn,nn

•

f(conn(x1,...,xnn)))
) ⇒

(∀ x : id • f(x))

(In this definition, for any variant, index i , say, that is a constant variant, ni

is taken to be zero so that the quantification in the conjunct disappears and
one obtains a conjunct f (coni).)
Suppose now that the type is recursive, and that the j’th component in the

i’th variant is id . Then in the above definition the i’th conjunct becomes:

(∀ x1 : Ti,1, ..., xj : id, ..., xni : Ti,ni
•

278 Declarations

f(xj) ⇒ f(coni(x1,...,xj,...,xni)))

There are obvious extensions to this when there are two or more component
types in a variant equal to id . For two such one obtains a conjunct of the
form:

(∀ x1 : Ti,1, ..., xj : id, ..., xk : id, ..., xni : Ti,ni
•

(f(xj) ∧ f(xk)) ⇒
f(coni(x1,...,xj,...,xk,...,xni)))

This is the case in the example, which has the induction axiom:

axiom
∀ f : Tree → Bool •

(
f(empty)

∧
(∀ x1 : Tree, x2 : Elem, x3 : Tree •

(f(x1) ∧ f(x3)) ⇒ f(node(x1,x2,x3)))
) ⇒

(∀ x : Tree • f(x))

So to prove some property of the type Tree one proves it for empty and one
then proves it for a constructed node assuming it is true for the left and right
subtrees.
Another extension is when id is a component of Ti ,j instead of equal to it.

For instance, suppose Ti ,j is U × id . Then the conjunct would be:

(∀ x1 : Ti,1, ..., (y,z) : (U × id), ..., xni : Ti,ni
•

f(z) ⇒ f(coni(x1,...,(y,z),...,xni)))

This leads to the possibility that id is a component of a variant type Ti ,j and
hence to the problem of mutually recursive variant types. The general rule
here is fairly complicated, and the reader is referred to the proof rules ([37])
for its formulation. Consider instead an example. Suppose one generalizes
trees to have lists of subnodes, and define lists by variants:

type
Tree == empty tree | node(val : Elem, sub : List),
List == empty list | list(head : Tree, tail : List)

The induction axiom for these is a joint one, formulated as follows:

axiom
∀ tf : Tree → Bool, lf : List → Bool •

(
tf(empty tree) ∧
(∀ x1 : Elem, x2 : List •

lf(x2) ⇒ tf(node(x1,x2))) ∧
lf(empty list) ∧

Type Declarations 279

(∀ x1 : Tree, x2 : List •

(tf(x1) ∧ lf(x2)) ⇒ lf(list(x1,x2)))
) ⇒

(∀ x1 : Tree, x2 : List • (tf(x1) ∧ lf(x2)))

So to prove a pair of properties of Tree and List one proves the appropriate
properties for the constants empty tree and empty list , and also proves them
for the constructed values assuming the appropriate properties of components.

38.4.3 Union Definitions

Syntax

union def ::=
opt-comment-string id = name or wildcard-choice2

name or wildcard ::=
type-name |

Context Conditions The constituent names must represent types and the max-
imal types of these must be distinguishable.

Context-dependent Expansions A union def of the form:

type id = opt-qualification1 id1| ... | opt-qualificationn idn |

is equivalent to the variant definition

type
id ==

id from id1(id to id1 : opt-qualification1 id1)| ... |
id from idn(id to idn : opt-qualificationn idn)|

provided all implicit coercions in value expressions and patterns involving the func-
tions id from idi (1 ≤ i ≤ n) have already been replaced by actual coercions as
explained in sections 42.1 and 45.1.
If the union def does not contain a wildcard ‘ ’ alternative, the variant definition

will not do so either.

38.4.4 Short Record Definitions

Syntax

short record def ::=
opt-comment-string id :: component kind-string

Context-independent Expansions A short record def is short for a variant def-
inition with a single variant including a constructor. A short record def of the form:

type id :: component kind1 ... component kindn

280 Declarations

is short for:

type id == mk id(component kind1, ... ,component kindn)

38.4.5 Abbreviation Definitions

Syntax

abbreviation def ::=
opt-comment-string id = type expr

Terminology An abbreviation def is cyclic if the maximal type of its type expr
depends on the type introduced by the abbreviation def itself.

A maximal type depends on a type, t , if it refers to t .

Context Conditions An abbreviation def must not be cyclic.

Attributes The maximal type of the constituent id is the maximal type of the
constituent type expr.

The maximal definition of an abbreviation def is obtained by replacing its con-
stituent type expr by the corresponding maximal type expression.

Meaning An abbreviation def introduces the id for the type represented by the
type expr.

38.5 Value Declarations

Syntax

value decl ::=
value value def-list

value def ::=
commented typing |
explicit value def |
implicit value def |
explicit function def |
implicit function def

Context Conditions In a value decl the constituent value defs must be compat-
ible.

38.5.1 Commented Typings

See chapter 44 on typings.

Value Declarations 281

38.5.2 Explicit Value Definitions

Syntax

explicit value def ::=
opt-comment-string single typing = pure-value expr

Context Conditions The maximal type of the value expr must be less than or
equal to the maximal type of the single typing.
The constituent value expr must be pure.

Context-dependent Expansions An explicit value def is short for a value def-
inition and an axiom.
Assume the meta-function express that turns a binding into a value expression by

bracketing all operators and leaving the rest of the binding unchanged. Section 46.3
describes the meaning of bracketed operators.
An explicit value def of the form:

value binding : type expr = value expr

is short for:

value binding : type expr
axiom express(binding) = value expr

38.5.3 Implicit Value Definitions

Syntax

implicit value def ::=
opt-comment-string single typing pure-restriction

Context Conditions The restriction must be pure.

Context-dependent Expansions An implicit value def is short for a value def-
inition and an axiom.
Assume the meta-function express that turns a binding into a value expression by

bracketing all operators and leaving the rest of the binding unchanged. Section 46.3
describes the meaning of bracketed operators.
An implicit value def of the form:

value binding : type expr • value expr

is short for:

value binding : type expr
axiom value expr

38.5.4 Explicit Function Definitions

Syntax

282 Declarations

explicit function def ::=
opt-comment-string single typing

formal function application ≡ value expr opt-pre condition

formal function application ::=
id application |
prefix application |
infix application

id application ::=
value-id formal function parameter-string

formal function parameter ::=
(opt-binding-list)

prefix application ::=
prefix op id

infix application ::=
id infix op id

Terminology The body of an explicitly defined function is the value expression
in the function’s definition.

Scope and Visibility Rules In an explicit function def the scope of the for-
mal function application is value expr and opt-pre condition.

Context Conditions The binding in the single typing must be an id or op (i.e.
not a product binding).
If the id or op in the single typing is an id then the formal function application

must be an id application of this id.
If the id or op in the single typing is a prefix op then the formal function application

must be a prefix application of this prefix op.
If the id or op in the single typing is an infix op then the formal function application

must be an infix application of this infix op.
The maximal type of the single typing must be a function type. If the for-

mal function application is an infix application then the parameter part of the func-
tion type must be a product type of length 2. If the formal function application is an
id application then the function type must be formed using at least as many types,
each before

∼

→ or →, as there are formal function parameters.
That is: there are the three following legal forms, where any

∼

→ may be replaced
by →, and any of the function type expressions may be replaced by names which
represent them due to abbreviation definitions:

id : type expr1
∼

→ opt-access desc-string1 type expr2
...

∼

→ opt-access desc-stringn type exprn+1

Value Declarations 283

id(opt-binding-list1)(opt-binding-list2)...(opt-binding-listm) ≡
value expr opt-pre condition (m ≤ n)

prefix op : type expr1
∼

→ opt-access desc-string type expr2
prefix op id ≡ value expr opt-pre condition

infix op : type expr1 × type expr2
∼

→ opt-access desc-string type expr3
id1 infix op id2 ≡ value expr opt-pre condition

In the first form above, the maximal type of the value expr must be less than or
equal to the maximal type of either type exprn+1 if m = n or:

type exprm+1 ...
∼

→ opt-access desc-stringn type exprn+1

if m < n.
In the second form above, the maximal type of the value expr must be less than

or equal to the maximal type of type expr2.
In the third form above, the maximal type of the value expr must be less than

or equal to the maximal type of type expr3.
The value expr and the opt-pre condition can only statically access those vari-

ables and channels that are in the static access descriptions of opt-access desc-
string1 — opt-access desc-stringm in the first form above and the static access
descriptions of opt-access desc-string in the two last forms.

Context-dependent Expansions An explicit function def is short for a value
definition and an axiom, depending on the form of the formal function application.
Assume the meta-function maximal that turns a type into its maximal type.
Assume the meta-function express that turns a binding into a value expression by

bracketing all operators and leaving the rest of the binding unchanged. Section 46.3
describes the meaning of bracketed operators.
An explicit function def of the following form where the formal function application

is an id application with only one formal function parameter:

value
id : type expr1 × ... × type exprn

∼

→ opt-access desc-string type exprn+1

id(binding1,...,bindingn) ≡ value expr opt-pre condition

where n ≥ 1, is short for:

value
id : type expr1 × ... × type exprn

∼

→ opt-access desc-string type exprn+1

axiom
∀ binding1 : maximal(type expr1),...,bindingn : maximal(type exprn) •

id(express(binding1),...,express(bindingn)) ≡ value expr opt-pre condition

If the binding list binding1,...,bindingn is nil then the type expression
type expr1 × ... × type exprn must be Unit and the quantification is not needed.
Observe that each formal parameter bindingi ranges over the maximal type of

the corresponding formal parameter type expri.

284 Declarations

The analogous expansion holds if
∼

→ is replaced by →.
The case with an id application containing more than one formal function para-

meter has a similar and obvious explanation.
An explicit function def of the following form where the formal function application

is a prefix application:

value
prefix op : type expr1

∼

→ opt-access desc-string type expr2
prefix op id ≡ value expr opt-pre condition

is short for:

value
prefix op : type expr1

∼

→ opt-access desc-string type expr2
axiom

∀ id : maximal(type expr1) •

prefix op id ≡ value expr opt-pre condition

Observe that the formal parameter id ranges over the maximal type of the formal
parameter type expr1.
The analogous expansion holds if

∼

→ is replaced by →.
An explicit function def of the following form where the formal function application

is an infix application:

value
infix op : type expr1 × type expr2

∼

→ opt-access desc-string type expr3
id1 infix op id2 ≡

value expr
opt-pre condition

is short for:

value
infix op : type expr1 × type expr2

∼

→ opt-access desc-string type expr3
axiom

∀ id1 : maximal(type expr1),id2 : maximal(type expr2) •

id1 infix op id2 ≡ value expr opt-pre condition

Observe that each formal parameter idi ranges over the maximal type of the cor-
responding formal parameter type expri.
The analogous expansion holds if

∼

→ is replaced by →.

38.5.5 Implicit Function Definitions

Syntax

implicit function def ::=
opt-comment-string single typing formal function application

post condition opt-pre condition

Value Declarations 285

Scope and Visibility Rules In an implicit function def the scope of the form-
al function application is the post condition and opt-pre condition.

Context Conditions The binding in the single typing must be an id or op (and
not a product binding).
If the id or op in the single typing is an id then the formal function application

must be an id application of this id.
If the id or op in the single typing is a prefix op then the formal function application

must be a prefix application of this prefix op.
If the id or op in the single typing is an infix op then the formal function application

must be an infix application of this infix op.
The maximal type of the single typing must be a function type. If the form-

al function application is an infix application then the parameter part of the function
type must be a product type of length 2. If the formal function application is an
id application then the function type must be formed using at least as many types,
each before

∼

→ or →, as there are formal function parameters.
That is: there are the three following legal forms, where any of the partial arrows

may be replaced by →, and any of the function type expressions may be replaced
by names which represent them due to abbreviation definitions:

id : type expr1
∼

→ opt-access dec-string1 type expr2
...

∼

→ opt-access desc-stringn type exprn+1

id(opt-binding-list1)(opt-binding-list2)...(opt-binding-listm)
post condition opt-pre condition (m ≤ n)

prefix op : type expr1
∼

→ opt-access desc-string type expr2
prefix op id post condition opt-pre condition

infix op : type expr1 × type expr2
∼

→ opt-access desc-string type expr3
id1 infix op id2 post condition opt-pre condition

The post condition and the opt-pre condition can only statically read those variables
and channels that are in the static access descriptions of opt-access desc-string1 —
opt-access desc-stringm in the first form above and the static access descriptions of
opt-access desc-string in the two last forms.

Context-dependent Expansions An implicit function def is short for a value
definition and an axiom, depending on the form of the formal function application.
Assume the meta-function maximal that turns a type into its maximal type.
Assume the meta-function express that turns a binding into a value expression by

bracketing all operators and leaving the rest of the binding unchanged. Section 46.3
describes the meaning of bracketed operators.
An implicit function def of the following form where the formal function applica-

tion is an id application with only one formal function parameter:

value
id : type expr1 × ... × type exprn

∼

→ opt-access desc-string type exprn+1

286 Declarations

id(binding1,...,bindingn) post condition opt-pre condition

where n ≥ 1, is short for:

value
id : type expr1 × ... × type exprn

∼

→ opt-access desc-string type exprn+1

axiom
∀ binding1 : maximal(type expr1),...,bindingn : maximal(type exprn) •

id(express(binding1),...,express(bindingn)) post condition opt-pre condition

If the binding list binding1,...,bindingn is nil then the type expression
type expr1 × ... × type exprn must be Unit and the quantification is not needed.
Observe that each formal parameter bindingi ranges over the maximal type of

the corresponding formal parameter type expri.
The analogous expansion holds if

∼

→ is replaced by →.
The case with an id application containing more than one formal function para-

meter has a similar and obvious explanation.
An implicit function def of the following form where the formal function applica-

tion is a prefix application:

value
prefix op : type expr1

∼

→ opt-access desc-string type expr2
prefix op id post condition opt-pre condition

is short for:

value
prefix op : type expr1

∼

→ opt-access desc-string type expr2
axiom

∀ id : maximal(type expr1) •

prefix op id post condition opt-pre condition

Observe that the formal parameter id ranges over the maximal type of the formal
parameter type expr1.

The analogous expansion holds if
∼

→ is replaced by →.
An implicit function def of the following form where the formal function applica-

tion is an infix application:

value
infix op : type expr1 × type expr2

∼

→ opt-access desc-string type expr3
id1 infix op id2 post condition opt-pre condition

is short for:

value
infix op : type expr1 × type expr2

∼

→ opt-access desc-string type expr3
axiom

∀ id1 : maximal(type expr1),id2 : maximal(type expr2) •

id1 infix op id2 post condition opt-pre condition

Variable Declarations 287

Observe that each formal parameter idi ranges over the maximal type of the cor-
responding formal parameter type expri.
The analogous expansion holds if

∼

→ is replaced by →.

38.6 Variable Declarations

Syntax

variable decl ::=
variable variable def-list

variable def ::=
single variable def |
multiple variable def

single variable def ::=
opt-comment-string id : type expr opt-initialisation

initialisation ::=
:= pure-value expr

multiple variable def ::=
opt-comment-string id-list2 : type expr

Terminology A variable is an entity in which values of a particular type can
be stored. Assigning a value to a variable means storing the value in the vari-
able. A value can explicitly be assigned to a variable by an assignment expression
(section 42.21).
A state of a specification is a particular assignment of values to all variables

defined in the constituent objects of the specification.
A single variable def is cyclic if the maximal type of the type expr depends on the

variable introduced by the single variable def itself.
A maximal type depends on a variable, v, if it refers to v or to any other variable

or channel the maximal type of which depends on v.

Context-independent Expansions A multiple variable def is short for two or
more single variable definitions. A multiple variable def of the form:

variable id1, ... ,idn : type expr

is short for:

variable
id1 : type expr,
...
idn : type expr

288 Declarations

Context Conditions In a variable decl the constituent variable defs must be com-
patible.
A single variable def must not be cyclic.
In an initialisation the value expr must be pure and its maximal type must be less

than or equal to the maximal type of the variable.

Attributes In a single variable def the maximal type of the constituent id is the
maximal type of the type expr.
The maximal definition of a single variable def is obtained by replacing the con-

stituent type expr by the corresponding maximal type expression and removing the
initialisation (if any).

Meaning A single variable def introduces the id for a variable in which values of
the maximal type of the type represented by the type expr can be stored. The type
of the variable is the type represented by the type expr.
In addition, an initialisation expression can be given, the value of which is the

initial value of the variable. The initial value is the value contained in the variable
when its surrounding class expression is used to form an object and restored to it
by an initialise expression (section 42.20).
If no initialisation is given, the initial value of the variable is some arbitrarily

chosen value within its type.

38.7 Channel Declarations

Syntax

channel decl ::=
channel channel def-list

channel def ::=
single channel def |
multiple channel def

single channel def ::=
opt-comment-string id : type expr

multiple channel def ::=
opt-comment-string id-list2 : type expr

Terminology A channel is a medium that concurrently executing value expres-
sions can communicate along.
In order for two value expressions to communicate along a channel, one value

expression must output to the channel whilst the other value expression must input
from the channel. Communication is synchronized: an output value expression only
outputs to the channel if an input value expression simultaneously inputs from the
channel.

Axiom Declarations 289

A single channel def is cyclic if the maximal type of the type expr depends on the
channel introduced by the single channel def itself.
A maximal type depends on a channel, c, if it refers to c or to any other channel

or variable the maximal type of which depends on c.

Context-independent Expansions A multiple channel def is short for two or
more single channel definitions. A multiple channel def of the form:

channel id1, ... ,idn : type expr

is short for:

channel
id1 : type expr,
...
idn : type expr

Context Conditions In a channel decl the constituent channel defs must be com-
patible.
A single channel def must not be cyclic.

Attributes In a single channel def the maximal type of the constituent id is the
maximal type of the type expr.
The maximal definition of a single channel def is obtained by replacing the con-

stituent type expr by the corresponding maximal type expression.

Meaning A single channel def introduces the id for a channel along which values
of the type represented by the type expr can be communicated.

38.8 Axiom Declarations

Syntax

axiom decl ::=
axiom opt-axiom quantification axiom def-list

axiom quantification ::=
forall typing-list •

axiom def ::=
opt-comment-string opt-axiom naming readonly logical-value expr

axiom naming ::=
[id]

Context-independent Expansions Any axiom decl can be expanded into an
axiom declaration of the form:

axiom
opt-axiom naming1 ✷ value expr1,

290 Declarations

...
opt-axiom namingn ✷ value exprn

An axiom decl of the form without an axiom quantification:

axiom
opt-axiom naming1 value expr1,
...
opt-axiom namingn value exprn

is short for:

axiom
opt-axiom naming1 ✷ value expr1,
...
opt-axiom namingn ✷ value exprn

An axiom quantification is short for a distributed quantification. That is, an ax-
iom decl of the form:

axiom forall typing-list •

opt-axiom naming1 value expr1,
...
opt-axiom namingn value exprn

is short for:

axiom
opt-axiom naming1 ✷ ∀ typing-list • value expr1,
...
opt-axiom namingn ✷ ∀ typing-list • value exprn

Context Conditions In an axiom decl the constituent axiom defs must be com-
patible.
In an axiom def the value expr must be read-only and have the maximal type

Bool.

Meaning An axiom def states properties of entities introduced elsewhere in terms
of an axiom (the constituent Boolean value expr).
An axiom can be given a name (the id in an axiom naming).

CHAPTER 39

Class Expressions

39.1 General

Syntax

class expr ::=
basic class expr |
extending class expr |
hiding class expr |
renaming class expr |
scheme instantiation

Terminology A model is an association of identifiers and operators with entities.
A model provides an identifier or operator if it associates that identifier or operator
with an entity.

A model satisfies a definition if it provides the identifier or operator introduced
by that definition and if the entity associated with the identifier or operator has
the defined kind and if the properties stated in the definition hold in the model.
A class is a collection of models.
An identifier or operator is under-specified if there exist at least two models in

the class in which the identifier or operator is associated with different entities.
A class class expr1 is a subclass of class expr2 if all the models of class expr1 are

models of class expr2.
Some classes are said to be maximal. A class expression represents a maximal

class if and only if the definitions it stands for are all maximal.
A scheme definition is maximal if each object definition in its formal parameter

(if any) is maximal and if its class expression is maximal.
An object definition is maximal if its index type expression (if any) is maximal

and its class expression is maximal.

A type definition is maximal if the type identifier that it introduces represents a
maximal type.

291

292 Class Expressions

A value definition is maximal if it is a typing whose constituent type expression
is maximal.
A variable definition is maximal if it is a single variable definition without in-

itialization, whose constituent type expression is maximal.
A channel definition is maximal if it is a single channel definition whose con-

stituent type expression is maximal.
An axiom definition is not maximal.

Attributes A class expression has an associated maximal class. The specific
maximal class is defined for each kind of class expression in the relevant section.
The class represented by a class expression is a subclass of the associated maximal

class.

Meaning A class expr stands for a collection of definitions and represents the class
consisting of all models that satisfy each of the definitions. Each model associates
the identifiers and operators defined in the class expr with particular entities. For
each alternative we state in the relevant section which definitions the class expr
stands for.

39.2 Basic Class Expressions

Syntax

basic class expr ::=
class opt-decl-string end

Scope and Visibility Rules The immediate scope of the opt-decl-string is the
opt-decl-string itself. Note, that this means that the order of definitions in the
opt-decl-string is immaterial.

Context Conditions The constituent decls must be compatible.

Attributes The maximal class of a basic class expression is represented by a
class expression consisting of the maximal definitions obtained from the non-axiom
definitions contained in its declarations.

Meaning A basic class expr stands for the definitions appearing in the decls.

39.3 Extending Class Expressions

Syntax

extending class expr ::=
extend class expr with class expr

Scope and Visibility Rules The scope of the first class expr extends to the
second class expr.

Context Conditions The constituent class exprs must be compatible.

Hiding Class Expressions 293

Attributes The maximal class is represented by an extending class expression
formed by making the constituent class expressions maximal.

Meaning An extending class expr stands for the definitions which the class exprs
stand for.

39.4 Hiding Class Expressions

Syntax

hiding class expr ::=
hide defined item-list in class expr

Scope and Visibility Rules The scope of the class expr extends to the de-
fined items. Furthermore, the only definitions visible within the defined items are
those of the class expr. From this and the visibility rules it follows that all the
id or ops occurring immediately within the defined items must have a correspond-
ing definition in the class expr. These corresponding definitions are not visible
outside the hiding class expr.

Context Conditions The id or ops in the constituent defined items must be dis-
tinct unless they are disambiguated with distinguishable maximal types.

Attributes The maximal class is represented by a hiding class expression ob-
tained by replacing any type expressions in the defined items by the corresponding
maximal type expressions and by making the constituent class expression maximal.

Meaning A hiding class expr stands for the definitions that the class expr stands
for, except that the entities that are referred to in the defined items cannot be
referred to outside the class expr (see the visibility rules).

39.5 Renaming Class Expressions

Syntax

renaming class expr ::=
use rename pair-list in class expr

Scope and Visibility Rules The scope of the class expr extends to the re-
name pair. Furthermore, the only definitions visible within the defined items are
those of the class expr. (From this and the visibility rules it follows that the old
identifiers and operators of the rename pairs must be defined in the class expr.)

Context Conditions All old items of the rename pairs must be distinct. (In
other words: there must not be more than one new identifier or operator for each
old item.)
All new identifiers and operators in the rename pairs must be distinct unless they

are new identifiers and operators for values of distinguishable maximal types.

294 Class Expressions

A new identifier or operator can only be equal to an identifier or operator of an
entity which is defined in the class expr and which does not get a new name pro-
vided both identifiers or operators represent values and they have distinguishable
maximal types.

Attributes The maximal class is represented by a renaming class expression
formed by replacing any type expressions in the defined items in the renaming
pairs by the corresponding maximal type expressions and making its constituent
class expression maximal.

Meaning A renaming class expr stands for the definitions that the class expr
stands for, but renamed according to the rename pairs.

39.6 Scheme Instantiations

Syntax

scheme instantiation ::=
scheme-name opt-actual scheme parameter

actual scheme parameter ::=
(object expr-list)

Terminology An object expression list is a static implementation of a formal
scheme argument list if and only if:

• The number of the object expressions is equal to the number of the formal
scheme arguments.

• Each of the object expressions is a static implementation of the corresponding
formal scheme argument.

An object expression is a static implementation of a formal scheme argument if and
only if:

• The object represented by the object expression and the object defined by the
formal scheme argument are either both arrays or both models.

• If they are both arrays then the maximal index type of the object expression
and the maximal index type of formal array parameter in the formal scheme
argument are the same.

• The maximal class of the object expr is a static implementation of the maximal
class of the class expression in the formal scheme argument (object definition).

A maximal class is a static implementation of another (old) maximal class if and
only if:

• For each non-hidden non-axiom definition in the old class expression there is
a non-hidden definition in the new class expression of the same kind statically
implementing it.

Scheme Instantiations 295

A maximal type definition is a static implementation of another (old) maximal type
definition, if and only if:

• They introduce the same identifier.
• If the old type definition is an abbreviation definition then the new one is also
an abbreviation definition and the type of the constituent identifier of the new
one is equal to the type of the constituent identifier of the old one with all
old sorts, variables and channels replaced with their corresponding new types,
variables and channels.

A maximal value definition (which is a typing) is a static implementation of another
(old) maximal value definition, if and only if:

• They introduce the same identifier(s) or operator(s).
• The type of each constituent identifier or operator of the new one is a subtype
of the type of same constituent identifier or operator of the old one with all
old sorts, variables and channels replaced with their corresponding new types,
variables and channels.

A maximal variable/channel definition is a static implementation of another (old)
maximal variable/channel definition, if and only if:

• They introduce the same identifier.
• The type of the constituent identifier of the new one is equal to the type of the
constituent identifier of the old one with all old sorts, variables and channels
replaced with their corresponding new types, variables and channels.

A maximal object definition is a static implementation of another (old) maximal
object definition, if and only if:

• They introduce the same identifier.
• They either both define an array or both define a model.
• If they define arrays then the index type of the formal array parameter in the
new one is equal to the index type of the formal array parameter in the old one
with all old sorts, variables and channels replaced with their corresponding
new types, variables and channels.

• The class expression of the new object definition is a static implementation of
the class expression in the old object definition.

A maximal scheme definition is a static implementation of another (old) maximal
scheme definition, if and only if:

• They introduce the same identifier.
• They have the same number of formal scheme arguments.
• For each formal scheme argument in the old scheme definition and the corre-
sponding formal scheme argument in the new scheme definition the following
hold:

– They either both define an array or both define a model.

296 Class Expressions

– If they define arrays then the index type of the formal array parameter
in the new one is equal to the index type of the formal array parameter
in the old one with all old sorts, variables and channels replaced with
their corresponding new types, variables and channels.

– The class expression of the old formal scheme argument is a static imple-
mentation of the class expression in the new formal scheme argument.

• The class expression of the new scheme definition is a static implementation
of the class expression in the old scheme definition.

Context Conditions In a scheme instantiation the name must represent a
scheme.
There must be an actual scheme parameter present if and only if the scheme is

a parameterized class, i.e. the name has a formal scheme parameter. In that case
the object expr-list in the actual scheme parameter must be a static implementation
of the formal scheme argument list in this formal scheme parameter of the name.
The scheme definitions, abbreviation definitions, variable definitions and channel

definitions introduced by the scheme instantiation must not be cyclic and the value
definitions must be compatible.

Attributes The maximal class is represented by the the maximal class expression
associated with the scheme name. If there is an actual scheme parameter then
occurrences of the formal parameter identifiers are bound to objects in the maximal
classes of the corresponding object expressions in the actual scheme parameter.

Meaning A scheme instantiation is either an instantiation of a named class or of
a named parameterized class.

• A scheme instantiation of a named class has the form:

name

The name has the form opt-qualification id and the class must have been
defined by a scheme definition (section 38.2) as follows:

scheme
id = class expr

The scheme instantiation then stands for the definitions that the class expr
stands for.

• A scheme instantiation of a named parameterized class has the form:

name(object expr1, ... ,object exprn)

The name has the form opt-qualification id and the parameterized class
must have been defined by a scheme definition (section 38.2) as follows:

scheme
id(

id1 opt-formal array parameter1 : class expr1, ... ,
idn opt-formal array parametern : class exprn) =

class expr

Rename Pairs 297

The scheme instantiation stands for the definitions that the class expr stand-
s for — evaluated in a model where each idi has been bound to the object
obtained by evaluating object expri, provided that the maximal class of objec-
t expri is a static implementation of the class represented by class expri.

39.7 Rename Pairs

Syntax

rename pair ::=
defined item for defined item

Terminology If a rename pair occurs in a fitting object expr then the id or op on
the right-hand side of for is called a new identifier or operator and the id or op
on the left-hand side of for is called an old identifier or operator. If it occurs in
a renaming class expr then the id or op on the left-hand side of for is called a new
identifier or operator and the id or op on the right-hand side of for is called an old
identifier or operator.
To rename something according to a rename pair means to replace all occurrences

of the old identifier or operator with the new identifier or operator.

Context Conditions In a rename pair there must not be a type expr in the de-
fined item which contains a new identifier or operator.
In a rename pair the maximal type of a new operator must be a function type

which is distinguishable from the maximal type(s) of the predefined meanings of
the operator. If the operator is an infix operator then the function type must have
a parameter type which is a product type of length 2.

Attributes In a rename pair the attributes of the new identifier or operator are
the attributes of the old identifier or operator.
A rename pair has an associated old item. This is the old identifier or operator of

the rename pair together with the maximal type of this old identifier or operator.

39.8 Defined Items

Syntax

defined item ::=
id or op |
disambiguated item

disambiguated item ::=
id or op : type expr

Context Conditions In a disambiguated item the id or opmust represent a value
and its maximal type and the maximal type of type expr must be the same.

298 Class Expressions

Meaning The type expr within a disambiguated item is needed when the id or op,
due to overloading, represents several values with different maximal types. The
type expr then identifies precisely one of the values.

CHAPTER 40

Object Expressions

40.1 General

Syntax

object expr ::=
object-name |
element object expr |
array object expr |
fitting object expr

Attributes An object expr has an associated maximal class (such that the models
given by the object belong to the class). If it represents an array, then it also has
an associated maximal type, which is called the maximal index type of the object
expression. The specific associated maximal class and maximal index type are
defined for each of the alternatives in the relevant section.

Meaning An object expr represents an object. The specific objects are defined
for each of the alternatives in the relevant section.

40.2 Names

Context Conditions For an object expr which is a name, this name must repre-
sent an object.

Attributes See chapter 46.

Meaning See chapter 46.

40.3 Element Object Expressions

Syntax

299

300 Object Expressions

element object expr ::=
array-object expr actual array parameter

actual array parameter ::=
[pure-value expr-list]

Context-independent Expansions Any element object expr can be expanded
into an element object expression of the form:

object expr[value expr]

An element object expr of the form:

object expr[value expr1,...,value exprn]

where n > 1, is short for:

object expr[(value expr1,...,value exprn)]

Context Conditions In an element object expr the constituent object expr must
represent an array.
In an element object expr the maximal type of the actual array parameter must be

less than or equal to the maximal index type of the object expr.
The value exprs in the actual array parameter must be pure.

Attributes The maximal class is the maximal class of the constituent object expr.
Note that in the context conditions, two applications of the same array to distinct
actual array parameters are not assumed to define distinct entities.
The maximal type of an actual array parameter having one constituent value expr

is the maximal type of the value expr.

Meaning An element object expr of the form:

object expr[value expr]

represents a model obtained as follows. The object expr represents an array and
the value expr represents a value, which must be an index value of the array. The
model is obtained by applying the array to the value (i.e. the model is that model
to which the value is mapped by the array).

40.4 Array Object Expressions

Syntax

array object expr ::=
[| typing-list • element-object expr |]

Scope and Visibility Rules The scope of the constituent typings is the objec-
t expr.

Context Conditions The object expr must represent a model, not an array.

Fitting Object Expressions 301

Attributes The maximal index type is the maximal type of the constituent
typing-list. The maximal class is the maximal class of the constituent object expr.

Meaning An array object expr represents an array. The index type of the array
is the type represented by the typing-list. Each index value belonging to the index
type is mapped to a model. This model is the one obtained by evaluating the
object expr in scope of the definitions given by matching the index value against
the binding also represented by the typing-list.

40.5 Fitting Object Expressions

Syntax

fitting object expr ::=
object expr { rename pair-list }

Context Conditions The constituent object expr has a maximal class represent-
ed by a class expression1, say. For the fitting object expr to be well-formed it must
be possible to express class expression1 in the form:

use rename pair-list in class expr2

where class expr2 is a class expression representing a maximal class. From this and
the scope and visibility rules for renaming class expressions it follows that:

• The old items of the rename pairs must be defined in class expression1, the
maximal class of the object expr.

• All old items of the rename pairs must be distinct. (In other words: there
must not be more than one new identifier or operator for each old item.)

• All new identifiers and operators in the rename pairs must be distinct unless
they are new identifiers and operators for values of distinguishable maximal
types.

• A new identifier or operator can only be equal to an identifier and operator of
an entity which is defined in class expr2 and which does not get a new name
if both identifiers or operators represent values and they have distinguishable
maximal types.

Attributes If a fitting object expr represents an array the maximal index type is
the maximal index type of the constituent object expr. The maximal class is that
represented by class expr2 as defined above.

Meaning If the meaning of the constituent object expression is a model or an
array of models in the class represented by:

use rename pair-list in class expr

then the meaning of the fitted object expression is a model or an array of models
in the class represented by class expr.

CHAPTER 41

Type Expressions

41.1 General

Syntax

type expr ::=
type literal |
type-name |
product type expr |
set type expr |
list type expr |
map type expr |
function type expr |
subtype expr |
bracketed type expr

Terminology A type is a collection of values. There are three kinds of types:

• predefined types are represented by literals built into the language. These
types include for example the integers and the Booleans. See section 41.2,

• abstract types are represented by identifiers introduced in sort definitions
(section 38.4.1), variant definitions (section 38.4.2), union definitions (sec-
tion 38.4.3) and short record definitions (section 38.4.4).

• compound types are build from other types by application of a type operator
to one or more types.

A type is said to be a pure function type if it may be represented by a function
type expression in which the access description string is absent.
A type t1 is a subtype of a type t2 if all the values in t1 are in t2.
Some types are said to be maximal. A type is maximal if it is representable by

a maximal type expression.
A type expression is maximal if and only if it is one of the following:

• Unit, Bool, Int, Real or Char (i.e. all type literals except Nat and Text).

302

General 303

• A name whose corresponding definition is a sort definition, a variant definition,
a union definition or a short record definition.

• A name whose corresponding definition is an abbreviation definition in which
the constituent type expression is maximal.

• A type expression built from maximal type expressions and static access de-
scriptions by application of one of the type operators ×, -infset, ω, →m or

∼

→
(i.e. all type operators except -set, ∗ and →).

• A subtype expression whose constituent type expression is maximal and whose
restriction holds for all values of the (maximal) type represented by that
maximal type expression (i.e. reduces to true).

• A bracketed type expression whose constituent type expression is maximal.

Two maximal types are indistinguishable if and only if there exist two type expres-
sions representing them and at most differing in the static access descriptions of
constituent function types.

Two maximal types are distinguishable if and only if they are not indistinguish-
able.

The union definitions in a specification give rise to potential type coercions,
which are particular functions between maximal types.

There is a potential coercion from a maximal type t1 to a maximal type t2 if any
of the following conditions hold:

1. t1 is identical with t2; in this case the potential coercion from t1 to t2 is the
identity function.

2. There is a union definition:

id2 = ... | opt-qualification id1 | ...

such that id1 has t1 as maximal type and id2 has t2 as maximal type; in this
case the potential coercion from t1 to t2 is id2 from id1.

3. There are types t11, t12, t21 and t22, and a static access description opt-
access desc-string such that there are potential coercions from t11 to t21, from
t12 to t22, and t1 and t2 are constructed in one of the following manners; in
this case a potential coercion from t1 to t2 is induced from the other potential
coercions in an obvious way.

(a) t1 is ...× t11 × ...and t2 is ...× t21 × ...
(b) t1 is t11-infset and t2 is t21-infset.
(c) t1 is t11

ω and t2 is t21
ω.

(d) t1 is t11 →m t12 and t2 is t21 →m t22.
(e) t1 is t11

∼

→ opt-access desc-string t12 and
t2 is t11

∼

→ opt-access desc-string t22.

4. There is a type t3 such that there are potential coercions f13 from t1 to t3 and
f32 from t3 to t2; in this case a potential coercion from t1 to t2 is f32

◦ f13.

A maximal type, t1, is said to be coercible to a maximal type, t2, if there is one and
only one potential coercion from t1 to t2.

304 Type Expressions

A maximal type, t1, is said to be less than or equal to a maximal type, t2, if it is
coercible to a subtype of t2.
A maximal type, t , is said to be an upper bound of a collection of maximal types

if all maximal types in the collection are less than or equal to t .
A maximal type is said to be a least upper bound of a collection of maximal types

if it is an upper bound of this collection and it is less than or equal to all other
upper bounds.

Attributes A type expr has an associated maximal type. The type represented
by the type expr is a subtype of this associated maximal type. The specific maximal
types are defined for each of the alternatives in the following sections.

Meaning A type expr represents a type. The specific types are defined for each
of the alternatives in the following sections.

41.2 Type Literals

Syntax

type literal ::=
Unit |
Bool |
Int |
Nat |
Real |
Text |
Char

Attributes
The maximal type of Unit is Unit.
The maximal type of Bool is Bool.
The maximal type of Int is Int.
The maximal type of Nat is Int.
The maximal type of Real is Real.
The maximal type of Text is Charω.
The maximal type of Char is Char.

Meaning
A type literal represents a predefined type.
The Unit type has as the single value ().
The Bool type has as values the Booleans true and false.
The Int type has as values the integers (...,−2,−1,0,1,2,...).
The Nat literal is short for the subtype expression {| i : Int • i ≥ 0 |}.
The Real type has as values the reals (...,−4.3,...,12.23,...).
The Char type has as values, the ASCII characters in single quotes (′a′,′b′,...).
The Text literal is short for the type expression Char∗.

Names 305

41.3 Names

Context Conditions For a type expr which is a name, the name must represent
a type.

Attributes See chapter 46.

Meaning See chapter 46.

41.4 Product Type Expressions

Syntax

product type expr ::=
type expr-product2

Terminology A product is a value of the form (v1,...,vn).
The length of a product type expr is the number of constituent type exprs.

Attributes The maximal type of a product type expr of the form

type expr1 × ... × type exprn

is t1 × ...× tn , where t1, ..., tn are the maximal types of type expr1, ..., type exprn .

Meaning A product type expr of the form type expr1 × ...× type exprn represents
the type of all products of the form (v1,...,vn) where each vi has the type represented
by type expri .

41.5 Set Type Expressions

Syntax

set type expr ::=
finite set type expr |
infinite set type expr

finite set type expr ::=
type expr-set

infinite set type expr ::=
type expr-infset

Terminology A set is a possibly empty unordered collection of distinct values of
the same type.

Attributes The maximal type of a set type expr of the form type expr -set or
type expr -infset is t-infset, where t is the maximal type of type expr .

306 Type Expressions

Meaning A set type expr represents a type of subsets of the set of values of the
type represented by the constituent type expr. If the type operator is -set, the
type contains all finite subsets. If the type operator is -infset, the type contains
all (infinite as well as finite) subsets.
A set is characterized by its members.

41.6 List Type Expressions

Syntax

list type expr ::=
finite list type expr |
infinite list type expr

finite list type expr ::=
type expr∗

infinite list type expr ::=
type exprω

Terminology A list is a possibly empty sequence of values of the same type,
possibly including duplicates.

Attributes The maximal type of a list type expr of the form type expr∗ or type -
exprω is tω, where t is the maximal type of type expr .

Meaning A list type expr represents a type of lists of values of the type repre-
sented by the constituent type expr. If the type operator is ∗, the type contains
all finite lists. If the type operator is ω, the type contains all (infinite as well as
finite) lists.
A list can be applied to a value in its index set to find a corresponding element

of the list.
A list is characterized by its index set and the effect of applying it to members

of its index set.

41.7 Map Type Expressions

Syntax

map type expr ::=
type expr →m type expr

Terminology A map can be conceived of as a (possibly infinite) collection of
pairs (v1, v2) where v1 is a domain value, v2 is a range value and v1 is mapped to
v2. The domain of a map is the set of values, v1, for which there exists a value,
v2, such that (v1, v2) is in the map. The range of a map is the set of values, v2, for
which there exists a value, v1, such that (v1, v2) is in the map.

Function Type Expressions 307

Attributes The maximal type of a map type expr of the form:

type expr1 →m type expr2

is t1 →m t2, where t1 and t2 are the maximal types of type expr1 and type expr2.

Meaning A map type expr represents the type of all maps, each of which has a
subset of the set of values of the type represented by the first type expr as domain
and a subset of the set of values of the type represented by the second type expr as
range.
A map can be applied to a value in its domain to find a corresponding value in

the range.
A map is characterized by its domain and the effect of applying it to members

of its domain.

41.8 Function Type Expressions

Syntax

function type expr ::=
type expr function arrow result desc

function arrow ::=
∼

→ |
→

result desc ::=
opt-access desc-string type expr

Terminology A function is applied in a state to a value of one type (the parameter
type), whereupon it can:

• Return a value of another type (the result type).
• Access variables by reading from them or writing to them.
• Access channels through input from them or output to them.

Attributes The maximal type of a function type expr of the form:

type expr1
∼

→ opt-access desc-string type expr2

or:

type expr1 → opt-access desc-string type expr2

is t1
∼

→ oads t2, where t1 and t2 are the maximal types of type expr1 and type expr2
and oads is the static access description of opt-access desc-string.

Meaning A function type expr represents a type of functions from the parameter
type represented by the type expr to the result type represented by the type expr
of the result desc. The access descs of the result desc specify which variables and
channels can be accessed when the functions are applied. Depending on the func-
tion arrow the functions are either partial or total, as described below.

308 Type Expressions

• Partial functions
A function type expr of the form:

type expr1
∼

→ opt-access desc-string type expr2

defines the type of partial functions from the first type expr to the second
type expr. This type contains those functions which satisfy the following con-
straint: for any such function f and for any x belonging to the maximal type
of the first type expr, the effect of the application value expression f (x) in any
state is such that:

– It only accesses the variables and channels described in the
opt-access desc-string.

– If it terminates (possibly after performing sequences of communications)
then the resulting value is in the maximal type of the second type expr.

– If it is convergent and x is in the type represented by the first type expr
then the resulting value is in the type represented by the second type expr.

• Total functions
A function type expr of the form:

type expr → result desc

is short for:

{| f : type expr
∼

→ result desc • ∀ x : type expr • f(x) post true |}

provided that f and x do not occur free in type expr and result desc.
That is, a function type expr of the form:

type expr1 → opt-access desc-string type expr2

defines the type of total functions from the first type expr to the second type -
expr. This type contains those functions belonging to the type represented
by:

type expr1
∼

→ opt-access desc-string type expr2

which satisfy the following constraint: for any such function f and for any
x belonging to the type represented by the first type expr, the effect of the
application value expression f (x) in any state is convergent.

41.9 Subtype Expressions

Syntax

subtype expr ::=
{| single typing pure-restriction |}

Scope and Visibility Rules The scope of the single typing is the restriction.

Context Conditions The restriction must be pure.

Bracketed Type Expressions 309

Attributes The maximal type of a subtype expr is the maximal type of the con-
stituent single typing.

Meaning A subtype expr represents a subtype of the type represented by the
single typing. The subtype contains any value that makes the restriction hold in all
states — evaluated in scope of the definitions given by matching the value against
the binding also represented by the single typing.

41.10 Bracketed Type Expressions

Syntax

bracketed type expr ::=
(type expr)

Attributes The maximal type of a bracketed type expr is the maximal type of
the constituent type expr.

Meaning A bracketed type expr represents the same type as represented by the
type expr.

41.11 Access Descriptions

Syntax

access desc ::=
access mode access-list

access mode ::=
read |
write |
in |
out

access ::=
variable or channel-name |
enumerated access |
completed access |
comprehended access

enumerated access ::=
{ opt-access-list }

completed access ::=
opt-qualification any

comprehended access ::=

310 Type Expressions

{ access | pure-set limitation }

Terminology A static read access description is a set of variables. A static write
access description is a set of variables. A static in access description is a set of
channels. A static out access description is a set of channels.
A static access is a set of variables or a set of channels.

Scope and Visibility Rules In a comprehended access the scope of the set -
limitation extends to the access.

Context Conditions For an access which is a name, the name must represent:

• A variable if it occurs in the access-list of an access desc having read or write
as access mode.

• A channel if it occurs in the access-list of an access desc having in or out as
access mode.

In a comprehended access the set limitation must be pure.

Attributes An opt-access desc-string and an access desc have four associated
static access descriptions: a static read access description, a static write access
description, a static in access description and a static out access description.
For a nil-access desc-string the static read, write, in and out access descriptions

are empty.
For an access desc-string the static read access description is the union of the

static read access descriptions of all its constituent access descs. Similarly, for
write, in and out access descriptions.
For an access desc having access mode read its static read access description is

equal to the union of the static accesses of its constituent accesses, while its static
write, in and out access descriptions are empty. Similarly for an access desc having
access mode in or out. For an access desc having access mode write its static read
and write access descriptions are both equal to the union of the static accesses of
its constituent accesses, while its static in and out access descriptions are empty.
An access has an associated static access. A static access is obtained from an ac-

cess basically by comprehending over the maximal array types of any object arrays
that are mentioned in qualifications. This is necessary because it is not possible
statically to distinguish between O[e].v and O[e′].v for arbitrary expressions e and
e′. Hence the static accesses of both these accesses is (if O is an object identifier
with maximal array type T):

{ O[i].v | i : T }

The static access of a name that is an unqualified identifier is the singleton set
consisting of the variable or channel the identifier represents.
The static access of a name of the form qualification id is the set of variables or

channels represented by id obtained by a comprehension over the maximal index
types of any object arrays mentioned in the qualification.
The static access of an enumerated access is the empty set if it has no constituent

accesses, otherwise it is the union of the static accesses of its constituent accesses.

Access Descriptions 311

The static access of a completed access of the form any is the set of all variables
or channels that are defined in the innermost enclosing class expression of the
completed access, or that could be defined in any extension of that class expression.
The static access of a completed access of the form qualification any is the union

of the sets of all variables or channels that are defined in the set of maximal classes
of the set of objects obtained by a comprehension over the maximal index types of
any of any object arrays mentioned in the qualification.
The static access of a comprehended access is the static access of its constituent

access.

Meaning The access descs in a function type expression restrict the set of func-
tions represented by the function type expression, by stating what variables and
channels can be accessed and how they can be accessed.
An opt-access desc-string and an access desc represent four sets of variables and

channels:

• A set of variables having read access mode, which may be read from.
• A set of variables having write access mode, which may be written to (that is,
changed by an assignment). Variables with write access mode automatically
have read access mode.

• A set of channels having in access mode, which may be input from.
• A set of channels having out access mode, which may be output to.

For a nil-access desc-string the read, write, in and out sets are empty.
For an access desc-string the read set is the union of the read sets represented

by all its constituent access descs. Similarly for write, in and out sets.
For an access desc having access mode read its read set is equal to the union of

the sets represented by its constituent accesses, while its write, in and out sets are
empty. Similarly for in and out.
For an access desc having access mode write its read set and write set are equal

to the union of the sets represented by its constituent accesses, while its in and out
sets are empty.
An access represents a set of variables or channels.
The set represented by a name is the singleton set consisting of the variable or

channel it represents.
The set represented by an enumerated access is the empty set if it has no con-

stituent accesses, otherwise it is the union of the sets represented by its constituent
accesses.
The set represented by a completed access of the form any is the set of all vari-

ables or channels that are defined in the innermost enclosing class expression of the
completed access, or that could be defined in any extension of that class expression.
The set represented by a completed access of the form qualification any is the set

of all variables or channels provided by the model represented by the qualification.
The set represented by a comprehended access is the following. For each model in

the set of models represented by the set limitation, the constituent access represents
a particular set. The result is the union of all these sets.

CHAPTER 42

Value Expressions

42.1 General

Syntax

value expr ::=
value literal |
value or variable-name |
pre name |
basic expr |
product expr |
set expr |
list expr |
map expr |
function expr |
application expr |
quantified expr |
equivalence expr |
post expr |
disambiguation expr |
bracketed expr |
infix expr |
prefix expr |
comprehended expr |
initialise expr |
assignment expr |
input expr |
output expr |
structured expr

Terminology A value expr is evaluated (or, synonymously, executed) in the scope
of a collection of definitions and in a state.

312

General 313

Occasionally we use the terminology that a value expr is evaluated ‘in a model’
(meaning a model satisfying the definitions) and in a state.
Often a value expr is said to be evaluated without mentioning a particular col-

lection of definitions or without mentioning a particular state. Such abbreviations
only occur where they cause no confusion.
The effect of a value expr on a state is obtained by evaluating the value expr in

the state, whereupon it can:

• Return a value.
• Access variables by reading from them or writing to them.
• Offer to access channels through input from them or output to them.

More formally, the effect of a value expr on a state is one of the following:

1. Possibly after changing the state, to terminate by returning a value.
2. Possibly after changing the state, to offer to communicate by waiting for input

from or output to a channel and to proceed with a further effect.
3. To allow an external choice between effects which fall into categories 1 or 2.
4. To deadlock by stopping (in which case any external choice between it and

another effect reduces to the other effect).
5. To allow an internal choice between effects which fall into categories 3 or 4.
6. To diverge by continuing without terminating, without offering to communi-

cate, and without deadlocking (in which case any external choice or internal
choice between it and another effect also diverges).

An effect is non-deterministic if it allows an internal choice between other effects.
In these circumstances, in particular, there may be more than one value that it
may be said to return and more than one change to the state that it may be said
to achieve.
The effect of a value expr on a state is said to converge if the following conditions

hold:

• The effect does not allow an internal choice between an effect and deadlock
(so that, in particular, it does not deadlock or diverge).

• The effect does not allow an internal choice between an effect and a different
effect which terminates without offering a communication (so, in particular,
if it can terminate then it does terminate and there is only one value that it
may be said to return and only one change to the state that it may be said to
achieve).

If there are several constituent value exprs in a value expr then the order of evalua-
tion of these will be stated; this is usually from left to right. This has importance
when the constituent value exprs write to variables, communicate along channels or
deadlock.
A value expr is said to statically read (from) the variables in its static read access

description, to statically write to the variables in its static write access descrip-
tion, to statically input from the channels in its static in access description and to
statically output to the channels in its static out access description.

314 Value Expressions

A value expr is said to statically access a variable if it statically reads from or
statically writes to it.

A value expr is said to statically access a channel if it statically inputs from or
statically outputs to it.

A value expr is said to be pure if it does not statically access any variable or
channel.

A value expr is said to be read-only if it does not statically write to any variable
and it does not statically access any channel.

Suppose there is a unique potential coercion (see section 41.1) from a type t1 to a
type t2, i.e. t1 is coercible to t2. Then if a value expression has maximal type t1 and
occurs in a context requiring it to have a maximal type t , of which t2 is a subtype,
then there is said to be an implicit coercion from t1 to t2 which is an application
of the potential coercion (from t1 to t2) to the value expression. Note that in these
circumstances t1 is less than or equal to t , so there is an implicit coercion (which
may be an application of the identity function) whenever a context condition says
that the maximal type of a value expression must be less than or equal to another
type. There are similar implicit coercions for patterns — see section 45.1.

Similarly, if:

• Maximal type t1 is coercible to maximal type t2.
• Maximal type t3 is coercible to maximal type t4.
• t1 and t3 have no least upper bound,
• t2 and t4 have a least upper bound t,
• There are two expressions of types t1 and t3 respectively in a context where
they are required to have a least upper bound.

Then there are said to be implicit coercions of the two expressions from t1 to t2
and t3 to t4 respectively. This may be generalized to a collection of an arbitrary
number of value expressions.

Context Conditions Implicit coercions must be unique.

Context-dependent Expansions A value expression for which there is an im-
plicit coercion which is not the identity function is short for the value expression
obtained by application of the coercion.

Attributes A value expr has an associated maximal type (such that if the value -
expr terminates then its value belongs to its maximal type).

A value expr has also four associated static access descriptions: a static read
access description, a static write access description, a static in access description
and a static out access description. These access descriptions are such that the
value expr statically reads a variable if the effect of the expression potentially reads
that variable, and similarly for write, input and output.

The specific maximal types and static access descriptions are defined for each of
the alternatives in the following sections.

Value Literals 315

42.2 Value Literals

Syntax

value literal ::=
unit literal |
bool literal |
int literal |
real literal |
text literal |
char literal

unit literal ::=
()

bool literal ::=
true |
false

Appendix C describes the syntax for int literal, real literal, text literal and char literal.

Attributes

The maximal type of a unit literal is Unit.

The maximal type of a bool literal is Bool.

The maximal type of a int literal is Int.

The maximal type of a real literal is Real.

The maximal type of a text literal is Charω.

The maximal type of a char literal is Char.

A value literal does not statically access any variables or channels.

Meaning The effect of a value literal is to return the value represented by the
literal.

A text value literal of the form ′′c1 ... cn
′′ is short for 〈′c1

′,...,′cn
′〉.

42.3 Names

Context Conditions For a value expr which is a name, the name must represent
a value or a variable.

Attributes The maximal type of a name is stated in chapter 46.

A name representing a value does not statically access any variables or channels.
A name representing a variable statically reads that variable; it has no other static
accesses.

Meaning See chapter 46.

316 Value Expressions

42.4 Pre-names

Syntax

pre name ::=

variable-namè

Scope and Visibility Rules If there are any local variable definitions in the
innermost enclosing post-condition then they are not visible in the name.

Context Conditions A pre name must occur within a post-condition.
The name must represent a variable.

Attributes The maximal type of a pre name is the maximal type of the con-
stituent name.
A pre name statically reads the variable that it represents; it has no other static

accesses.

Meaning A pre name occurs within a post-condition, see section 42.14. The effect
of a pre name is to return the contents in the pre-state of the variable represented
by name.

42.5 Basic Expressions

Syntax

basic expr ::=
chaos |
skip |
stop |
swap

Attributes The maximal type of skip is Unit. The maximal type of chaos,
stop and swap can be any maximal type.
A basic expr does not statically access any variables or channels.

Meaning

• The effect of chaos is to diverge.
• The effect of skip is to return the unit value of type Unit.
• The effect of stop is to deadlock.
• The effect of swap is not specified; it may be to terminate, to deadlock, to
allow an internal choice or to diverge.

42.6 Product Expressions

Syntax

product expr ::=
(value expr-list2)

Set Expressions 317

Attributes The maximal type of a product expr of the form:

(value expr1,...,value exprn)

is t1 × ...× tn , where t1, ..., tn are the maximal types of value expr1, ..., value exprn .
A product expr statically accesses the variables and channels which the con-

stituent value exprs statically access.

Meaning The effect of a product expr of the form (value expr1,...,value exprn) is
obtained by evaluating, from left to right, each value expri to give a value vi , and
then to return the product value (v1,...,vn).

42.7 Set Expressions

Syntax

set expr ::=
ranged set expr |
enumerated set expr |
comprehended set expr

42.7.1 Ranged Set Expressions

Syntax

ranged set expr ::=
{ readonly integer-value expr .. readonly integer-value expr }

Context Conditions The constituent value exprs must be read-only and must
have maximal type Int.

Attributes The maximal type of a ranged set expr is Int-infset.
A ranged set expr statically reads the variables which the constituent value exprs

statically read; it has no other static accesses.

Meaning The effect of a ranged set expr is to return a set of integers in a range
delimited by a lower bound and an upper bound.
The first value expr is evaluated to return the lower bound i1 and the second

value expr is then evaluated to return the upper bound i2. The set contains all
integers i such that i1 ≤ i ≤ i2. If i1 > i2 then the set is empty.

42.7.2 Enumerated Set Expressions

Syntax

enumerated set expr ::=
{ readonly-opt-value expr-list }

Context Conditions The constituent value exprs must be read-only.
The maximal types of the constituent value exprs must have a least upper bound.

318 Value Expressions

Attributes The maximal type of an enumerated set expr having one or more
constituent value exprs is t-infset, where t is the least upper bound of the maximal
types of the constituent value exprs. The maximal type of an enumerated set expr
having no constituent value exprs (an empty set) is t-infset, where t is a type
variable representing an arbitrary maximal type.
An enumerated set expr statically reads the variables which the constituent val-

ue exprs statically read; it has no other static accesses.

Meaning The effect of an enumerated set expr is to return a set of explicitly
specified values.
The effect of an enumerated set expr of the form {value expr1,...,value exprn} is

obtained by evaluating, from left to right, each value expri to give a value vi , and
then to return the set value {v1,...,vn}.
If value expr-list is absent, the empty set is returned.

42.7.3 Comprehended Set Expressions

Syntax

comprehended set expr ::=
{ readonly-value expr | set limitation }

set limitation ::=
typing-list opt-restriction

restriction ::=
• readonly logical-value expr

Context-independent Expansions A nil-restriction is short for the restriction
‘• true’.
A restriction ‘• value expr’ is short for the restriction ‘• value expr ≡ true’.

Scope and Visibility Rules In a comprehended set expr the scope of the set li-
mitation extends to the constituent value expr.
In a set limitation the immediate scope of the typings is the constituent restriction.

Context Conditions In a comprehended set expr the constituent value exprmust
be read-only.
In a restriction the constituent value expr must be read-only and must have the

maximal type Bool.

Attributes The maximal type of a comprehended set expr is t-infset, where t is
the maximal type of the constituent value expr.
A comprehended set expr statically accesses the variables and channels which the

constituent value expr and set limitation statically access.
A set limitation in which a restriction is present statically accesses the variables

and channels which the constituent restriction statically accesses.

List Expressions 319

A restriction statically reads the variables which the constituent value expr stati-
cally reads; it has no other static accesses.

Meaning The effect of a comprehended set expr is to return a set, the elements
of which are obtained by evaluating the value expr in all those models that satisfy
a certain restriction.
For each model in the set of models represented by the set limitation (see below),

the value expr is evaluated. A comprehended set expr is convergent.
A set limitation represents a subset of the models that satisfy the definitions

represented by the typing-list: those that make the restriction hold.
A restriction holds if the constituent value-expr is convergent and returns the value

true.

42.8 List Expressions

Syntax

list expr ::=
ranged list expr |
enumerated list expr |
comprehended list expr

42.8.1 Ranged List Expressions

Syntax

ranged list expr ::=
〈 integer-value expr .. integer-value expr 〉

Context Conditions The constituent value exprs must have maximal type Int.

Attributes The maximal type of a ranged list expr is Intω.
A ranged list expr statically accesses the variables and channels which the con-

stituent value exprs statically access.

Meaning The effect of a ranged list expr is to return a list of integers in a range
delimited by a lower bound and an upper bound.
The first value expr is evaluated to return the lower bound i1 and the second

value expr is then evaluated to return the upper bound i2. The list contains all
integers i such that i1 ≤ i ≤ i2, in increasing order. If i1 > i2 then the list is empty.

42.8.2 Enumerated List Expressions

Syntax

enumerated list expr ::=
〈 opt-value expr-list 〉

320 Value Expressions

Context Conditions The maximal types of the constituent value exprs must
have a least upper bound.

Attributes The maximal type of an enumerated list expr having one or more
constituent value exprs is tω, where t is the least upper bound of the maximal types
of the constituent value exprs.

The maximal type of an enumerated list expr having no constituent value exprs
(an empty list) is tω, where t is a type variable representing an arbitrary maximal
type.

An enumerated list expr statically accesses the variables and channels which the
constituent value exprs statically access.

Meaning The effect of an enumerated list expr is to return a list of explicitly
specified values.

The effect of an enumerated list expr of the form 〈value expr1,...,value exprn〉 is
obtained by evaluating, from left to right, each value expri to give a value vi , and
then to return the list value 〈v1,...,vn〉.

If value expr-list is absent, the empty list is returned.

42.8.3 Comprehended List Expressions

Syntax

comprehended list expr ::=
〈 value expr | list limitation 〉

list limitation ::=
binding in readonly list-value expr opt-restriction

Scope and Visibility Rules In a comprehended list expr the scope of the list -
limitation extends to the constituent value expr.

In a list limitation the immediate scope of the binding is the constituent restriction.

Context Conditions In a list limitation the constituent value expr must be read-
only and must have a maximal type which is a list type.

Attributes The maximal type of a comprehended list expr is tω, where t is the
maximal type of the constituent value expr.

In a list limitation the maximal context type of the constituent binding is t , where
tω is the maximal type of the constituent value expr.

A comprehended list expr statically accesses the variables and channels which the
constituent value expr and list limitation statically access.

A list limitation statically reads the variables which the constituent value expr
statically reads. If a restriction is present it also accesses the variables and channels
that the restriction statically accesses. It has no other static accesses.

Map Expressions 321

Meaning The effect of a comprehended list expr is to return a list generated on
the basis of another list.
For each model in the list of models represented by the list limitation (see below)

the value expr is evaluated, and the returned value is included in the result list at
the corresponding position. The list of models represented by the list limitation is
processed from left to right.
A list limitation evaluates to a list of models as follows. The value expr in the

list limitation returns a list. Each element in the list, processed from left to right,
is then matched against the binding to give a collection of definitions. If the model
(there is precisely one) satisfying these definitions makes the restriction hold, the
model is included in the resulting list of models at the corresponding position.

42.9 Map Expressions

Syntax

map expr ::=
enumerated map expr |
comprehended map expr

42.9.1 Enumerated Map Expression

Syntax

enumerated map expr ::=
[opt-value expr pair-list]

value expr pair ::=
readonly-value expr 7→ readonly-value expr

Context Conditions In an enumerated map expr the maximal domain types of
the the constituent value expr pairs must have a least upper bound and the maximal
range types of the the constituent value expr pairs must have a least upper bound.
In a value expr pair the value exprs must be read-only.

Attributes The maximal type of an enumerated map expr having one or more
constituent value expr pairs is t1 →m t2, where t1 is the least upper bound of the
maximal domain types and t2 is the least upper bound of the maximal range types
of the constituent value expr pairs.
The maximal type of an enumerated map expr having no constituent value exprs

(an empty map) is t1 →m t2, where t1 and t2 are type variables representing arbitrary
maximal types.
The maximal domain type and the maximal range type of a value expr pair are

the maximal types of the first and second constituent value exprs respectively.
An enumerated map expr statically accesses the variables and channels which the

constituent value expr pairs statically access.

322 Value Expressions

A value expr pair statically reads the variables which the constituent value exprs
statically read; it has no other static accesses.

Meaning The effect of an enumerated map expr is to return a map of explicitly
specified pairs.
The effect of an enumerated map expr of the form

[value expr pair1,...,value expr pairn]

is obtained by evaluating, from left to right, each value expr pairi to give a value
pair (v1,v2), and then to return the map value containing all these pairs.
The effect of a value expr pair is obtained by evaluating the first value expr to

give a value v1 and then evaluating the second value expr to give a value v2, and
then to return the pair (v1,v2).
If the value expr pair-list is absent, the empty map is returned.

42.9.2 Comprehended Map Expressions

Syntax

comprehended map expr ::=
[value expr pair | set limitation]

Scope and Visibility Rules In a comprehended map expr the scope of the set -
limitation extends to the constituent value expr pair.

Attributes The maximal type of a comprehended map expr is t1 →m t2, where t1
is the maximal domain type and t2 is the maximal range type of the constituent
value expr pair.
A comprehended map expr statically accesses the variables and channels which

the constituent value expr pair and set limitation statically access.

Meaning The effect of a comprehended map expr is to return a map, the pairs of
which are obtained by evaluating the value expr pair in all those models that satisfy
a certain restriction.
For each model in the set of models represented by the set limitation, the value -

expr pair is evaluated. If the value expr pair is convergent, the resulting value pair
is included in the map. In the case of non-convergence, the particular evaluation
does not contribute a pair. A comprehended map expr is convergent.

42.10 Function Expressions

Syntax

function expr ::=
λ lambda parameter • value expr

lambda parameter ::=
lambda typing |

Application Expressions 323

single typing

lambda typing ::=
(opt-typing-list)

Context-independent Expansions A function expr where the lambda parameter
is a lambda typing is short for a function expression of the form:

λ single typing • value expr

A function expr of the form:

λ () • value expr

is short for:

λ id : Unit • value expr

where id is some identifier not already in scope.
A function expr of the form:

λ (typing-list) • value expr

is short for:

λ single typing • value expr

where typing-list is short for single typing (see chapter 44).

Scope and Visibility Rules In a function expr the scope of the lambda par-
ameter is value expr.

Attributes The maximal type of a function expr in which the lambda parameter
is a single typing is t1

∼

→ oads t2, where t1 is the maximal type of the single typing,
t2 is the maximal type of the value expr and oads is a description of variables and
channels the value expr statically accesses.
A function expr does not statically access any variables or channels.

Meaning The effect of a function expr of the form:

λ single typing • value expr

is to return a function, say f , defined as follows.
The single typing represents a (parameter) type and a (parameter) binding as

described in chapter 44. The effect of applying the function f to a value v within the
parameter type is the effect of evaluating the value expr in scope of the definitions
given by matching v against the parameter binding.

42.11 Application Expressions

Syntax

application expr ::=
list or map or function-value expr actual function parameter-string

324 Value Expressions

actual function parameter ::=
(opt-value expr-list)

Context-independent Expansions Any application expr can be expanded into
an application expression of the form:

value expr1(value expr2)

An application expr of the form:

value expr actual function parameter1 ...actual function parametern

where n > 1, is short for:

(...(value expr actual function parameter1)...) actual function parametern

An application expr of the form:

value expr()

is short for:

value expr(())

An application expr of the form:

value expr(value expr1,...,value exprn)

where n > 1, is short for:

value expr((value expr1,...,value exprn))

Context Conditions In an application expr having only one actual function par-
ameter the maximal type of the value expr must be a list type, a map type or a
function type. Furthermore, if the maximal type of the value expr is:

• A list type, tω, then the maximal type of the actual function parameter must
be Int.

• A map type, t1 →m t2, then the maximal type of the actual function parameter
must be less than or equal to the type t1.

• A function type, t1
∼

→ oads t2, then the maximal type of the actual function pa-
rameter must be less than or equal to the type t1.

Attributes The maximal type of an application expr having only one actual -
function parameter is determined by the maximal type of the constituent value expr.
If this is:

• A list type, tω, then it is the element type, t .
• A map type, t1 →m t2, then it is the range type t2.
• A function type, t1

∼

→ oads t2, then it is the result type, t2.

The maximal type of an actual function parameter having one constituent value expr
is the maximal type of the constituent value expr.
An application expr having only one actual function parameter statically accesses

the variables and channels which the constituent value expr and actual function par-

Quantified Expressions 325

ameter statically access and, if the value expr has a maximal type which is a function
type, t1

∼

→ oads t2, then also the variables and channels which the function body
statically accesses as described in oads .
An actual function parameter having one constituent value expr statically accesses

the variables and channels which the constituent value expr accesses.

Meaning The effect of an application expr is obtained by applying an applicable
value, which is a list, map or function, to an actual parameter.
The effect of an application expr of the form:

value expr1(value expr2)

is obtained by evaluating value expr2 to give an actual parameter and then evalu-
ating the value expr1 to give an applicable value, and finally applying the applicable
value to the actual parameter.
The application of the applicable value to the actual parameter is done as follows:

• If the applicable value is a list then the actual parameter must be in the index
set of the list (the set of integers between one and the length of the list).
In that case, the list element at that position becomes the value returned.
Otherwise it is under-specified.

• If the applicable value is a map then the actual parameter must be in the
domain of the map. In that case, the returned value is the one mapped to by
the actual parameter if there is precisely one, or a non-deterministic choice
between the values mapped to by the actual parameter if there are more than
one. If the actual parameter is not in the map then the result of the application
is under-specified.

• If the applicable value is a function then the function it represents is applied
to the actual parameter.

42.12 Quantified Expressions

Syntax

quantified expr ::=
quantifier typing-list restriction

quantifier ::=
∀ |
∃ |
∃!

Scope and Visibility Rules In a quantified expr the scope of the constituent
typings is the restriction.

Attributes The maximal type of a quantified expr is Bool.
A quantified expr statically accesses the variables and channels which the con-

stituent restriction statically accesses.

326 Value Expressions

Meaning The effect of a quantified expr is to return a Boolean value depending
on the value returned by a predicate for each model in a set of models.
The models concerned are all those that satisfy the definitions represented by

the typing-list.
If the quantifier is ∀, the returned value is true if and only if the restriction holds

for all the models.
If the quantifier is ∃, the returned value is true if and only if the restriction holds

for at least one of the models.
If the quantifier is ∃!, the returned value is true if and only if the restriction holds

for exactly one of the models.
A quantified expr is convergent.

42.13 Equivalence Expressions

Syntax

equivalence expr ::=
value expr ≡ value expr opt-pre condition

pre condition ::=
pre readonly logical-value expr

Context Conditions The maximal types of the the constituent value exprs must
have a least upper bound.
In a pre condition the value expr must be read-only and must have the maximal

type Bool.

Context-dependent Expansions An equivalence expr of the form:

value expr1 ≡ value expr2 pre value expr3

is short for:

(value expr3 ≡ true) ⇒ value expr1 ≡ value expr2

Attributes The maximal type of an equivalence expr is Bool.
A pre condition statically reads the variables which the constituent value expr

statically reads. It does not statically access any channels.
An equivalence expr statically reads the variables which the constituent value -

exprs statically read or write. It also statically reads the variables that the pre -
condition (if any) statically reads. It does not statically access any channels.

Meaning The effect of an equivalence expr is to return a Boolean value that
depends on whether the two value exprs give the same effect, when each is evaluated
in the current state. The effects of the value exprs are only used to determine this
Boolean value and are ignored thereafter.
The value returned by an equivalence expr of the form:

value expr1 ≡ value expr2

Post-expressions 327

is true if and only if value expr1 evaluated in the current state represents exactly the
same effect as value expr2 evaluated in the same state. That is, the two value exprs
must represent the same effect in respect of returned values, state changes, offers
to communicate, external choices, deadlocks, internal choices and divergences.
An equivalence expr is convergent.

42.14 Post-expressions

Syntax

post expr ::=
value expr post condition opt-pre condition

post condition ::=
opt-result naming post readonly logical-value expr

result naming ::=
as binding

Scope and Visibility Rules In a post condition the scope of the opt-result na-
ming is the value expr.

Context Conditions In a post condition the value expr must be read-only and
must have the maximal type Bool.

Context-dependent Expansions A post expr of the form:

value expr1 post value expr2

is short for:

value expr1 as id post value expr2

where id is some identifier not already in scope.
A post expr of the form:

value expr1 post condition pre value expr2

is short for:

(value expr2 ≡ true) ⇒ value expr1 post condition

Attributes The maximal type of a post expr is Bool.
The context of a post condition determines a maximal context type for the

post condition.
In a post expr the maximal context type for the post condition is the maximal

type of the constituent value expr.
In a result naming the maximal context type of the binding is the maximal context

type of the innermost enclosing post condition.
A post expr statically reads the variables which the constituent value expr stati-

cally reads or writes. It also statically reads the variables that the pre condition (if
any) statically reads. It does not statically access any channels.

328 Value Expressions

Meaning The effect of a post expr is to return a Boolean value that depends on
the effect of value expr when evaluated in the current state, the ‘pre-state’. The
effect of value expr is only used to determine this Boolean value and is ignored
thereafter.
The value returned by a post expr of the form:

value expr1 as binding post value expr2

is true if and only if:

• value expr1 is convergent.
• value expr2 is convergent and evaluates to true in the post-state resulting
from the evaluation of value expr1 in the pre-state and in the scope of the
definitions given by matching the value returned by value expr1 against the
binding .

Within value expr2, values of variables in the pre-state can be referred to by suf-
fixing the variable names with a hook (pre name). Variables of the post-state are
accessed through their normal (un-hooked) names.
A post expr is convergent.

42.15 Disambiguation Expressions

Syntax

disambiguation expr ::=
value expr : type expr

Context Conditions The maximal type of the value expr must be less than or
equal to the maximal type of the type expr.

Attributes The maximal type of a disambiguation expr is the maximal type of
the type expr. A disambiguation expr statically accesses the variables and channels
which the constituent value expr statically accesses.

Meaning The effect of a disambiguation expr is the effect of the value expr.

42.16 Bracketed Expressions

Syntax

bracketed expr ::=
(value expr)

Attributes The maximal type of a bracketed expr is the maximal type of the
value expr.
A bracketed expr statically accesses the variables and channels which the con-

stituent value expr statically accesses.

Meaning The effect of a bracketed expr is the effect of the value expr.

Infix Expressions 329

42.17 Infix Expressions

Syntax

infix expr ::=
stmt infix expr |
axiom infix expr |
value infix expr

42.17.1 Statement Infix Expressions

Syntax

stmt infix expr ::=
value expr infix combinator value expr

Context Conditions For the infix combinator which is:
⌈⌉⌊⌋ or ⌈⌉: the maximal types of the two value exprs must have a least upper bound.
‖ or –‖: the two value exprs must have the maximal type Unit.
; : the first value expr must have the maximal type Unit.

Attributes For the infix combinator which is:
⌈⌉⌊⌋ or ⌈⌉: the maximal type of the stmt infix expr is the least upper bound of the

maximal types of the constituent value exprs.
‖, –‖: the maximal type of the stmt infix expr is Unit.
; : the maximal type of the stmt infix expr is the maximal type of the second

constituent value expr.
A statement infix expr statically accesses the variables and channels which the

two constituent value exprs statically access.

Meaning See the definition of infix combinators (chapter 49).

42.17.2 Axiom Infix Expressions

Syntax

axiom infix expr ::=
logical-value expr infix connective logical-value expr

Context Conditions The two value exprs must have the maximal type Bool.

Context-dependent Expansions See section 48.1 on infix connectives.

42.17.3 Value Infix Expressions

Syntax

value infix expr ::=
value expr infix op value expr

330 Value Expressions

Context Conditions The type t1 × t2, where t1 and t2 are the maximal types
of the two value exprs, must be less than or equal to the parameter type part of the
maximal type of the infix op.

Attributes The maximal type of a value infix expr is the result type part of the
maximal type of the infix op.
A value infix expr statically accesses the variables and channels which the con-

stituent value exprs statically access and the variables and channels which the func-
tion body statically accesses, as described in the static access descriptions of the
maximal type of the infix op.

Meaning The effect of a value infix expr is obtained by evaluating the first value -
expr to give a value v1, and then evaluating the second value expr to give a value v2,
and then to return the result of applying the function determined by the infix op
to the pair (v1, v2).

42.18 Prefix Expressions

Syntax

prefix expr ::=
axiom prefix expr |
universal prefix expr |
value prefix expr

42.18.1 Axiom Prefix Expressions

Syntax

axiom prefix expr ::=
prefix connective logical-value expr

Context-independent Expansions See section 48.2 on prefix connectives.

42.18.2 Universal Prefix Expressions

Syntax

universal prefix expr ::=
✷ readonly logical-value expr

Context-independent Expansions A universal prefix expr:

✷ value expr

is equivalent to:

✷ (value expr ≡ true)

Context Conditions The value expr must have the maximal type Bool.
The constituent value expr must be read-only.

Comprehended Expressions 331

Attributes The maximal type of a universal prefix expr is Bool.
A universal prefix expr does not statically access any variables or channels.

Meaning A universal prefix expr of the form:

✷ value expr

gives true if and only if for all states in which the values of variables are within
the types of the variables, the value expr is convergent and gives the value true.
The universal prefix expr itself is convergent.

42.18.3 Value Prefix Expressions

Syntax

value prefix expr ::=
prefix op value expr

Context Conditions The maximal type of the value expr must be less than or
equal to the parameter part of the maximal type of the prefix op.

Attributes The maximal type of a value prefix expr is the result type part of the
maximal type of the prefix op.
A value prefix expr statically accesses the variables and channels which the con-

stituent value expr statically accesses and the variables and channels which the
function body statically accesses as described in the static access descriptions of
the maximal type of the prefix op.

Meaning The effect of a value prefix expr is to return the value obtained by apply-
ing the function determined by the prefix op to the value returned by the value expr.

42.19 Comprehended Expressions

Syntax

comprehended expr ::=
associative commutative-infix combinator { value expr | set limitation }

Scope and Visibility Rules In a comprehended expr the scope of the set limi-
tation extends to the value expr.

Context Conditions The infix combinator must be associative and commuta-
tive, that is, it must be one of the following: ‖, ⌈⌉⌊⌋, ⌈⌉.
For the infix combinator ‖ the value expr must have the maximal type Unit.

Attributes The maximal type of a comprehended expr is the maximal type of the
value expr.
A comprehended expr statically accesses the variables and channels which the

constituent value expr and set limitation statically access.

332 Value Expressions

Meaning The effect of a comprehended expr is obtained by applying an infix -
combinator to a set of value exprs instead of to just two value exprs. This has a
straightforward explanation, since the infix combinators possible here are all com-
mutative and associative.
The set contains a value expr for each model in the set of models represented

by the set limitation. The value expr is evaluated in that model and in the current
state. The effect of evaluating the comprehended expr is the effect of allowing an
external choice between the effects of evaluating the value expr in these models (in
the case of ⌈⌉⌊⌋), allowing an internal choice between the effects of evaluating the
value expr in these models (in the case of ⌈⌉) and evaluating value expr concurrently
in these models (in the case of ‖).
If the set contains a single value expr, the comprehended expr represents the same

effect as the value expr. If the set is empty:

⌈⌉⌊⌋ {} ≡ stop
⌈⌉ {} ≡ swap
‖ {} ≡ skip

42.20 Initialise Expressions

Syntax

initialise expr ::=
opt-qualification initialise

Attributes The maximal type of an initialise expr is Unit.
An initialise expr statically writes to all the variables initialised by it. It does not

statically access any channels.

Meaning The effect of an initialise expr is to assign to variables their initial values.
The value returned by the initialise expr is the unit value. The initial value of a
variable may be given explicitly in the definition of the variable; if it is not given
explicitly there, none the less there is a particular value which is always assigned
to the variable by an initialise expr.
If the qualification is absent, all variables determined by the access ‘any’ are

initialised (see section 41.11).
If the qualification is present, it represents a model. All the variables in that

model are then initialised. That is, all the variables determined by the access
‘qualification any’ are initialised (see section 41.11).

42.21 Assignment Expressions

Syntax

assignment expr ::=
variable-name := value expr

Input Expressions 333

Context Conditions The name must represent a variable.
The maximal type of the value expr must be less than or equal to the maximal

type of the name.

Attributes The maximal type of an assignment expr is Unit.
An assignment expr statically writes to the variable represented by the constituent

name and also statically accesses the variables or channels which the constituent
value expr statically accesses.

Meaning The effect of an assignment expr is to write (or, synonymously, assign)
the value of the value expr to the variable represented by the name. The value
returned by the assignment expr is the unit value.

42.22 Input Expressions

Syntax

input expr ::=
channel-name ?

Context Conditions The name must represent a channel.

Attributes The maximal type of an input expr is the maximal type of the con-
stituent name.
An input expr statically inputs from the channel represented by the constituent

name. It does not statically access any variables.

Meaning The effect of an input expr is to offer to input from the channel repre-
sented by the name. The value returned by the input expr is the value input from
the channel, in the event of the offer to input being matched by a concurrent offer
to output to the same channel.

42.23 Output Expressions

Syntax

output expr ::=
channel-name ! value expr

Context Conditions The name must represent a channel.
The maximal type of the value expr must be less than or equal to the maximal

type of the name.

Attributes The maximal type of an output expr is Unit.
An output expr statically outputs to the channel represented by the constituent

name and also statically accesses the variables or channels which the constituent
value expr statically accesses.

334 Value Expressions

Meaning The effect of an output expr is to offer to output to the channel rep-
resented by the name. The value offered is the value returned by the value expr.
The value returned by the output expr is the unit value, in the event of the offer to
output being matched by a concurrent offer to input from the same channel.

42.24 Structured Expressions

Syntax

structured expr ::=
local expr |
let expr |
if expr |
case expr |
while expr |
until expr |
for expr

42.24.1 Local Expressions

Syntax

local expr ::=
local opt-decl-string in value expr end

Scope and Visibility Rules The scope of the opt-decl-string is opt-decl-string
itself and the value expr. Note that this means that the order of the definitions in
the opt-decl-string is immaterial.

Context Conditions The constituent decls must be compatible.
The maximal type of the value expr must not involve sorts, variables or channels

defined in the constituent decls.

Attributes The maximal type of a local expr is the maximal type of the value -
expr.
A local expr statically accesses the non-local variables and channels (i.e. variables

and channels not defined in the opt-decl-string) which the value expr statically
accesses.

Meaning The effect of a local expr is the effect of the value expr evaluated in
scope of the definitions that the decls stand for. The value expr is evaluated in each
of the models satisfying the definitions and a non-deterministic choice is made
between the resulting effects.
At the end of the evaluation of the value expr any outstanding communication

offered along a channel declared in the opt-decl-string is concealed by being replaced
by stop.

Structured Expressions 335

42.24.2 Let Expressions

Syntax

let expr ::=
let let def-list in value expr end

let def ::=
typing |
explicit let |
implicit let

explicit let ::=
let binding = value expr

implicit let ::=
single typing restriction

let binding ::=
binding |
record pattern |
list pattern

Context-independent Expansions A let expr involving more than one let def
is short for a number of nested let expressions with single let definitions. That is,
a let expr of the form:

let let def1, ... ,let defn in value expr end

is short for:

let let def1 in
...

let let defn in value expr end
...

end

Scope and Visibility Rules In a let expr of the form:

let let def in value expr end

the scope of let def is value expr.

Attributes The maximal type of a let expr is the maximal type of the value expr.
In an explicit let the maximal context type of the let binding is the maximal type

of the value expr.
A let expr statically accesses the variables and channels which the constituent

let defs and value expr statically access.
A typing does not statically access any variables or channels.

336 Value Expressions

An explicit let statically accesses the variables and channels which the constituent
value expr statically accesses.
An implicit let statically accesses the variables and channels which the constituent

restriction statically accesses.

Meaning A let expr — with only a single let def — of the form:

let let def in value expr end

is evaluated as follows. The let def represents a set of models as described below.
The value expr is evaluated in each of these models and a non-deterministic choice
is made between the resulting effects.
There are three kinds of let defs:

• A let def of the form of a typing represents the set of models that satisfy the
definitions represented by the typing.

• A let def of the form of an implicit let represents a subset of the models that
satisfy the definitions represented by the single typing: those in which the
restriction holds.

• A let def of the form of an explicit let represents a set of models obtained as
follows. The value expr is evaluated to return a value which is then matched
against the let binding. If the value matches the let binding, the result is a
collection of definitions and the model set contains the single model that
satisfies these. If, on the other hand, the value does not match the let binding,
the model set is empty.

42.24.3 If Expressions

Syntax

if expr ::=
if logical-value expr then

value expr
opt-elsif branch-string
opt-else branch
end

elsif branch ::=
elsif logical-value expr then value expr

else branch ::=
else value expr

Context-independent Expansions An if expr involving elsif branches is short
for a number of nested if exprs without elsif branches. An if expr of the form:

if value expr1 then value expr1
′

elsif value expr2 then value expr2
′

Structured Expressions 337

...
elsif value exprn then value exprn

′

opt-else branch
end

is short for:

if value expr1 then value expr1
′ else

if value expr2 then value expr2
′ else

...
if value exprn then value exprn

′ opt-else branch end
...

end
end

An if expr of the form:

if value expr1 then value expr2 end

is short for:

if value expr1 then value expr2 else skip end

Context Conditions In an if expr of the form:

if value expr1 then value expr2 else value expr3 end

value expr1 must have the maximal typeBool and the maximal types of value expr2
and value expr3 must have a least upper bound.

Attributes The attributes for an if expr of the form:

if value expr1 then value expr2 else value expr3 end

are as follows.
The maximal type is the least upper bound of the maximal types of value expr2

and value expr3.
The if expr statically accesses the variables and channels which value expr1, val-

ue expr2 and value expr3 statically access.

Meaning The effect of an if expr is to determine the applicable alternative fol-
lowed by the effect of that alternative. An if expr of the form:

if value expr1 then value expr2 else value expr3 end

is evaluated by evaluating value expr1 to return a Boolean value — the test value.
If the test value is equal to true, value expr2 is evaluated. Alternatively, if the test
value is equal to false, value expr3 is evaluated.

42.24.4 Case Expressions

Syntax

338 Value Expressions

case expr ::=
case value expr of case branch-list end

case branch ::=
pattern → value expr

Scope and Visibility Rules In a case branch the scope of the pattern is the
value expr.

Context Conditions In a case expr the maximal types of the value exprs in the
constituent case branches must have a least upper bound.

Attributes The maximal type of a case expr is the least upper bound of the
maximal types of the value exprs in the constituent case branches.
In a case expr the maximal context type of the patterns in the case branches is

the maximal type of the value expr.
A case expr statically accesses the variables and channels which the constituent

value expr and case branches statically access.
A case branch statically accesses the variables and channels which the constituent

value expr statically accesses.

Meaning The effect of a case expr is to evaluate the value expr, determine the
matching case branch and then to evaluate the value expr part of that case branch.
The value expr is evaluated to return a value — the test value. Then the

case branches are processed from left to right until the test value succeeds in match-
ing a pattern. The successful pattern matching then results in a collection of defini-
tions. The corresponding value expr in the matching case branch is then evaluated
in the scope of these definitions.
If there is no matching case branch, the effect of the case expr is that of a non-

deterministic choice between the effects in an empty set, i.e. swap.

42.24.5 While Expressions

Syntax

while expr ::=
while logical-value expr do unit-value expr end

Context Conditions The first value expr must have the maximal type Bool.
The second value expr must have the maximal type Unit.

Attributes The maximal type of a while expr is Unit.
A while expr statically accesses the variables and channels which the constituent

value exprs statically access.

Meaning The effect of a while expr is to repeat the evaluation of the second
value expr while the first Boolean value expr evaluates to true. The value returned
by the while expr is the unit value.
The following equivalence holds:

Structured Expressions 339

while value expr1 do value expr2 end
≡

if value expr1 then
value expr2 ; while value expr1 do value expr2 end

else skip end

42.24.6 Until Expressions

Syntax

until expr ::=
do unit-value expr until logical-value expr end

Context-independent Expansions An until expr of the form:

do value expr1 until value expr2 end

is short for:

value expr1 ; while ∼value expr2 do value expr1 end

42.24.7 For Expressions

Syntax

for expr ::=
for list limitation do unit-value expr end

Context Conditions The value expr must have the maximal type Unit.

Context-dependent Expansions A for expr of the form:

for list limitation do value expr end

is short for:

let id = 〈 value expr | list limitation 〉 in skip end

CHAPTER 43

Bindings

Syntax

binding ::=
id or op |
product binding

product binding ::=
(binding-list2)

Terminology A value can be matched against a binding to give a collection of
value definitions.

Context Conditions The maximal context type for a binding which is an op
must be a function type which is distinguisable from the maximal type(s) of the
predefined meaning(s) of op. If the op is an infix op then the function type must
have a parameter type which is a product type of length 2.
The maximal context type of a product binding must be a product type of the

same length as the binding-list2.
In a product binding the constituent bindings must be compatible.

Attributes The context of a binding determines a maximal context type for the
binding. For constructs containing bindings, this maximal context type is stated in
the relevant sections.
An id or op which is a binding has as maximal type the maximal context type of

the binding.
In a product binding of the form (binding1, ..., bindingn) having a context type of

the form t1 × ... × tn , the maximal context types of binding1, ..., bindingn are t1,
..., tn respectively.

Meaning Matching a value, say v , of maximal context type t against a binding
of the form id or op gives the value definition:

id or op : t = v

340

Bindings 341

Matching a product value, say (v1, ..., vn), of maximal context type t1 × ... × tn
against a product binding of the form (binding1, ..., bindingn) gives the collection
of definitions given by matching each value vi of maximal context type ti against
bindingi .

CHAPTER 44

Typings

Syntax

typing ::=
single typing |
multiple typing

single typing ::=
binding : type expr

multiple typing ::=
binding-list2 : type expr

commented typing ::=
opt-comment-string typing

Context-independent Expansions All multiple typings and typing-lists are
short for single typings.
A multiple typing of the form:

binding1, ..., bindingn : type expr

is short for:

(binding1, ..., bindingn) : type expr × ... × type expr

where the product type expression has length n.
A typing-list of the form:

binding1 : type expr1, ..., bindingn : type exprn

is short for:

(binding1, ..., bindingn) : type expr1 × ... × type exprn

A typing-list involving multiple typings is expanded by first expanding the multi-
ple typings into single typings.

342

Typings 343

Attributes The maximal type of a single typing is the maximal type of the
type expr.
In a single typing the maximal context type of the constituent binding is the

maximal type of the constituent type expr.
The maximal definition of a value def that is a commented typing is obtained by

replacing the type expr of the constituent typing by the corresponding maximal type
expression.

Meaning A single typing of the form:

id or op : type expr

represents a value definition — id or op is introduced for a value of the type rep-
resented by type expr. A single typing of the form:

(binding1,...,bindingn) : type expr1 × ... × type exprn

represents the collection of definitions represented by each of the single typings:

binding1 : type expr1
...
bindingn : type exprn

CHAPTER 45

Patterns

45.1 General

Syntax

pattern ::=
value literal |
pure value-name |
wildcard pattern |
product pattern |
record pattern |
list pattern

Terminology A value can be matched against a pattern or an inner pattern (see
section 45.8) to give either failure or success. In the case of success the result of
the matching is a collection of definitions.
For each kind of pattern and inner pattern, the criteria for match success is given

together with the resulting collection of definitions in the case of match success.
The value matched against the pattern or inner pattern is referred to as the ‘test
value’.

Attributes The context of a pattern or an inner pattern determines a maximal
context type for the pattern or inner pattern. For each construct containing patterns
or inner patterns, this maximal context type is stated in the relevant section.

Context-dependent Expansions A pattern or innner pattern that is a value -
literal, name, record pattern, or equality pattern has a context condition that a max-
imal type associated with the pattern or innner pattern must be less than or equal to
its maximal context type. For these patterns an implicit coercion is applied to the
pattern. The implicit coercion is the potential coercion (see section 41.1) from the
maximal type to (a subtype of) the maximal context type. If the implicit coercion
is not the identity function, the pattern or inner pattern is short for a record pattern
obtained by application of the implicit coercion:

344

Value Literals 345

• If the implicit coercion is a single function f then a pattern or innner pattern
p is short for the record pattern f (= p) if p is a name and f (p) otherwise.

• If the implicit coercion is a functional composition f1
◦...◦fn (n ≥ 2) then a

pattern or innner pattern p is short for the record pattern f1(...(fn(= p))...) if p
is a name and f1(...(fn(p))...) otherwise.

There are similar implicit coercions in value expressions — see section 42.1.

45.2 Value Literals

Context Conditions For a pattern or an inner pattern which is a value literal
(see section 42.2) the maximal type of the value literal must be less than or equal
to the maximal context type of the pattern or inner pattern.

Attributes The maximal type of a value literal that is a pattern is the maximal
type of the value literal.

Meaning

• match success: The value literal must be equal to the test value.
• resulting definitions: None.

45.3 Names

Context Conditions For a pattern which is a name, the name must represent a
value.

The maximal type of the name (see chapter 46) must be less than or equal to
the maximal context type of the pattern.

Meaning

• match success: The value represented by the name must be equal to the test
value.

• resulting definitions: None.

45.4 Wildcard Patterns

Syntax

wildcard pattern ::=

Meaning

• match success: All values match a wildcard pattern.
• resulting definitions: None.

346 Patterns

45.5 Product Patterns

Syntax

product pattern ::=
(inner pattern-list2)

Context Conditions The maximal context type of a product pattern must be a
product type of the same length as the inner pattern-list2.
The constituent inner patterns must be compatible.

Attributes In a product pattern of the form (inner pattern1, ..., inner patternn)
having a maximal context type of the form t1 × ... × tn , the maximal context types
of inner pattern1, ..., inner patternn are t1, ..., tn , respectively.

Meaning

• match success: Let the product pattern be of the form:

(inner pattern1, ..., inner patternn)

Then the test value must be a product value of the form:

(v1, ..., vn)

and each value vi must additionally match the corresponding inner patterni .
• resulting definitions: The collection of the definitions given by matching each
value vi against inner patterni .

45.6 Record Patterns

Syntax

record pattern ::=
pure value-name (inner pattern-list)

Context Conditions In a record pattern the name must represent a value and
have a maximal type which is a pure function type. The result type part of this
type must be less than or equal to the maximal context type of the record pattern.
Furthermore, if the record pattern is of the form

name(inner pattern1, ..., inner patternn) (n > 1)

then the parameter part of the function type must be of the form t1 × ... × tn .
In a record pattern the constituent inner patterns must be compatible.

Attributes In a record pattern of the form name(inner pattern) the maximal
context type of inner pattern is the parameter part of the maximal type of the
name.
In a record pattern of the form name(inner pattern1,...,inner patternn) the max-

imal context types of inner pattern1,...,inner patternn are t1,...,tn , respectively,
where the parameter type part of the maximal type of the name is t1 × ... × tn .

List Patterns 347

Meaning

• match success: Let the record pattern be of the form:

name(inner pattern1,...,inner patternn)

(with n = 1 as a special case) and let v be the test value. Then there must
exist values v1,...,vn , such that:

v = name(v1,...,vn)

and such that each value vi additionally matches the corresponding inner -
patterni.

• resulting definitions: Values v1,...,vn are non-deterministically chosen as indi-
cated above such that:

v = name(v1,...,vn)

and such that each value vi matches inner patterni. The resulting definitions
are then the collection of the definitions given by matching each value vi
against inner patterni.

45.7 List Patterns

Syntax

list pattern ::=
enumerated list pattern |
concatenated list pattern

Context Conditions The maximal context type of a list pattern must be a list
type.

45.7.1 Enumerated List Patterns

Syntax

enumerated list pattern ::=
〈 opt-inner pattern-list 〉

Context Conditions The constituent inner patterns must be compatible.

Attributes The maximal context type of each of the constituent inner patterns
is the element part of the maximal context type of the list pattern.

Meaning

• match success: Let the enumerated list pattern be of the form:

〈inner pattern1, ..., inner patternn〉

(with n = 0 as a special case). Then the test value must be a list of the form:

〈v1, ..., vn〉

348 Patterns

and each value vi must additionally match inner patterni.
• resulting definitions: The collection of the definitions given by matching each
value v i against inner patterni.

45.7.2 Concatenated List Patterns

Syntax

concatenated list pattern ::=
enumerated list pattern ̂ inner pattern

Context Conditions The constituent enumerated list pattern and inner pattern
must be compatible.

Attributes The maximal context type of the constituent enumerated list pattern
and inner pattern is the maximal context type of the concatenated list pattern.

Meaning

• match success: Let the concatenated list pattern be of the form:

enumerated list pattern ̂ inner pattern

Then the test value must be a list of the form:

l1 ̂ l2

where l1 matches enumerated list pattern and where l2 matches inner pattern.
• resulting definitions: The collection of the definitions given by matching the
list l1 against enumerated list pattern and by matching the list l2 against in-
ner pattern.

45.8 Inner Patterns

Syntax

inner pattern ::=
value literal |
id or op |
wildcard pattern |
product pattern |
record pattern |
list pattern |
equality pattern

Terminology See section 45.1.

Attributes See section 45.1.

Context-dependent Expansions See section 45.1.

Inner Patterns 349

45.8.1 Value Literals

See section 45.2.

45.8.2 Identifiers or Operators

Context Conditions The maximal context type for an inner pattern which is an
op must be a function type which is distinguishable from the maximal type(s) of
the predefined meaning(s) of the op. If the op is an infix op then the function type
must have a parameter type which is a product type of length 2.

Attributes An id or op which is an inner pattern has as maximal type the maxi-
mal context type of the inner pattern.

Meaning

• match success: All values of the maximal context type match the id or op.
• resulting definitions: Let v be the test value and let t be the maximal context
type of the id or op. Then the following definition results:

id or op : t = v

45.8.3 Wildcard Patterns

See section 45.4.

45.8.4 Product Patterns

See section 45.5.

45.8.5 Record Patterns

See section 45.6.

45.8.6 List Patterns

See section 45.7.

45.8.7 Equality Patterns

Syntax

equality pattern ::=
= pure value-name

350 Patterns

Context Conditions In an equality pattern the name must represent a value.
In an equality pattern the maximal type of the name (see chapter 46) must be

less than or equal to the maximal context type of the equality pattern.

Meaning

• match success: The value represented by the name must be equal to the test
value.

• resulting definitions: None.

CHAPTER 46

Names

46.1 General

Syntax

name ::=
qualified id |
qualified op

Attributes If a name represents a scheme then it has a maximal class, the max-
imal class of the associated class expression. When the scheme is parameterized,
then it also has a formal scheme parameter. If a name represents an object then it
has a maximal class, the maximal class of the associated class expression. When
the object is an array, then it also has a maximal index type. If a name represents a
type, a value, a variable or a channel then it has an associated maximal type. The
specific attributes are defined for each of the alternatives in the following sections.

Meaning A name represents an entity which is a scheme, object, type, value,
variable or channel.

46.2 Qualified Identifiers

Syntax

qualified id ::=
opt-qualification id

qualification ::=
element-object expr .

Scope and Visibility Rules In a qualified id the scope of the qualification is
extended to the id, while no other definitions are visible there.

Context Conditions In a qualification the object expr must represent a model.

351

352 Names

Attributes The attributes of a qualified id are the attributes of the constituent
id.

Meaning If the qualification is absent, the id represents the entity to which it has
been bound by its corresponding definition.
If the qualification is present, the id represents the entity obtained by looking up

the id in the model represented by the qualification.
A qualification represents the model represented by the object expr.

46.3 Qualified Operators

Syntax

qualified op ::=
opt-qualification (op)

Scope and Visibility Rules In a qualified op in which a qualification is present
the scope of this qualification is extended to the op, while no other definitions
(including predefined meanings of operators) are visible there.
In a qualified op in which no qualification is present all predefined meanings of

operators are visible.

Attributes The maximal type of a qualified op is the maximal type of the con-
stituent op.

Meaning If the qualification is absent, the op represents the entity to which it
has been bound by its corresponding definition.
If the qualification is present, the op represents the entity obtained by looking up

the op in the model represented by the qualification.
The brackets turn the op into a function that must be applied with prefix notation

via an application expression (section 42.11). That is, noting that an op can either
be a prefix op or an infix op, the following equivalences hold:

prefix op value expr ≡ (prefix op)(value expr)
value expr1 infix op value expr2 ≡ (infix op)(value expr1,value expr2)

CHAPTER 47

Identifiers and Operators

47.1 General

Syntax

id or op ::=
id |
op

op ::=
infix op |
prefix op

Terminology Each occurrence of an identifier or operator (id, op or id or op) is
either a defining or an applied occurrence.
The following occurrences are defining occurrences:

• The id (or ids) occurring immediately within a scheme def, object def, sort def,
variant def, union def, short record def, abbreviation def, prefix application, in-
fix application, single variable def, multiple variable def, single channel def, mul-
tiple channel def, axiom naming or id or wildcard.

• The new id or op in a rename pair.
• The id or op occurring immediately within a constructor, destructor, recon-
structor or binding.

• The id or op which is an inner pattern.

All other occurrences are applied occurrences.
Each defining occurrence of an identifier or operator is part of a declarative

construct that represents at least a definition introducing this identifier or operator.
An applied occurrence of an identifier or operator is said to be visible if there is

a visible definition introducing it.
A legal applied occurrence of an identifier or operator has a corresponding defi-

nition (or interpretation). There are three cases for an applied occurrence of an
identifier or operator:

353

354 Identifiers and Operators

1. There is no visible definition introducing it, i.e. it is not visible. In that case
the occurrence is illegal and hence the identifier or operator has no corre-
sponding definition.

2. There is exactly one visible definition introducing it. This definition is the
corresponding definition of the identifier or operator.

3. There are two or more visible definitions introducing it. According to the
visibility rules and context conditions for declarative constructs this can only
be the case for identifiers and operators representing values. Chapter 36 on
overloading explains how to find the single corresponding definition in this
case, if possible. If it is not possible to find a unique corresponding definition
then the occurrence is illegal.

An applied occurrence of an identifier or operator represents the entity of its cor-
responding definition.

Scope and Visibility Rules Note that all operators have one or more predefined
meanings which have the entire specification as scope and cannot be hidden, except
within the operator part of qualified operators (see section 46.3). So with this
exception operators are always visible.

Context Conditions An applied occurrence of an identifier or operator must
be visible with a unique corresponding definition. This implies that a defining
occurrence of an operator must have a maximal type which is distinguishable from
the maximal type(s) of the predefined meanings of the operator.

Attributes For an identifier representing a scheme its maximal class and possible
formal scheme parameter are determined by its corresponding definition (see section
38.2). For an identifier representing an object the maximal class and possible
maximal index type are determined by its corresponding definition (see section
38.3). For an identifier or operator representing a type, a value, a variable or a
channel its maximal type is determined by its corresponding definition.

47.2 Infix Operators

Syntax

infix op ::=
= |
6= |
> |
< |
≥ |
≤ |
⊃ |
⊂ |
⊇ |
⊆ |

Infix Operators 355

∈ |
6∈ |
+ |
− |
\ |
̂ |
∪ |
† |
∗ |
/ |
◦ |
∩ |
↑

Context Conditions See section 47.1.

Attributes The maximal type of an infix op is determined by its corresponding
definition — see section 47.1. The maximal type of an infix op representing its
predefined meaning is the maximal type of the type expression stated below.

Meaning The meaning of an infix op is determined by its corresponding defini-
tion. The predefined meanings of applications of the infix ops are listed below.
The infix ops operate on pairs of values referred to as arguments. Some infix ops

may have pre-conditions that must hold for the arguments. When a pre-condition
is violated, the effect of the value infix expr in which the infix op occurs is under-
specified.
The type T and subscripted versions of T occurring in the infix op signatures

are type variables representing arbitrary types.

• Equality:

= : T × T → Bool

The result is true if and only if the values of the two arguments are equal.
• Inequality:

6= : T × T → Bool

The result is true if and only if the values of the two arguments are not equal.
• Integer addition:

+ : Int × Int → Int

The result is the sum of the two integers.
• Real addition:

+ : Real × Real → Real

The result is the sum of the two reals.
• Integer subtraction:

− : Int × Int → Int

356 Identifiers and Operators

The result is the difference between the first integer and the second integer.
• Real subtraction:

− : Real × Real → Real

The result is the difference between the first real and the second real.
• Integer multiplication:

∗ : Int × Int → Int

The result is the product of the two integers.
• Real multiplication:

∗ : Real × Real → Real

The result is the product of the two reals.
• Integer exponentiation:

↑ : Int × Int
∼

→ Int

Pre-condition: The second integer must not be negative, and the second inte-
ger must not be zero if the first is zero.
The result is the first integer raised to the power of the second integer.

• Real exponentiation:

↑ : Real × Real
∼

→ Real

Pre-condition: If the second real is not positive then the first real must be
different from zero (0.0). If the second real is not a whole number then the
first real must be non-negative.
The result is the first real raised to the power of the second real.

• Function composition:
◦ : (T2

∼

→ a T3) × (T1
∼

→ a′ T2) → (T1
∼

→ a′′ T3)

where a′′ is the union of a and a′.
The result is the composition of the two functions defined as follows:

f1
◦ f2 ≡ λx : T1 • f1(f2(x))

• Map composition:
◦ : (T2 →m T3) × (T1 →m T2) → (T1 →m T3)

The result is the composition of the two maps defined as follows:

m1
◦ m2 ≡ [x 7→ m1(m2(x)) | x : T1 • x ∈ dom m2 ∧ m2(x) ∈ dom m1]

• Integer division:

/ : Int × Int
∼

→ Int

Pre-condition: The second integer must not be zero (0).
The absolute value (without sign) of the result is the number of times that

the absolute value of the second integer is within the absolute value of the first
integer. The sign of the result is the product of the signs of the arguments.

• Real division:

Infix Operators 357

/ : Real × Real
∼

→ Real

Pre-condition: The second real must not be zero (0.0).
The result is obtained by dividing the first real by the second real.

• Map restriction to:

/ : (T1 →m T2) × T1-infset → (T1 →m T2)

The result is the map with its domain limited to the elements of the set.
• Integer remainder:

\ : Int × Int
∼

→ Int

Pre-condition: The second integer must not be zero (0).
The absolute value of the result is the remainder after having divided the

absolute value of the second integer into the absolute value of the first integer.
The sign of the result is the sign of the first integer. This implies the following
relationship between integer division and integer remainder. Let a and b be
integers, b not zero:

a = (a/b)∗b + (a\b)

• Set difference:

\ : T-infset × T-infset → T-infset

The result is the set of all elements which appear in the first set and not in
the second.

• Map restriction by:

\ : (T1 →m T2) × T1-infset → (T1 →m T2)

The result is the map with the elements of the set removed from its domain.
• Integer greater than:

> : Int × Int → Bool

The result is true if and only if the first integer is greater than the second
integer.

• Real greater than:

> : Real × Real → Bool

The result is true if and only if the first real is greater than the second real.
• Integer less than:

< : Int × Int → Bool

The result is true if and only if the first integer is less than the second integer.
• Real less than:

< : Real × Real → Bool

The result is true if and only if the first real is less than the second real.
• Integer greater than or equal to:

≥ : Int × Int → Bool

358 Identifiers and Operators

The result is true if and only if the first integer is greater than or equal to
the second integer.

• Real greater than or equal to:

≥ : Real × Real → Bool

The result is true if and only if the first real is greater than or equal to the
second real.

• Integer less than or equal to:

≤ : Int × Int → Bool

The result is true if and only if the first integer is less than or equal to the
second integer.

• Real less than or equal to:

≤ : Real × Real → Bool

The result is true if and only if the first real is less than or equal to the second
real.

• Set superset (proper):

⊃ : T-infset × T-infset → Bool

The result is true if and only if the second set is a proper subset of the first
set. That is, it is a subset of the first set but not equal to it.

• Set subset (proper):

⊂ : T-infset × T-infset → Bool

The result is true if and only if the first set is a proper subset of the second
set. That is, it is a subset of the second set but not equal to it.

• Set superset:

⊇ : T-infset × T-infset → Bool

The result is true if and only if the second set is a subset of the first set.
• Set subset:

⊆ : T-infset × T-infset → Bool

The result is true if and only if the first set is a subset of the second set.
• Set membership:

∈ : T × T-infset → Bool

The result is true if and only if the first argument is a member of the set.
• Set membership (negation):

6∈ : T × T-infset → Bool

The result is true if and only if the first argument is not a member of the set.
• Set intersection:

∩ : T-infset × T-infset → T-infset

The result is the set containing all elements which appear in both of the two

Prefix Operators 359

sets.
• Set union:

∪ : T-infset × T-infset → T-infset

The result is the set containing all elements which appear in one or both of
the two sets.

• Map union:

∪ : (T1 →m T2) × (T1 →m T2) → (T1 →m T2)

The result is the map containing all the pairs of the first map and all the pairs
of the second map.

• List concatenation:

̂ : Tω × Tω ∼

→ Tω

Pre-condition: The first list must be finite.
The result is the concatenation of the two lists. That is, the list containing

all the elements of the two lists, ordered as in the two lists and with all the
elements of the first list appearing first.

• Map override:

† : (T1 →m T2) × (T1 →m T2) → (T1 →m T2)

The result is the first map overridden with the second map. Where the two
maps have common domain elements, the second map overrides the first.

47.3 Prefix Operators

Syntax

prefix op ::=
abs |
int |
real |
card |
len |
inds |
elems |
hd |
tl |
dom |
rng

Context Conditions See section 47.1.

Attributes The maximal type of a prefix op is determined by its corresponding
definition — see section 47.1.
The maximal type of a prefix op representing its predefined meaning is the max-

imal type of the type expression stated below.

360 Identifiers and Operators

Meaning The meaning of a prefix op is determined by its corresponding defini-
tion. The predefined meanings of applications of the prefix ops are listed below.

The prefix ops operate on values (arguments). Some prefix ops may have pre-
conditions that must hold for the argument. When a pre-condition is violated, the
effect of the value prefix expr in which the prefix op occurs is under-specified unless
otherwise stated.

The type T occurring in the prefix op signatures is a type variable representing
an arbitrary type.

• Integer absolute value:

abs : Int → Int

The result is the absolute value of the integer. That is, if the integer is
negative, the negated value is returned. The operator is the identity on non-
negative integers.

• Real absolute value:

abs : Real → Real

The result is the absolute value of the real. That is, if the real is negative, the
negated value is returned. The operator is the identity on non-negative reals.

• Real to integer conversion:

int : Real → Int

The absolute value (without sign) of the result is the greatest integer that is
smaller than or equal to the absolute value of the real. The sign is the sign of
the real.

• Integer to real conversion:

real : Int → Real

The result is the identity on the argument, just changing its type. This
implies the following relationship between the conversion functions. Let a be
an integer:

int real a = a

• Set cardinality:

card : T-infset
∼

→ Int

The result is the number of elements in the set. The effect of applying card
to an infinite set is to diverge.

• List length:

len : Tω ∼

→ Int

The result is the length of the list. The effect of applying len to an infinite
list is to diverge.

• List indices:

inds : Tω → Int-infset

Prefix Operators 361

The result is the index set for the list. Let f list be a finite list and let i list
be an infinite list, then:

inds f list = {i | i : Int • i ≥ 1 ∧ i ≤ len f list}
inds i list = {i | i : Int • i ≥ 1}

• List elements:

elems : Tω → T-infset

The result is the set of elements of the list.
• List head:

hd : Tω ∼

→ T

Pre-condition: The list must be non-empty.
The result is the first element in the list.

• List tail:

tl : Tω ∼

→ Tω

Pre-condition: The list must be non-empty.
The result is the list which remains after removing the first element.

• Map domain:

dom : (T1 →m T2) → T1-infset

The result is the domain of the map: the values for which it is defined.
• Map range:

rng : (T1 →m T2) → T2-infset

The result is the range of the map: the values that can be obtained by applying
the map to the values in its domain.

CHAPTER 48

Connectives

48.1 Infix Connectives

Syntax

infix connective ::=
⇒ |
∨ |
∧

Context-independent Expansions The infix connectives are intended to com-
pose Boolean value expressions into new Boolean value expressions.
The effect of an axiom infix expr, in which an infix connective occurs, follows a

conditional logic where in general the second constituent value expression is eval-
uated only if the value of the first constituent value expression does not uniquely
determine the value of the axiom infix expr. In this way the eventual divergence or
deadlock in the second constituent value expression can be avoided when possible.
The meaning of the axiom infix exprs is given in terms of the if expressions for which
they are short.

• Boolean and:

value expr1 ∧ value expr2

is short for:

if value expr1 then value expr2 else false end

• Boolean or:

value expr1 ∨ value expr2

is short for:

if value expr1 then true else value expr2 end

• Boolean implication:

value expr1 ⇒ value expr2

362

Prefix Connectives 363

is short for:

if value expr1 then value expr2 else true end

48.2 Prefix Connectives

Syntax

prefix connective ::=
∼

Context-independent Expansions The prefix connective composes Boolean
value expressions into new Boolean value expressions.

• Boolean not:
An axiom prefix expr of the form:

∼value expr

is short for:

if value expr then false else true end

CHAPTER 49

Infix Combinators

Syntax

infix combinator ::=
⌈⌉⌊⌋ |
⌈⌉ |
‖ |
–‖ |
;

Meaning The infix combinators are intended to compose value expressions that
either communicate or have effects on variables. Some simple proof rules are asso-
ciated with each infix combinator in order to clarify its semantics.

• External choice:

value expr1 ⌈⌉⌊⌋ value expr2

An external choice is made between the effects of the two value exprs. The
possible effect of a concurrently executing third value expression can influence
the choice.
External choice has unit stop, has zero chaos, is idempotent, is commuta-

tive, is associative, and is distributive through internal choice:

value expr ⌈⌉⌊⌋ stop ≡ value expr

value expr ⌈⌉⌊⌋ chaos ≡ chaos

value expr ⌈⌉⌊⌋ value expr ≡ value expr

value expr1 ⌈⌉⌊⌋ value expr2 ≡ value expr2 ⌈⌉⌊⌋ value expr1

value expr1 ⌈⌉⌊⌋ (value expr2 ⌈⌉⌊⌋ value expr3) ≡
(value expr1 ⌈⌉⌊⌋ value expr2) ⌈⌉⌊⌋ value expr3

364

Infix Combinators 365

value expr1 ⌈⌉⌊⌋ (value expr2 ⌈⌉ value expr3) ≡
(value expr1 ⌈⌉⌊⌋ value expr2) ⌈⌉ (value expr1 ⌈⌉⌊⌋ value expr3)

• Internal choice:

value expr1 ⌈⌉ value expr2

An internal — non-deterministic — choice is made between the effects of the
two value exprs. The possible effect of a concurrently executing third value
expression cannot influence the choice.
Internal choice has zero chaos, is idempotent, is commutative, and is asso-

ciative:

value expr ⌈⌉ chaos ≡ chaos

value expr ⌈⌉ value expr ≡ value expr

value expr1 ⌈⌉ value expr2 ≡ value expr2 ⌈⌉ value expr1

value expr1 ⌈⌉ (value expr2 ⌈⌉ value expr3) ≡
(value expr1 ⌈⌉ value expr2) ⌈⌉ value expr3

• Concurrent composition:

value expr1 ‖ value expr2

The two value exprs are executed concurrently with another until one of them
terminates, when the other continues. The two value exprs may offer to com-
municate along channels, so they may be able to communicate with one anoth-
er (by having one of them input from a channel and the other of them output
to the same channel). If they are able to communicate with one another, they
may make an internal choice which dictates that they will do so; alternative-
ly they may make an internal choice which leaves them free to do so or to
communicate with other concurrently executing value expressions. If they are
able to communicate with other concurrently executing value expressions but
not with one another, they are left free to do so.
Concurrent composition has unit skip, has zero chaos, is commutative, is

associative, and is distributive through internal choice:

value expr ‖ skip ≡ value expr

value expr ‖ chaos ≡ chaos

value expr1 ‖ value expr2 ≡ value expr2 ‖ value expr1

value expr1 ‖ (value expr2 ‖ value expr3) ≡
(value expr1 ‖ value expr2) ‖ value expr3

value expr1 ‖ (value expr2 ⌈⌉ value expr3) ≡

366 Infix Combinators

(value expr1 ‖ value expr2) ⌈⌉ (value expr1 ‖ value expr3)

The following two equivalences hold if the value expression value expr is con-
vergent and does not involve communication and if c1 6= c2:

x := c1? ‖ c2!value expr ≡
(x := c1? ; c2!value expr) ⌈⌉⌊⌋ (c2!value expr ; x := c1?)

x := c? ‖ c!value expr ≡
(((x := c? ; c!value expr) ⌈⌉⌊⌋ (c!value expr ; x := c?))
⌈⌉⌊⌋ (x := value expr))
⌈⌉ (x := value expr)

These are special cases of general laws given in [37].
• Interlocked composition:

value expr1 –‖ value expr2

The value exprs are executed interlocked with one another until one of them
terminates, when the other continues. The two value exprs may offer to com-
municate along channels, so they may be able to communicate with one anoth-
er (by having one of them input from a channel and the other of them output
to the same channel). If they are able to communicate with one another, they
will do so. If they are able to communicate with other concurrently executing
value expressions but not with one another, they deadlock unless one of them
can terminate.
Interlocked composition has unit skip, has zero chaos, is commutative, and

is distributive through internal choice:

value expr –‖ skip ≡ value expr

value expr –‖ chaos ≡ chaos

value expr1 –‖ value expr2 ≡ value expr2 –‖ value expr1

value expr1 –‖ (value expr2 ⌈⌉ value expr3) ≡
(value expr1 –‖ value expr2) ⌈⌉ (value expr1 –‖ value expr3)

Note that, unlike ‖, –‖ is not associative.
The following two equivalences hold if the value expression value expr is

convergent and does not involve communication and if c1 6= c2:

x := c1? –‖ c2!value expr ≡ stop

x := c? –‖ c!value expr ≡ x := value expr

The interlocking combinator illustrates the distinction between external choice
and internal choice. The following equivalences hold if value expr1 and value -
expr2 are convergent and do not involve communication and if c1 6= c2:

Infix Combinators 367

(x := c1? ⌈⌉⌊⌋ c2!value expr2) –‖ c1!value expr1 ≡ x := value expr1

(x := c1? ⌈⌉ c2!value expr2) –‖ c1!value expr1 ≡ (x := value expr1) ⌈⌉ stop

These are special cases of general laws given in [37].
• Sequential composition:

value expr1 ; value expr2

The second value expr is made to execute sequentially after the first value -
expr. The value returned is the value returned by the second value expr.
Sequential composition has unit skip, is associative, and is distributive in

its first argument through internal choice:

value expr ; skip ≡ value expr

skip ; value expr ≡ value expr

value expr1 ; (value expr2 ; value expr3) ≡
(value expr1 ; value expr2) ; value expr3

(value expr1 ⌈⌉ value expr2) ; value expr3 ≡
(value expr1 ; value expr3) ⌈⌉ (value expr2 ; value expr3)

These laws for sequential composition are derived from laws for let expressions
in [37], arising from the fact that:

value expr1 ; value expr2

is short for:

let id = value expr1 : Unit in value expr2 end

provided id is not already in scope.

Part III

Appendices

APPENDIX A

Syntax Summary

Specifications

specification ::=
module decl-string

module decl ::=
scheme decl |
object decl

Declarations

decl ::=
scheme decl |
object decl |
type decl |
value decl |
variable decl |
channel decl |
axiom decl

Scheme Declarations

scheme decl ::=
scheme scheme def-list

scheme def ::=
opt-comment-string
id opt-formal scheme parameter = class expr

formal scheme parameter ::=
(formal scheme argument-list)

formal scheme argument ::=
object def

Object Declarations

object decl ::=
object object def-list

object def ::=
opt-comment-string
id opt-formal array parameter : class expr

formal array parameter ::=
[typing-list]

Type Declarations

type decl ::=
type type def-list

type def ::=
sort def |
variant def |
union def |
short record def |
abbreviation def

Sort Definitions

sort def ::=
opt-comment-string id

Variant Definitions

variant def ::=
opt-comment-string id == variant-choice

variant ::=
constructor |

371

372 Syntax Summary

record variant

record variant ::=
constructor (component kind-list)

component kind ::=
opt-destructor type expr opt-reconstructor

constructor ::=
id or op |

destructor ::=
id or op :

reconstructor ::=
↔ id or op

Union Definitions

union def ::=
opt-comment-string
id = name or wildcard-choice2

name or wildcard ::=
type-name |

Short Record Definitions

short record def ::=
opt-comment-string
id :: component kind-string

Abbreviation Definitions

abbreviation def ::=
opt-comment-string id = type expr

Value Declarations

value decl ::=
value value def-list

value def ::=
commented typing |
explicit value def |
implicit value def |
explicit function def |
implicit function def

Explicit Value Definitions

explicit value def ::=
opt-comment-string
single typing = pure-value expr

Implicit Value Definitions

implicit value def ::=
opt-comment-string
single typing pure-restriction

Explicit Function Definitions

explicit function def ::=
opt-comment-string single typing
formal function application ≡ value expr
opt-pre condition

formal function application ::=
id application |
prefix application |
infix application

id application ::=
value-id formal function parameter-string

formal function parameter ::=
(opt-binding-list)

prefix application ::=
prefix op id

infix application ::=
id infix op id

Implicit Function Definitions

implicit function def ::=
opt-comment-string
single typing formal function application
post condition opt-pre condition

Variable Declarations

variable decl ::=
variable variable def-list

variable def ::=
single variable def |
multiple variable def

single variable def ::=

Object Expressions 373

opt-comment-string
id : type expr opt-initialisation

initialisation ::=
:= pure-value expr

multiple variable def ::=
opt-comment-string id-list2 : type expr

Channel Declarations

channel decl ::=
channel channel def-list

channel def ::=
single channel def |
multiple channel def

single channel def ::=
opt-comment-string id : type expr

multiple channel def ::=
opt-comment-string id-list2 : type expr

Axiom Declarations

axiom decl ::=
axiom opt-axiom quantification
axiom def-list

axiom quantification ::=
forall typing-list •

axiom def ::=
opt-comment-string opt-axiom naming
readonly logical-value expr

axiom naming ::=
[id]

Class Expressions

class expr ::=
basic class expr |
extending class expr |
hiding class expr |
renaming class expr |
scheme instantiation

Basic Class Expressions

basic class expr ::=
class opt-decl-string end

Extending Class Expressions

extending class expr ::=
extend class expr with class expr

Hiding Class Expressions

hiding class expr ::=
hide defined item-list in class expr

Renaming Class Expressions

renaming class expr ::=
use rename pair-list in class expr

Scheme Instantiations

scheme instantiation ::=
scheme-name opt-actual scheme parameter

actual scheme parameter ::=
(object expr-list)

Rename Pairs

rename pair ::=
defined item for defined item

Defined Items

defined item ::=
id or op |
disambiguated item

disambiguated item ::=
id or op : type expr

Object Expressions

object expr ::=
object-name |
element object expr |
array object expr |
fitting object expr

374 Syntax Summary

Element Object Expressions

element object expr ::=
array-object expr actual array parameter

actual array parameter ::=
[pure-value expr-list]

Array Object Expressions

array object expr ::=
[| typing-list • element-object expr |]

Fitting Object Expressions

fitting object expr ::=
object expr { rename pair-list }

Type Expressions

type expr ::=
type literal |
type-name |
product type expr |
set type expr |
list type expr |
map type expr |
function type expr |
subtype expr |
bracketed type expr

Type Literals

type literal ::=
Unit |
Bool |
Int |
Nat |
Real |
Text |
Char

Product Type Expressions

product type expr ::=
type expr-product2

Set Type Expressions

set type expr ::=
finite set type expr |
infinite set type expr

finite set type expr ::=
type expr-set

infinite set type expr ::=
type expr-infset

List Type Expressions

list type expr ::=
finite list type expr |
infinite list type expr

finite list type expr ::=
type expr∗

infinite list type expr ::=
type exprω

Map Type Expressions

map type expr ::=
type expr →m type expr

Function Type Expressions

function type expr ::=
type expr function arrow result desc

function arrow ::=
∼

→ |
→

result desc ::=
opt-access desc-string type expr

Subtype Expressions

subtype expr ::=
{| single typing pure-restriction |}

Bracketed Type Expressions

bracketed type expr ::=
(type expr)

Value Expressions 375

Access Descriptions

access desc ::=
access mode access-list

access mode ::=
read |
write |
in |
out

access ::=
variable or channel-name |
enumerated access |
completed access |
comprehended access

enumerated access ::=
{ opt-access-list }

completed access ::=
opt-qualification any

comprehended access ::=
{ access | pure-set limitation }

Value Expressions

value expr ::=
value literal |
value or variable-name |
pre name |
basic expr |
product expr |
set expr |
list expr |
map expr |
function expr |
application expr |
quantified expr |
equivalence expr |
post expr |
disambiguation expr |
bracketed expr |
infix expr |
prefix expr |
comprehended expr |
initialise expr |
assignment expr |
input expr |
output expr |

structured expr

Value Literals

value literal ::=
unit literal |
bool literal |
int literal |
real literal |
text literal |
char literal

unit literal ::=
()

bool literal ::=
true |
false

Pre Names

pre name ::=

variable-namè

Basic Expressions

basic expr ::=
chaos |
skip |
stop |
swap

Product Expressions

product expr ::=
(value expr-list2)

Set Expressions

set expr ::=
ranged set expr |
enumerated set expr |
comprehended set expr

Ranged Set Expressions

ranged set expr ::=
{ readonly integer-value expr ..

readonly integer-value expr }

376 Syntax Summary

Enumerated Set Expressions

enumerated set expr ::=
{ readonly-opt-value expr-list }

Comprehended Set Expressions

comprehended set expr ::=
{ readonly-value expr | set limitation }

set limitation ::=
typing-list opt-restriction

restriction ::=
• readonly logical-value expr

List Expressions

list expr ::=
ranged list expr |
enumerated list expr |
comprehended list expr

Ranged List Expressions

ranged list expr ::=
〈 integer-value expr .. integer-value expr 〉

Enumerated List Expressions

enumerated list expr ::=
〈 opt-value expr-list 〉

Comprehended List Expressions

comprehended list expr ::=
〈 value expr | list limitation 〉

list limitation ::=
binding in readonly list-value expr
opt-restriction

Map Expressions

map expr ::=
enumerated map expr |
comprehended map expr

Enumerated Map Expressions

enumerated map expr ::=
[opt-value expr pair-list]

value expr pair ::=
readonly-value expr 7→ readonly-value expr

Comprehended Map Expressions

comprehended map expr ::=
[value expr pair | set limitation]

Function Expressions

function expr ::=
λ lambda parameter • value expr

lambda parameter ::=
lambda typing |
single typing

lambda typing ::=
(opt-typing-list)

Application Expressions

application expr ::=
list or map or function-value expr
actual function parameter-string

actual function parameter ::=
(opt-value expr-list)

Quantified Expressions

quantified expr ::=
quantifier typing-list restriction

quantifier ::=
∀ |
∃ |
∃!

Equivalence Expressions

equivalence expr ::=
value expr ≡ value expr opt-pre condition

pre condition ::=
pre readonly logical-value expr

Post Expressions

post expr ::=

Value Expressions 377

value expr
post condition opt-pre condition

post condition ::=
opt-result naming

post readonly logical-value expr

result naming ::=
as binding

Disambiguation Expressions

disambiguation expr ::=
value expr : type expr

Bracketed Expressions

bracketed expr ::=
(value expr)

Infix Expressions

infix expr ::=
stmt infix expr |
axiom infix expr |
value infix expr

Statement Infix Expressions

stmt infix expr ::=
value expr infix combinator value expr

Axiom Infix Expressions

axiom infix expr ::=
logical-value expr infix connective
logical-value expr

Value Infix Expressions

value infix expr ::=
value expr infix op value expr

Prefix Expressions

prefix expr ::=
axiom prefix expr |
universal prefix expr |
value prefix expr

Axiom Prefix Expressions

axiom prefix expr ::=
prefix connective logical-value expr

Universal Prefix Expressions

universal prefix expr ::=
✷ readonly logical-value expr

Value Prefix Expressions

value prefix expr ::=
prefix op value expr

Comprehended Expressions

comprehended expr ::=
associative commutative-infix combinator
{ value expr | set limitation }

Initialise Expressions

initialise expr ::=
opt-qualification initialise

Assignment Expressions

assignment expr ::=
variable-name := value expr

Input Expressions

input expr ::=
channel-name ?

Output Expressions

output expr ::=
channel-name ! value expr

Structured Expressions

structured expr ::=
local expr |
let expr |
if expr |
case expr |
while expr |
until expr |
for expr

378 Syntax Summary

Local Expressions

local expr ::=
local opt-decl-string in value expr end

Let Expressions

let expr ::=
let let def-list in value expr end

let def ::=
typing |
explicit let |
implicit let

explicit let ::=
let binding = value expr

implicit let ::=
single typing restriction

let binding ::=
binding |
record pattern |
list pattern

If Expressions

if expr ::=
if logical-value expr then
value expr
opt-elsif branch-string
opt-else branch
end

elsif branch ::=
elsif logical-value expr then value expr

else branch ::=
else value expr

Case Expressions

case expr ::=
case value expr of case branch-list end

case branch ::=
pattern → value expr

While Expressions

while expr ::=
while logical-value expr

do unit-value expr end

Until Expressions

until expr ::=
do unit-value expr
until logical-value expr end

For Expressions

for expr ::=
for list limitation do unit-value expr end

Bindings

binding ::=
id or op |
product binding

product binding ::=
(binding-list2)

Typings

typing ::=
single typing |
multiple typing

single typing ::=
binding : type expr

multiple typing ::=
binding-list2 : type expr

commented typing ::=
opt-comment-string typing

Patterns

pattern ::=
value literal |
pure value-name |
wildcard pattern |
product pattern |
record pattern |
list pattern

Wildcard Patterns

wildcard pattern ::=

Identifiers and Operators 379

Product Patterns

product pattern ::=
(inner pattern-list2)

Record Patterns

record pattern ::=
pure value-name (inner pattern-list)

List Patterns

list pattern ::=
enumerated list pattern |
concatenated list pattern

Enumerated List Patterns

enumerated list pattern ::=
〈 opt-inner pattern-list 〉

Concatenated List Patterns

concatenated list pattern ::=
enumerated list pattern ̂ inner pattern

Inner Patterns

inner pattern ::=
value literal |
id or op |
wildcard pattern |
product pattern |
record pattern |
list pattern |
equality pattern

Equality Patterns

equality pattern ::=
= pure value-name

Names

name ::=
qualified id |
qualified op

Qualified Identifiers

qualified id ::=
opt-qualification id

qualification ::=
element-object expr .

Qualified Operators

qualified op ::=
opt-qualification (op)

Identifiers and Operators

id or op ::=
id |
op

op ::=
infix op |
prefix op

Infix Operators

infix op ::=
= |
6= |
> |
< |
≥ |
≤ |
⊃ |
⊂ |
⊇ |
⊆ |
∈ |
6∈ |
+ |
− |
\ |
̂ |
∪ |
† |
∗ |
/ |
◦ |
∩ |
↑

380 Syntax Summary

Prefix Operators

prefix op ::=
abs |
int |
real |
card |
len |
inds |
elems |
hd |
tl |
dom |
rng

Connectives

connective ::=
infix connective |
prefix connective

Infix Connectives

infix connective ::=
⇒ |
∨ |
∧

Prefix Connectives

prefix connective ::=
∼

Infix Combinators

infix combinator ::=
⌈⌉⌊⌋ |
⌈⌉ |
‖ |
–‖ |
;

APPENDIX B

Precedence and Associativity of

Operators

Value operator precedence – increasing

Prec Operator(s) Associativity

14 ✷ λ ∀ ∃ ∃! Right
13 ≡ post

12 ⌈⌉⌊⌋ ⌈⌉ ‖ –‖ Right
11 ; Right
10 :=
9 ⇒ Right
8 ∨ Right
7 ∧ Right
6 = 6= > < ≥ ≤ ⊂ ⊆ ⊃ ⊇ ∈ 6∈
5 + − \ ̂ ∪ † Left
4 ∗ / ◦ ∩ Left
3 ↑
2 :
1 ∼ prefix op

Type operator precedence – increasing

Prec Operator(s) Associativity

3 →m
∼

→ → Right
2 ×
1 -set -infset ∗ ω

381

APPENDIX C

Lexical Matters

This chapter describes lexical matters, i.e. the microsyntax for RSL.

Basically, RSL follows the rules now in current practice for most programming languages: a
text (i.e. an RSL specification) is represented as a string of characters, which is interpreted left-to-
right and broken into a string of tokens. The characters are drawn from a superset of the ASCII
characters called the full RSL character set . Tokens may be separated by ‘whitespace’, which is
strings of one or more of the following characters: line-feed, carriage-return, space and tab. (Note
that comments are part of the RSL syntax and thus cannot be used freely as whitespace. Also
note that comments may not be nested.)

There are two types of tokens in RSL: varying and fixed.

Varying Tokens

The microsyntax for varying tokens is defined by the syntax rules below, where the characters
used in forming tokens are shown in quotes, as in ‘$’. Furthermore, LF, CR and TAB are used to
denote the ASCII characters line-feed, carriage-return and tab.

id ::=
letter opt-letter or digit or underline or prime-string

letter or digit or underline or prime ::=
letter | digit | underline | prime

letter ::=
ascii letter | greek letter

comment ::=
‘/’ ‘∗’ comment item-string ‘∗’ ‘/’

comment item ::=
comment char

comment char ::=
LF | CR | TAB | ascii letter | digit | graphic | prime | quote | backslash

int literal ::=

382

Varying Tokens 383

digit-string

real literal ::=
digit-string ‘.’ digit-string

text literal ::=

‘′′’ opt-text character-string ‘′′’

char literal ::=

‘′’ char character ‘′’

text character ::=
character | prime

char character ::=
character | quote

character ::=
ascii letter | digit | graphic | escape

digit ::=
‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’ | ‘8’ | ‘9’

ascii letter ::=
‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘g’ | ‘h’ | ‘i’ | ‘j’ | ‘k’ | ‘l’ | ‘m’ |
‘n’ | ‘o’ | ‘p’ | ‘q’ | ‘r’ | ‘s’ | ‘t’ | ‘u’ | ‘v’ | ‘w’ | ‘x’ | ‘y’ | ‘z’ |
‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’ | ‘G’ | ‘H’ | ‘I’ | ‘J’ | ‘K’ | ‘L’ | ‘M’ |
‘N’ | ‘O’ | ‘P’ | ‘Q’ | ‘R’ | ‘S’ | ‘T’ | ‘U’ | ‘V’ | ‘W’ | ‘X’ | ‘Y’ | ‘Z’

greek letter ::=

‘̀ alpha’ | ‘̀ beta’ | ‘̀ gamma’ | ‘̀ delta’ | ‘̀ epsilon’ | ‘̀ zeta’ | ‘̀ eta’ | ‘̀ theta’ | ‘̀ iota’ |

‘̀ kappa’ | ‘̀ mu’ | ‘̀ nu’ | ‘̀ xi’ | ‘̀ pi’ | ‘̀ rho’ | ‘̀ sigma’ | ‘̀ tau’ | ‘̀ upsilon’ | ‘̀ phi’ | ‘̀ chi’ |

‘̀ psi’ | ‘̀ omega’ | ‘̀ Gamma’ | ‘̀ Delta’ | ‘̀ Theta’ | ‘̀ Lambda’ | ‘̀ Xi’ | ‘̀ Pi’ | ‘̀ Sigma’ |

‘̀ Upsilon’ | ‘̀ Phi’ | ‘̀ Psi’ | ‘̀ Omega’

underline ::=
‘ ’

prime ::=

‘′’

quote ::=

‘′′’

backslash ::=
‘\’

graphic ::=
‘ ’ | ‘!’ | ‘#’ | ‘$’ | ‘%’ | ‘&’ | ‘(’ | ‘)’ | ‘∗’ | ‘+’ | ‘,’ | ‘−’ | ‘.’ | ‘/’ | ‘:’ | ‘;’ |

‘<’ | ‘=’ | ‘>’ | ‘?’ | ‘@’ | ‘[’ | ‘]’ | ‘̂’ | ‘ ’ | ‘̀ ’ | ‘{’ | ‘|’ | ‘}’ | ‘∼’

384 Lexical Matters

escape ::=
‘\’‘r’ | ‘\’‘n’ | ‘\’‘t’ | ‘\’‘a’ | ‘\’‘b’ | ‘\’‘f’ | ‘\’‘v’ | ‘\’‘?’ |

‘\’‘\’ | ‘\’‘′’ | ‘\’‘′′’ | ‘\’ oct constant | ‘\’‘x’ hex constant

oct constant ::= oct digit | oct digit oct digit | oct digit oct digit oct digit

hex constant ::=
hex digit-string

oct digit ::=
‘0’ | ‘1’ | ‘2’ | ‘3’ | ‘4’ | ‘5’ | ‘6’ | ‘7’

hex digit ::=
digit | ‘a’ | ‘b’ | ‘c’ | ‘d’ | ‘e’ | ‘f’ | ‘A’ | ‘B’ | ‘C’ | ‘D’ | ‘E’ | ‘F’

ASCII Forms of Greek Letters

Greek letters, which may be used in identifiers, have ASCII forms as follows:

ASCII Full ASCII Full

àlpha α

b̀eta β

g̀amma γ G̀amma Γ

d̀elta δ D̀elta ∆

èpsilon ǫ

z̀eta ζ

èta η

t̀heta θ T̀heta Θ

ìota ι

k̀appa κ

L̀ambda Λ

m̀u µ

ǹu ν

x̀i ξ X̀i Ξ

p̀i π P̀i Π

r̀ho ρ

s̀igma σ S̀igma Σ

t̀au τ

ùpsilon υ Ùpsilon Υ

p̀hi φ P̀hi Φ

c̀hi χ

p̀si ψ P̀si Ψ

òmega ω Òmega Ω

Fixed Tokens

The representation of individual fixed tokens is given directly in the syntax rules for RSL. However,
a representation using only ASCII characters is possible, as defined in the following table:

RSL Keywords 385

ASCII Full ASCII Full ASCII Full

>< × isin ∈ ~isin 6∈
|| ‖ ++ –‖ -\ λ
|=| ⌈⌉⌊⌋ |^| ⌈⌉ -list ∗

** ↑ -inflist ω ~= 6=
/\ ∧ \/ ∨ +> 7→
>= ≥ exists ∃ all ∀
<= ≤ union ∪ !! †
inter ∩ << ⊂ always ✷

-m-> →m <<= ⊆ => ⇒

-~->
∼

→ >> ⊃ is ≡
-> → >>= ⊇ <-> ↔

◦ <. 〈 .> 〉
:- •

The word equivalents of certain symbols: all, exists, union, inter, isin, always are re-
served, and cannot be used as identifiers.

RSL Keywords

The RSL keywords are listed below. They cannot be used as identifiers.

Keywords for RSL

Bool class inds skip

Char do initialise stop

Int dom int swap

Nat elems len then

Real else let tl

Text elsif local true

Unit end object type

abs extend of until

any false out use

as for post value

axiom forall pre variable

card hd read while

case hide real with

channel if rng write

chaos in scheme

APPENDIX D

Bibliography

[1] P. Behm, P. Lucas, S. Prehn, and H. Toetenel, editors. VDM’91: Software Development,
Tutorials and Project Reports; Proc. of Formal Methods Europe (formerly VDM-Europe)
Symposium ’91, volume 2 of 2 of Lecture Notes in Computer Science. Springer-Verlag,
Heidelberg, Germany, 1991.

[2] D. Bjørner. Abstract Software Specifications, volume 86 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, Heidelberg, Germany, 1980.

[3] D. Bjørner. Software Architectures and Programming Systems Design; volume I: Specifica-
tion Principles — the VDM Approach. Addison-Wesley/ACM Press, 1991.

[4] D. Bjørner. Software Architectures and Programming Systems Design; volume II: Imple-
mentation Principles — the VDM Approach. Addison-Wesley/ACM Press, 1991.

[5] D. Bjørner, C.A.R. Hoare, and H. Langmaack, editors. VDM & Z — Formal Methods in
Software Development, Proc. of VDM-Europe Symposium ’90, volume 428 of Lecture Notes
in Computer Science. Springer-Verlag, Heidelberg, Germany, 1990.

[6] D. Bjørner and C.B. Jones, editors. The Vienna Development Method: The Meta-Language,
volume 61 of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, Germany,
1978.

[7] D. Bjørner and C.B. Jones, editors. Formal Specification and Software Development.
Prentice-Hall International, 1982.

[8] D. Bjørner, M. Mac an Airchinnigh, E. Neuhold, and C.B. Jones, editors. VDM – A Formal
Method at Work, Proc. of VDM-Europe Symposium ’87. Lecture Notes in Computer Science.
Springer-Verlag, Heidelberg, Germany, 1987.

[9] D. Bjørner and O. Oest. Towards a Formal Description of Ada, volume 98 of Lecture Notes
in Computer Science. Springer-Verlag, Heidelberg, Germany, 1980.

[10] A. Blikle, H. Langmaack, H. Toetenel, and J. Woodcock, editors. VDM’91: Software Devel-
opment, Contributed and Invited Papers; Proc. of Formal Methods Europe (formerly VDM-
Europe) Symposium ’91, volume 1 of 2 of Lecture Notes in Computer Science. Springer-
Verlag, Heidelberg, Germany, 1991.

[11] R. Bloomfield, L. Marshall, and R. Jones, editors. VDM – The Way Ahead, Proc. of VDM-
Europe Symposium’88, volume 328 of Lecture Notes in Computer Science. Springer-Verlag,
Heidelberg, Germany, 1988.

[12] S. Brock and C.W. George. The RAISE Method Manual. Technical Report LACOS/CRI/-
DOC/3, CRI: Computer Resources International, 1990.

[13] R.M. Burstall and J.A. Goguen. Putting theories together to make specifications. In Proc.
of (IJCAI) Int’l. Joint Conf. on AI. Boston, Aug. 1977.

[14] R.M. Burstall and J.A. Goguen. The semantics of Clear: A specification language. [2],

386

Bibliography 387

pages 292–332, 1980.
[15] R. de Nicola and M. Hennessy. CCS without τs. In TAPSOFT ’87. Volume 1. Proceedings,

pages 138–152. Springer-Verlag, Heidelberg, Germany, Lecture Notes in Computer Science,
Vol. 249, 1987.

[16] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, Equations and Initial
Semantics. EATCS Monographs on Theoretical Computer Science, vol. 6, Springer-Verlag,
1985.

[17] L.M.G. Feijs. Norman’s Database Modularised in COLD-K. In Algebraic Methods II: The-
ory, Tools and Applications, pages 205–231. Springer-Verlag, Heidelberg, Germany, Lecture
Notes in Computer Science, Vol. 490, 1991.

[18] C.W. George and S. Prehn. The RAISE Justification Handbook. Technical Report LACOS/-
CRI/DOC/7, CRI: Computer Resources International, 1991.

[19] J.A. Goguen. Some design principles and theory for OBJ-0. In Lecture Notes in Computer
Science, Vol. 75, pages 425–471. Springer-Verlag, Heidelberg, Germany, 1979.

[20] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. Abstract data types as initial
algebras and correctness of data representations. In ACM Conf. on Computer Graphics,
pages 89–93, May 1975.

[21] J.A. Goguen, J.W. Thatcher, E.G. Wagner, and J.B. Wright. An initial algebra approach to
the specification, correctness and implementation of abstract data types. In R. Yeh, editor,
Current Trends in Programming Methodology. Prentice Hall, 1978.

[22] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF. In Lecture Notes in Computer
Science, Vol. 78. Springer-Verlag, Heidelberg, Germany, 1980.

[23] J. Guttag, J.J. Horning, and J.M. Wing. Larch in five easy pieces. Technical Report 5, DEC
SRC, Dig. Equipm. Corp. Syst. Res. Ctr., Palo Alto, California, USA, 1985.

[24] J.V. Guttag and J.J. Horning. The algebraic specification of data types. Acta Informatica,
10:27–52, 1978.

[25] I. Ørding Hansen and Jesper Jørgensen. Consolidated Meta-IV — abstract syntax. Technical
Report RAISE/DDC/JJ/4/V2, Dansk Datamatik Center, 16. Dec. 1985.

[26] K. Havelund and R.E. Milne. The Semantics of RSL. Technical Report RAISE/DDC/KH/-
43, CRI: Computer Resources International, 13. Sept. 1989.

[27] K. Havelund and K. Ritter Wagner. Kentrikos. Technical Report RAISE/DDC/KH/27,
Dansk Datamatik Center, 1987.

[28] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.
[29] C.B. Jones. Software Development: A Rigorous Approach. Prentice-Hall International, 1980.
[30] C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall International,

1986.
[31] C.B. Jones. Systematic Software Development — Using VDM, 2nd Edition. Prentice-Hall

International, 1989.
[32] C.B. Jones and R.C. Shaw. Case Studies in Systematic Software Development. Prentice-Hall

International, 1990.
[33] H.B.M. Jonkers. Introduction to COLD-K. In Algebraic Methods: Theory, Tools and

Applications, pages 139–205. Lecture Notes in Computer Science, Vol. 394, Springer-Verlag,
Heidelberg, Germany, 1989.

[34] R.E. Milne. The implementation relation for the RAISE specification language. Technical
Report RAISE/STC/REM/1, STC/STL, Harlow, UK, 1987.

[35] R.E. Milne. The sequential imperative aspects of the RAISE specification language. Tech-
nical Report RAISE/STC/REM/2, STC/STL, Harlow, UK, 1987.

[36] R.E. Milne. The concurrent imperative aspects of the RAISE specification language. Tech-
nical Report RAISE/STC/REM/7, STC/STL, Harlow, UK, 1988.

[37] R.E. Milne. The proof theory for the RAISE specification language. Technical Report
RAISE/STC/REM/12, STC/STL, Harlow, UK, 1990.

388 Bibliography

[38] R.E. Milne. The semantic foundations of the RAISE specification language. Technical
Report RAISE/STC/REM/11, STC/STL, Harlow, UK, 1990.

[39] R. Milner. Calculus of Communication Systems, volume 94 of Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, Germany, 1980.

[40] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267–310,
1983.

[41] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.
[42] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML. MIT Press, Cambridge,

Mass. and London, England, 1990.
[43] M. Nielsen, K. Havelund, K. Ritter Wagner, and C.W. George. The RAISE Language,

Method and Tools. Fomal Aspects of Computing, 1:85–114, 1989.
[44] D.L. Parnas. On the criteria to be used in decomposing systems into modules. Communi-

cations of the ACM, 15(12):1053–1058, Dec. 1972.
[45] D.L. Parnas. A technique for software module specification with examples. Communications

of the ACM, 14(5), May 1972.
[46] S. Prehn. From VDM to RAISE. In [8], pages 141–150. Springer-Verlag, Heidelberg, Ger-

many, 1987.
[47] S. Prehn and I. Ø. Hansen. Formal methods appraisal. Technical Report FMA/DDC/SP,

Dansk Datamatik Center, 1983.
[48] D. Sannella and A. Tarlecki. Extended ML: an institution-independent framework for formal

program development. In Category Theory and Computer Programming, volume 240 of
Lecture Notes in Computer Science, pages 364–389. Springer-Verlag, Heidelberg, Germany,
1986.

[49] D. Sannella and A. Tarlecki. Toward formal development of ML programs: foundations
and methodology. Technical Report ECS-LFCS-89-71, Department of Computer Science,
Edinburgh Univ., Scotland, 1989.

[50] W. Turski and T.S.E. Maibaum. The Specification of Computer Programs. Intl. Comp. Sci.
Series. Addison-Wesley Publishing Company, 1987.

[51] M. Wirsing. A Specification Language. PhD thesis, Techn. Univ. of Munich, FRG, 1983.

APPENDIX E

Index

The index is in four parts:

Symbols The symbols used to construct RSL value and type expressions.

Literals The RSL value and type literals.

Terms The main concepts used in the book, including the names of all the non-terminal symbols
from the RSL grammar.

Examples The examples from the tutorial part that are named modules.

In each index page references in normal, roman type are to the tutorial part. Page references
in bold type are to definitions, usually to be found in the reference part. (For the examples the
roman/bold distinction indicates usages/definitions of the example modules.) Page references in
sans serif type occur in the terms section, and refer to the syntactic definitions of non-terminals
in the syntax summary in Appendix A.

389

390 Index

Symbols

!
(output), 174, 333

∗
(integer multiplication), 27, 356
(real multiplication), 29, 356

+
(integer addition), 27, 355
(real addition), 29, 355

−
(integer subtraction), 27, 355
(real subtraction), 29, 356

/
(integer division), 27, 356
(map restriction to), 77, 357
(real division), 29, 356

;
(sequential composition), 141, 367

<
(integer less than), 27, 357
(real less than), 29, 357

=
(equality), 15, 17, 21, 145, 355

>
(integer greater than), 27, 357
(real greater than), 29, 357

✷

(universal state quantification), 142, 144,
330

⇒
(Boolean implication), 23, 362

∩
(set intersection), 57, 358

̂

(list concatenation), 66, 359
∪

(map union), 77, 359
(set union), 57, 359

†
(map override), 77, 359

≡
(equivalence), 17, 143, 145, 187, 326

∃
(existential quantification), 25, 325

∃!
(unique existential quantification), 25, 325

∀
(universal quantification), 25, 325

≥
(integer greater than or equal to), 27, 357

(real greater than or equal to), 29, 358
∈

(set membership), 56, 358
λ

(function abstraction), 43, 322
≤

(integer less than or equal to), 27, 358
(real less than or equal to), 29, 358

6=
(inequality), 15, 21, 355

6∈
(set membership (negation)), 56, 358

∼

→
(partial function type), 41, 130, 308

→
(total function type), 39, 130, 308

\
(integer remainder), 28, 357
(map restriction by), 77, 357
(set difference), 57, 357

∼
(Boolean not), 23, 363

⊂
(set subset (proper)), 57, 358

⊆
(set subset), 57, 358

⊃
(set superset (proper)), 57, 358

⊇
(set superset), 57, 358

×
(product type), 32, 305

↑
(integer exponentiation), 28, 356
(real exponentiation), 29, 356

∨
(Boolean or), 23, 362

∧
(Boolean and), 23, 362

∗

(finite list type), 63, 306
◦

(function composition), 45, 356
(map composition), 78, 356

ω

(infinite list type), 63, 306
:=

(assignment), 141, 332
(initialisation), 139, 206, 288

?
(input), 174, 333

Literals 391

⌈⌉⌊⌋
(external choice), 179, 364

→m
(map type), 74, 306

⌈⌉
(internal choice), 182, 365

‖
(concurrent composition), 175, 365

–‖
(interlocked composition), 193, 366

Literals

Bool, 21, 304
Char, 30, 304
Int, 27, 304
Nat, 28, 304
Real, 29, 304
Text, 30, 304
Unit, 30, 140, 304
abs, 27, 29, 360
card, 58, 360
chaos, 22, 316
dom, 76, 361
elems, 67, 361
false, 21, 315
hd, 67, 361
inds, 67, 360
int, 29, 360
len, 67, 360
real, 29, 360
rng, 77, 361
skip, 150, 316
stop, 181, 316
swap, 189, 316
tl, 67, 361
true, 21, 315

392 Index

Terms

abbreviation definition, 15, 280, 372
abstract type, 15, 302
access, 309, 375

description, 140, 173, 235, 238, 249, 309,
375

description any, 161, 196, 215, 249, 311
mode, 309, 375

actual
array parameter, 300, 374
function parameter, 324, 376
scheme parameter, 294, 373
vs. formal parameter, 225

algebraic
definition of

functions, 47
operations, 158
processes, 190

equivalences, 191
anonymous object array, 243
application expression, 40, 66, 76, 323, 376
applied occurrence

of an identifier, 353
of an operator, 353

array
object expression, 245, 300, 374
of models, 272

assignment expression, 141, 332, 377
associativity, 31, 381
axiom, 16, 143

declaration, 17, 18, 26, 289, 373
definition, 289, 373
infix expression, 329, 377
naming, 18, 289, 373
prefix expression, 330, 377
quantification, 26, 289, 373

basic
class expression, 204, 292, 373
expression, 316, 375

binding, 25, 35, 340, 378
body of a function, 282
boolean literal, 315, 375
Booleans, 21
bracketed

expression, 328, 377
type expression, 309, 374

built-in type, 14, 21, 302

case
branch, 338, 378

expression, 108, 338, 378
channel

declaration, 172, 288, 373
definition, 173, 288, 373
hiding, 178
implicit properties, 195

character literal, 383
characters, 30
choice

external, 179, 332, 364
internal, 182, 332, 365

class, 291
expression, 204, 291, 373
maximal, 226, 291
signature, 225

coercible, 303
coercion

implicit
in expressions, 314
in patterns, 344

potential, 303
comment, 20, 382
commented typing, 342, 378
communication, 174, 288
compatibility, 258
compatible, 261
complete axioms, 17
completed access, 161, 196, 215, 249, 309,

375
component kind, 274, 372
compound type, 15, 302
comprehended

access, 309, 375
expression, 188, 238, 331, 377
list expression, 65, 320, 376
map expression, 75, 322, 376
set expression, 56, 318, 376

concatenated list pattern, 112, 348, 379
concurrency, 172
concurrent composition, 175
connective, 23, 362, 380
constructor, 91, 92, 274, 372
converge, 313
conversion operator, 29
corresponding definition, 353
curried function, 45
cyclic

channel definition, 289
scheme definition, 271
type definition, 280
variable definition, 287

Terms 393

deadlock, 313
declaration, 14, 270, 371
declarative construct, 261
defined item, 297, 373
defining occurrence

of an identifier, 353
of an operator, 353

definition, 14, 261
depends on a

channel, 289
scheme, 271
type, 280
variable, 287

destructor, 94, 274, 372
deterministic expression, 111
disambiguated item, 297, 373
disambiguation expression, 138, 328, 377
disjointness axiom, 92, 277
distinguishable types, 303
diverge, 313
domain, 74, 306

effect, 140, 313
element object expression, 234, 300, 374
else branch, 336, 378
elsif branch, 336, 378
empty subtype, 89
entity, 204, 270
enumerated

access, 309, 375
list expression, 64, 319, 376
list pattern, 112, 347, 379
map expression, 75, 321, 376
set expression, 55, 317, 376

equality pattern, 112, 349, 379
equivalence expression, 143, 144, 187, 326,

376
evaluate an expression, 17, 149, 312
evaluation order, 145, 149, 313
event refinement, 198
execute an expression, see evaluate an ex-

pression
explicit

function definition, 41, 42, 45, 281, 282,
372

let, 335, 378
value definition, 19, 281, 372

expression
class, 204, 291
for, 153
initialise, 163

input, 174
local, 156
object, 219, 220, 234, 248, 299
output, 174
post-, 168
repetitive, 151
type, 15, 302
until, 152
value, 17, 149, 312
while, 151

extending class expression, 211, 292, 373
extension, 210

module, 18, 191
external choice, 179, 332, 364

allow an, 313

failure of pattern matching, 344
finite

list type expression, 63, 306, 374
set type expression, 54, 305, 374

fitting object expression, 219, 220, 240, 301,
374

for expression, 153, 339, 378
formal

array parameter, 272, 371
function

application, 282, 372
parameter, 282, 372

scheme
argument, 271, 371
parameter, 271, 371

vs. actual parameter, 225
function, 39

application, 307
arrow, 307, 374
definition

explicit, 41, 42, 45, 281
implicit, 46, 284

expression, 43, 322, 376
interface, 184
type expression, 39, 41, 140, 141, 307,

374

hidden definition, 263
hiding, 214

channels, 178
class expression, 215, 293, 373

higher order function, 44
hold in model, definition, 291

identifier, 382
application, 282, 372

394 Index

or operator, 353, 379
if expression, 21, 150, 336, 378
imperative process, 185
implementation, 60, 226

static, 225, 294
implicit

channel properties, 195
constructor, 123
function definition, 46, 284, 372
let, 335, 378
value definition, 19, 281, 372

implicit coercion
in expressions, 314
in patterns, 344

index
type, 234, 272
value, 234, 272

indistinguishable types, 303
induction axiom, 51, 92, 93, 277
infinite

list type expression, 63, 66, 306, 374
map type expression, 76, 306
set type expression, 55, 305, 374

infix
application, 282, 372
combinator, 364, 380
connective, 362, 380
expression, 329, 377
operator, 354, 379

initialisation, 139, 206, 287, 373
initialise expression, 163, 332, 377
inner pattern, 111, 348, 379
input expression, 174, 333, 377
instantiation, scheme, 209, 218, 219, 294
integer literal, 382
integers, 27
interface function, 184
internal choice, 182, 332, 365

allow an, 313
interpretation

of an identifier, 353
of an operator, 353

introduces
a definition, 270
an identifier, 270
an operator, 270

kind, 270

lambda
abstraction, 43
parameter, 322, 376

typing, 323, 376
least upper bound of types, 304
left to right evaluation, 313
legal interpretation, 266
length of product type expression, 305
less than or equal to, 304
let

binding, 335, 378
definition, 335, 378
expression, 116, 335, 378

list
expression, 319, 376
limitation, 320, 376
pattern, 112, 347, 379
type expression, 63, 306, 374

literal
in pattern, 109
type, 21, 302
value, 315

local
expression, 156, 334, 378

map
expression, 321, 376
type expression, 74, 306, 374

matching a value against a
binding, 35, 340
pattern, 108, 344

maximal
class, 226, 291

of a scheme, 271
of an object, 272
of an object expression, 299

context type, 261
definition, 270
index type of object expression, 299
type, 84, 302

model, 204, 291
module, 14, 204, 269

declaration, 204, 269, 371
definition, 14
extension, 18, 191
nesting, 230

multiple
channel definition, 288, 373
typing, 37, 342, 378
variable definition, 287, 373

name, 247, 351, 379
of an entity, 261
or wildcard, 279, 372
pattern, 109

Terms 395

natural numbers, 28
new

identifier, 297
operator, 297

non-determinism, 111, 118, 130, 183
unbounded, 130

non-deterministic
choice, see internal choice
expression, 111, 130, 313
pattern, 111

non-termination, 22, 42, 151

object, 205, 272
array, 232
declaration, 208, 272, 371
definition, 208, 233, 272, 371
expression, 219, 220, 234, 245, 248, 299,

373
fitting, 219, 240, 301

offer to communicate, 313
old

identifier or operator, 297
item, 297

operation, 140
operator, 354, 379
output expression, 174, 333, 377
overload resolution, 132, 265
overloaded

identifier, 265
operator, 265

overloading, 132, 265

parameter
actual vs. formal, 225
type of function, 307

parameterized
class, 271
scheme, 217, 236

partial function, 39, 41, 130, 308
pattern, 108, 344, 378
post-

condition, 47, 327, 377
expression, 168, 327, 376

potential coercion, 303
pre-

condition, 42, 47, 144, 169, 326, 376
of operators, 355, 360

name, 169, 316, 375
precedence, 31, 381
predefined types, 14, 21, 302
prefix

application, 282, 372

connective, 363, 380
expression, 330, 377
operator, 359, 380

process, 173
definition, algebraic, 190
imperative, 185

product
binding, 340, 378
expression, 33, 316, 375
pattern, 113, 346, 379
type expression, 32, 305, 374

properties, 270
provides

identifier, model, 291
operator, model, 291

pure
expression, 142, 149, 187, 314
function, 302

qualification, 351, 379
qualified

identifier, 206, 351, 379
operator, 207, 352, 379

quantified expression, 25, 325, 376
quantifier, 25, 325, 376

range, 74, 306
ranged

list expression, 64, 319, 376
set expression, 56, 317, 375

read-only expression, 142, 149, 187, 314
real literal, 383
real numbers, 29
reconstructor, 96, 274, 372
record

pattern, 109, 346, 379
variant, 274, 372

recursive type definitions, 107
refer, 261
refinement, 226
rename, 297

pair, 297, 373
renaming, 213
renaming class expression, 214, 293, 373
represent, 354
resolution, overload, 132, 265
resolvable, overloading is, 266
resolving context, 266
restriction, 131, 318, 376
result

description, 307, 374
naming, 327, 377

396 Index

type of function, 307

satisfies definition, model, 291
scheme, 208, 271

declaration, 209, 270, 371
definition, 209, 218, 237, 270, 371
instantiation, 209, 218, 219, 294, 373

scope, 261
rules, 261

sequencing expression, 141
set

expression, 317, 375
limitation, 318, 376
type expression, 54, 305, 374

short record definition, 125, 279, 372
shorthand, 19
signature

class, 225
value, 16

single
channel definition, 288, 373
typing, 37, 342, 378
variable definition, 287, 372

sort, 15, 273
definition, 15, 273, 371

specification, 204, 269, 371
state, 140, 287
statement infix expression, 329, 377
static, 257

access, 310
access description, 310
implementation, 225, 294

statically
access a channel, 314
access a variable, 314
correct, 257
input from, 313
output to, 313
read (from), 313
write to, 313

structured expression, 334, 377
subclass, 291
subtype, 83, 86, 302

empty, 89
expression, 83, 308, 374

success of pattern matching, 344
synchronous communication, 288

terminate, 22, 41, 151, 313
text literal, 383
texts, 30, 68
total function, 39, 85, 130, 308

type, 14, 302
checking, 84
compound, 15, 302
consistency, 258
declaration, 15, 273, 371
definition, 15, 273, 371
expression, 15, 302, 374
literal, 21, 304, 374
maximal, 84
operator, 15, 302

typing, 25, 35, 342, 378
list, 37

unbounded non-determinism, 130
under-specification, 18, 129, 205, 291
union definition, 123, 279, 372
unit literal, 315, 375
universal prefix expression, 330, 377
until expression, 152, 339, 378
upper bound of types, 304

value, 14, 15
declaration, 15, 280, 372
definition, 15, 280, 372

explicit, 19, 281
implicit, 19, 281

expression, 17, 149, 312, 375
expression pair, 321, 376
infix expression, 329, 377
literal, 315, 375
prefix expression, 331, 377
signature, 16

variable, 139, 287
declaration, 139, 287, 372
definition, 139, 287, 372

variant, 274, 371
definition, 91, 274, 371

visibility, 258
rules, 263

visible
definition, 261
identifier or operator, 353
not, 263
potentially, 263

while expression, 151, 338, 378
wildcard

constructor, 97, 126
pattern, 109, 345, 378

Examples 397

Examples

ACTUAL DATA, 238, 238, 239, 244, 244,
245

ACTUAL IN, 238, 239, 245
ACTUAL INDEX, 238, 238, 239
ACTUAL OUT, 238, 239, 245
ACTUAL P, 245
ACTUAL Q, 245
AIRPORT TYPES, 121, 122, 123, 124, 126,

126, 127
BALANCED SET FUNCTIONS, 104
BASIC AIRPORT TYPES, 121, 121, 123,

126, 127
BILL OF PRODUCTS, 80
BROADCAST, 237, 239
CHANNEL, 236, 237–239, 244
CHOOSE, 157, 168
CHOOSE REMOVE, 99
COMMAND, 220, 220, 221, 226
COMMAND LIST, 220, 221
CONNECTION, 244, 245
COUNTER, 139, 141, 144, 146, 146, 147
DATA, 71, 71, 101, 101, 236, 236, 237, 238,

240, 244
DATABASE, 13, 18, 49, 147, 154, 154, 163,

183, 184, 199
DECREASE, 144
ELECTION DATABASE, 18
ELEMENT, 219, 219, 222
ENCAPSULATED LIST, 214, 214, 215
ENCAPSULATED LIST S, 214, 214, 216
EQUIVALENCE, 222, 223
EQUIVALENCE RELATION, 61, 79, 87
FILE DIRECTORY, 107
FLIGHT IDENTIFICATION, 122, 124, 126
FRACTION SUM, 152, 153, 156
ILLEGAL, 214
ILLEGAL S, 214
INCREASE TWICE, 146, 147
INDEX, 237, 237, 244
INITIAL EMPTY LIST, 163
INSERT SORTED, 170
INTEGER, 218, 218, 230
INTEGER LIST, 218
INTERFACED DATABASE, 184
KEY, 70, 71, 101
LIST, 48, 159–161, 163, 166, 166, 170,

191, 194, 196, 197, 201, 202, 205
LIST A, 158, 159, 165, 190, 191, 201
LIST APPLY, 206, 215

LIST B, 166, 202
LIST DATABASE, 71
LIST OPERATIONS, 210, 211
LIST PROPERTIES, 69, 70
LIST S, 208, 211, 213, 214, 232, 234, 235
LIST STATE, 210, 210
M, 244, 244, 245
MANY LISTS, 235
MANY PLACE BUFFER, 180, 185
MAP DATABASE, 78
N, 244, 244, 245
NATURAL NUMBERS, 52
ONE PLACE BUFFER, 172, 176
ORDERED TREE, 102, 103, 114
OTHER CHANNEL, 240
P, 244, 245
PARAM LIST, 217, 218, 219, 220, 223, 230
PARAM ORDERED LIST, 223, 224, 225
PARTIAL ORDER, 223, 223, 224
PEANO, 51, 52
Q, 244
QUEUE, 68, 88
RATIONAL, 138, 207
RATIONAL MULT, 207
READER WRITER, 176, 177
RECORD, 71, 71, 101
REPORT, 154
RESOURCE MANAGER, 58, 120
RETURN COUNTER, 141
SET, 99, 99
SET DATABASE, 59
SET FUNCTIONS, 103, 104
SIZE, 235, 235
SORTING, 70
STACK S, 213
SYSTEM, 177, 178, 239
SYSTEM OF COORDINATES, 33
TEST COUNTER, 146
TEXT, 224, 225
TEXT LIST, 225
TWO LISTS, 232, 234
UNION DATABASE, 128
USER, 238, 239
VARIANT DATABASE, 105, 114

