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Preface

RAISE is an acronym for “Rigorous Approach to Industrial Software Engineering”.
It was the name of a CEC funded ESPRIT project and now gives its name to a
formal specification language, the RAISE Specification Language (RSL), an asso-
ciated method and a set of tools. RSL was described in a previous volume in this
series [23] and the tools have been commercially available for some time. In this
volume the RAISE method is described.

RSL is a wide spectrum language: the same language can be used to formulate
both initial, very abstract specifications and to express low level designs suitable
for translation to programming languages. The method therefore encompasses:

e formulating abstract specifications

e developing these to successively more concrete specifications

e justifying the correctness of the development

e translating the final specification into a programming language

All these activities are described in this volume. In addition there is an appendix
containing both useful general material (standard specifications of data types; qual-
ity assurance check lists) and formal material supporting the method (the formal
properties of RSL specifications; proof rules for use in justifications).

RAISE takes seriously the word “industrial”. The method is intended for use on
real developments, not just toy examples. So this volume is aimed at professional
software engineers, although it could also be used by students at graduate level.
Familiarity with RSL, or at least an ability to read it, is assumed.

The RAISE technology has been developed as collective efforts in the ESPRIT
RAISE (315) and LaCoS (5383) projects. Chapters 1-3 were written by Chris
George, chapter 4 by Anne Haxthausen, chapter 5 by Jan Storbank Pedersen and
the appendices by Chris George.
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CHAPTER 1

Introduction

Computers are increasingly being used for tasks where failure threatens severe
consequences, including loss of life. Computers play an essential role in controlling
spacecraft, aircraft, trains, cars, nuclear reactors and hospital equipment — to
name just a few of the more critical applications. Whether we are worried about
our plane landing safely or our bank account being correct, we would agree that it
is vital that the computer systems behind them are completely reliable.

Reliability, which we might broadly describe as doing the job the system is sup-
posed to do, is a requirement of both the hardware and the software. This book is
about the software component. Making software reliable is especially difficult: any
program capable of doing anything interesting is so complex that it is impossible
to test it completely.

An important technique to aid in increasing reliability of software is the use of
formal methods. We will define this term in more detail later, but the basic idea
is that it should be possible to reason about properties of software, or systems
involving software. For example, if the requirements say that there must be at
most one train in any section of track, one can produce a proof that the software
will always reflect this.

Formal methods are not the complete answer. For a start, “proofs” can contain
flaws. Non-trivial proofs tend to be large and difficult to do automatically, so typ-
ically some steps will be claimed as “obvious” and not proved formally. For any
proofs that are done automatically we have to ask how we know the prover is cor-
rect. Then there are wider problems. How do we know that the model of the world
contained in the software (in which there is only one train per section) is reflected
in the real world? Development starts with a statement of requirements, written
mostly in a natural language, such as English. Formal methods can offer assurance
that the requirements are correct, by finding inconsistency and incompleteness,
but assurance is not certainty. Also, using formal methods involves interpreting
the requirements by creating a model of them (albeit mathematical and abstract)
in another language. Such processes are liable to errors.
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Formal methods do not replace testing, and must be applied with due regard
to quality control and to cost effectiveness. But they are invaluable for improving
reliability.

1.1 Structure of the book

The next two sections of this introductory chapter present the basic ideas behind
development in RAISE and its role in software engineering. There are then two
sections introducing formal systems and the formal aspects of RAISE. Finally we
note the changes to RSL that have been made in this book to the description in
the book on RSL [23].

Part T of the book consists of a single tutorial chapter. This expounds, mainly
through examples, a particular but general method for specifying and developing
software systems in RAISE.

Part IT consists of chapters on techniques: chapter 3 on development, chapter 4
on justification and chapter 5 on translation. Each of these can be read sequentially
but are mainly intended to be used for reference.

Part III consists of appendices containing purely reference material:

e Appendix A contains standard, reusable specifications.

e Appendix B presents the proof system used in the rest of the book.

e Appendix C provides quality assurance checklists for doing quality assurance
of specifications and developments.

e Appendix D contains references.

e Appendix E contains two indexes. The first, of terms, shows where the tech-
nical terms particular to RAISE are introduced and discussed. The second,
of proof rules, shows where these rules are defined and used.

1.2 Characteristics of RAISE

The RAISE method is based on a number of principles:

e separate development

e step-wise development

e invent and verify

e rigour

We will describe each of these principles.

1.2.1 Separate development

It is clear, if we want to develop systems of any size, that we must be able to
decompose their description into components and compose the system from the
(developed) components. This is just as true when the description is a specification
as it is when it is a program.
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It is also clear that for most systems it is necessary to have people (or teams
of people) working on different components at the same time. There will then
be entities — files, documents, etc. — that are being shared. This generates two
difficulties. The first is that it must be clear who is responsible for updating such
shared entities, and what the status of each version is at any particular time. This
is a standard configuration control problem and not specific to formal methods.
The second difficulty is that there must be no ambiguity about what such shared
entities mean, and this causes rather more problems (or systems integration would
be a simple task!). The typical problem is that one person writes a function that
others want to use. It is easy enough to share the information about the name of
the function, what parameters it has and what its result type is. But it is not so
easy to be exact about the semantics of the function — particularly what it does
under different boundary conditions and how it may affect other things. What can
the users assume about these?

If we also consider the development of these shared components we discover an
additional problem. What can the developer safely do that will not affect the users?

What we need is a clear, unambiguous statement that acts as an agreement
or contract between the developer and the users. For the developer a contract
says what he must provide; for the users it says what they may assume. If the
users discover during development that they need more or different properties, they
need to renegotiate the contract, but otherwise they can develop their components
freely. If a developer discovers during development that he can only supply fewer or
different properties, he needs to renegotiate the contract, but otherwise can develop
freely as long as he preserves the properties he contracted to provide. This also
means that it must be known who are the users and developers, so that it is clear
who needs to be involved in renegotiation.

A specification of a module (or perhaps group of modules) can act as this con-
tract. A specification says precisely what the essential properties of the thing being
specified are. It is much better in this respect than something written in a pro-
gramming language, because it can state the essentials and ignore the irrelevances.
A specification allows controllable precision; it can be as precise or as imprecise as
its specifier and users require. Imprecision is not the same thing as vagueness or
lack of clarity. Our logic allows us to draw some conclusions from a specification
and not others, so a specification (implicitly) states what is essential and what is
irrelevant.

A program representing a contract avoids the problem of vagueness in an informal
description, but its incapacity for ignoring the irrelevant creates another problem.
A program is complete in the sense that it contains all the information to allow it
to execute. It is therefore precise about what it does, and so a development of it
will cause its existing properties to change. Hence it is of little use as a contract
allowing for development.

So what is the role of the contract in development?

Figure 1.1 illustrates how separate development works in the simple case of the
development of a module A that is used in a module B. The initial versions of B
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Development of A Development of B

AO - ... BO = ... AO

lq--------
=== == = = =

Integration
Y
Bn_|_]_ - ... Am aee

Figure 1.1: Separate development

and A are By and Ag, and these are developed in n and m steps to B, and An,
respectively. The module Ay acts as the contract between the two developments;
note that the reference in B to A is to Ay at every stage but the last in B’s
development. When development is otherwise complete we integrate by using A,
instead of Ay in By, to form B, ;.

What we want is for the final system (A,, and B,,;) to meet the original re-
quirements. A set of sufficient conditions for this is:

e The initial modules (Ay and By) together meet the requirements, i.e. have all
the required properties.

e Each development step of A and B is an implementation step, i.e. each module
implements the immediately preceding one. Implementation is introduced in
section 1.6.

It is also useful to ensure that each B; (0 < i < n) is a conservative extension of
Ay. This simply means that only the developers of A are allowed to make decisions
about the development of A. If the designers of B could also do so there would be a
danger of contradictory decisions being taken. Conservative extension is introduced
in section 1.6.2.

This picture of separate development can, of course, be scaled up to arbitrary
numbers of separate components, and can be recursively applied so that compo-
nents have sub-components, etc.

The picture we have presented of separate development is idealized. In practice
it is rarely followed precisely. Important variations are:

e Not all requirements are met.
e Contracts may need to change.
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e Some development steps may not be implementations.

We will consider each of these.

1.2.1.1 Requirements not met

The initial specifications may not meet all the requirements. This can happen for
two reasons:

e Some requirements cannot be captured in RSL, because they are outside its
scope. Typical requirements of this kind may be simple ones, like “the system
will run on ... hardware under ... operating system and will be coded in

.7, or more difficult ones like timing constraints. These are often termed
non-functional requirements.

e Some requirements which can be captured in RSL are consciously deferred to
later in development, because to include them at the beginning would make

the initial specification too complex.

In either of these two cases we have to record the requirements not yet met and
check that they are dealt with later. In both cases we will need to be reasonably
sure that we can eventually deal with the requirements, or the development will
have to be redone. In the second case of deferred requirements this means checking
that the specification is more general than one reflecting the full requirements, but
consistent with them.

1.2.1.2 Changing contracts

We may need to change a contract (like Ag) during development. This may be
because the developers of B need properties additional to, or even different from,
those they originally contracted for. It may be because the developers of A find it
impossible, or costly either in terms of development time or in terms of the efficiency
of the final implementation, to provide what they originally contracted to. In either
case the contract can be renegotiated, i.e. at some point a development of A, A;
say, is created but is not an implementation of its predecessor. The developers of
B must develop to Bj, say, using A; and development continues from this point.
This changing of contracts from A, to A; is illustrated in figure 1.2.

This leaves the question of the relationship between the developments before and
after the change in contract. It may be that we just consider the level at which the
change took place a new start, re-validate against the requirements and continue.
Usually, however, it is possible to express (formally) the relation between A; and its
predecessor and between B; and its predecessor so that we know the relationship
between the previous work and the new.
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Development of A Development of B

AO - ... BO = ... AO

lq--------
=== == = = =

=
|

|
w
L

|
&

Renegotiation

lq--------
- ---=-=---

Ap = .. B, = ... A; ..
Integration
Y
B7L+1 = ... Am .ee

Figure 1.2: Separate development with changed contract

1.2.1.3 Non-implementation steps

We may need to make a non-implementation step during development. Typically
the design we want to choose only works for a more restricted case than the one we
are dealing with, and so we want to go back to the initial specification and change
its properties. In theory what we should do is obvious — we should go back to
the initial specification, make the changes and redo the development. The problem
is that this may be a lot of work for a small change (particularly if we have been
doing proofs). So are there any short cuts for situations where we are reasonably
certain that the change is minor?

The first thing to say is that any such short cut is very dangerous, and should
only be used with great care. That being said, we can examine some possibilities:

e If the change occurs in the development of A it may still be the case that
the change we want to make is an implementation of our contract. If we can
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establish this there is no problem. For example, the usual way to establish that
A, is an implementation of Ag is that A, implements A; and A; implements
Ap, with the result following from the transitivity of implementation. But it is
quite valid to establish that A, implements A, directly. (The reason we don’t
do it as a matter of course is that the proof tends to be large and difficult;
using the intermediate A; effectively decomposes the proof.) We can then
choose to discard A; as a false step or retain it as a guide to the intuitions
behind the development.

If, however, the change means that we are not implementing Ay, we should

renegotiate the contract, as described above. It is very dangerous to weaken
the formal relation between separate developments.
If the change occurs in the development of B then, again, we may still be
implementing By (or Bj after a changed contract), and there is no real prob-
lem. But often this is not the case. At the system level, though, there are
no other dependent developments and so we can decide to accept the change
at this level without re-working the previous ones. What we should do is to
formally document what the relation is and also informally document what
the effective changes to the requirements are. If the original specification met
the requirements and we are now changing its properties then, potentially at
least, we are meeting changed requirements.

1.2.2 Step-wise development

The discussion about separate development assumed that there might be several
steps in the development of A and B. It is indeed important that this is possible,
that we can develop software in a sequence of steps. Then we can start with a
suitable abstraction, decide what are the main design decisions we need to make,
and what the dependencies are between them, and make a plan of the order in
which we tackle them. Typical design decisions involve:

providing explicit definitions for values previously given only signatures or
implicit definitions or axioms

providing explicit definitions for variables and channels previously referred to
only by any

giving concrete definitions for abstract types

e changing the definitions for types to allow more detailed or (potentially) more

efficient functions over them (e.g. lists for sets)
adding new definitions or axioms

e adding state variables, either locally to save values or globally to replace par-

ameters

changing the style of specification between applicative and imperative or
between sequential and concurrent

adding extra parameters or channels to express greater functionality
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e making things more generally applicable (and hence more reusable) — such as
adding parameters to schemes or widening the parameter types of functions
e removing constructs difficult to translate into the chosen target language

Dealing with one or more such decisions means we make a development step, we
produce a new specification which we can verify conforms to the previous one. It
is important to be able to make only one, or at least only a few, design decisions
in each development step, to deal with one problem at a time.

Deciding what the major decisions are also gives us an overall plan of activities
for the development. For example, for the lift system that we discuss in the tutorial
(section 2.7) our top level plan is roughly:

e formulating an abstract specification by concentrating on producing suitable
functions and axioms that can be validated against the requirements

e developing a concrete specification by designing a suitable global state type
and definitions of the functions, so that the definitions can be checked to
implement the axioms

e decomposing the global state into separate state components for the motor,
doors and buttons

e introducing concurrency reflecting the different processes

Note that the problems being tackled here are, in order:

e meeting the main requirements

e designing a suitable global state type
e decomposing the state

e introducing concurrency

Of course there is some interplay between the design process and the problems to
be tackled. Choosing different problems first would result in different problems
arising. But deciding on this kind of top level plan is a critical step in starting a
development.

The number of development steps from an initial specification will vary, but
experience suggests that it is typically one or two. Main components will tend to
have more steps than sub-components.

1.2.3 Invent and verify

There are techniques for development that rely on transformation, such as that
developed by the CIP project in Munich [5]. With such a technique the developer
starts with an expression and applies a transformation rule that creates a different
but equivalent expression. Thus the developer is guaranteed a priori that the new
expression is equivalent to the old one because the transformation rules are known
to preserve equivalence.

In fact, doing RAISE justification is an example of a transformation technique,
but applied to logical expressions rather than program expressions. Any formal
application of correct proof rules produces a correct argument — there is no need



Characteristics of RAISE 9

to check it afterwards.

“Invent and verify”, on the other hand, is a style that allows (in fact forces)
the developer to invent a new design. Then, afterwards, the developer verifies its
correctness.

The transformational route sounds easier, because there is only one step and
correctness is guaranteed. What are the advantages of invent and verify?

e Transformational systems are very large for reasonably sized languages. The
RSL justification editor currently has some 2000 rules. This is only a small
system designed with the very particular purpose of doing justifications: most
of the rules are equivalences. A design transformational system would be
considerably larger because it would have a more general purpose and because
it would not be restricted to equivalences. Equivalence may be useful for
algorithms but not for data types where, for example, we often introduce
redundancy. So the system would be extremely large with difficulties first in
populating it and then in finding suitable rules.

It can be argued, of course, that an extensible system would allow rules to
be added as needed. But then one is back to invent and verify. One invents
the rule one needs, verifies its correctness and then applies it. The rule is
available to apply in future, but only if one has taken the trouble to suitably
generalize it when inventing it.

e In practice transformational rules only apply in particular circumstances;
showing that those circumstances hold generates “side conditions” that need
to be proved. Hence the “and verify” part tends to be there anyway.

e It is easy given the invent and verify approach to invent several steps, perhaps
changing one’s mind several times, before deciding on the right approach and
doing the verifications. With transformations the approach tends to be more
formal from the start.

e In practice, as we noted when discussing separate development, some devel-
opment steps will not be implementations and may, indeed, bear little formal
relation to the previous level. But we may still wish to preserve the previ-
ous level as a guide to how we reached the new design. Hence we need to
do “incorrect” steps, which runs counter to a “guaranteed correct” approach.
There may still be opportunities for verification as well as invention in this
case when we do postulate a formal relation.

It will be noticed that these are not objections to transformational approach in
principle. Indeed, all these remarks could be made against doing justifications
just by selecting rules and using them: a usable technique must allow lemmas
to be defined and used (the “new rules”), side conditions to be generated, the
justification of side conditions to be deferred and even goals to change in mid-
stream via informal steps (“this amounts to showing ...”). Hence partly it is an
engineering issue, and the real judgement the designers of the RAISE method
made is that transformational systems are not yet sufficiently powerful to make all
development transformational for a language like RSL.
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1.2.4 Rigour

Development is difficult; proofs are much more so. It is impractical to prove every-
thing, given the current state of theorem provers. And even if we could, with little
effort, prove everything that is true, it is not clear that this ability would be suffi-
cient. We often learn a lot from the failure of a proof, but we learn most from the
precise details of the failure. So it is not enough merely to be able to do proof, we
need to be able to explore properties of specifications.

Another problem is that, just as there are far too many possible test cases to
execute in real time, so are there too many possible properties. As with testing, we
have to look for the “interesting” cases, such as the boundary cases. And then we
need to actually discharge the proofs for the suspect cases. There is another analogy
with testing. If we had to repeat lots of “obvious” tests, our efficiency at spotting
the problems would drop because the whole process would become so tedious. We
should always be asking what is the most effective activity to help achieve our
goals. In both proving and testing, suitable driving programs (programmed proof
tactics, test harnesses and so on) reduce the human intervention and consequent
tedium.

There is, of course, a danger that by selecting the cases to prove we miss the
mistakes because it is “obvious” that they aren’t there. Again, this is just like test
case selection, where it is also dangerous but necessary to select a set of interesting
cases. As with testing we use guidelines on test case selection and review by others
to help avoid such pitfalls.

So it can be necessary to select the properties worthy of closer investigation, and
to formally prove only those we suspect. But when we investigate some property
in part informally we should also note down the argument, why we think it is
true, as a normal part of documentation — as something to be reviewed now and
referred to again later. We call an argument that may be wholly or partly informal
a justification. Arguments that contain informal steps are termed rigorous. A
justification that is completely formal is a proof.

Note that although we advocate rigorous rather than fully formal arguments, we
still need the formal basis of the method. It is critical, if someone else challenges
the correctness of an informal part of a justification, that we can formalize it and
answer the challenge definitively.

1.3 Role of RAISE in software engineering

So far we have presented the characteristics of RAISE as a formal system. But this
book is about method, and we need to examine what we mean by a method, and
in particular what we mean by a formal method.

A method is a means of achieving something, and in the context of this book
the something is the development of a software system. By “software system” we
mean:
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e a program, or collection of connected programs, written in some executable
language. An executable language is one whose (well-formed) programs can
be run on suitable hardware, usually after an automatic compilation process.

e associated documentation supporting the use and maintenance of the pro-
gram(s).

Note that we include the documentation as well as the program. We will see that
formal methods have most to do with production of the software, a lot to do with
producing documentation supporting maintenance, and less to do with producing
documentation supporting use.

A method consists essentially of procedures to be followed and techniques that
facilitate the procedures.’

Procedures or activities are usually described in several layers. At the top are the
major activities that collectively are said to form the software lifecycle, typically
consisting of activities like requirements analysis and capture, architectural design,
detailed design, coding, unit testing, integration, acceptance testing, maintenance.
Within these major activities there are component activities like producing a par-
ticular kind of document (activity plan, architectural design, module design, coded
module, test plan, test case, etc.), following a quality assurance procedure, chang-
ing an existing document, etc.

Together with these procedures identifying various kinds of activity there will
be particular techniques that can be used. There are techniques for requirements
analysis, for design, for doing reviews, for generating test cases, for analysing test
coverage, etc.

Most of the RAISE method consists of techniques for four major procedures:

e specification
e development
e justification
e translation

Many detailed specification techniques are described in the book on RSL [23], and
are not presented here, although there is some general advice in the tutorial part
and good examples to follow throughout. Techniques for development, justification
and translation are described in detail in part II.

Techniques must be related to the procedures that require them. Here we are in
something of a difficulty. Particular suppliers and purchasers of software usually
have their own notion of what method is to be used, generally embedded in their
quality standards. Such standards will describe in detail what is meant by proce-
dures like “test specification”, say. They will prescribe the component procedures,
their inputs and outputs, what techniques (and perhaps tools) are acceptable or
mandated, what quality assurance procedures will be applied, etc. The use of for-

1Tools are commonly considered part of a method, because the method would be unusable
without them. We believe tools to be essential for practical use of RAISE, but tools are not
essential to understanding this book. Therefore the book does not make detailed reference to
tools, though it does indicate which techniques can be supported by tools.
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mal methods will affect some of these much more than others. It is unlikely, for
example, to change substantially the order in which things are done, but it will
change the proportion of time spent on some activities compared to others. Some
techniques (like textual document preparation) will be affected little or not at all,
some (like test case generation) may be changed because their inputs are different
and perhaps available earlier, but will be essentially unchanged, while some (like
design) will be radically different. So we do not want here to propose a method
to replace everything in place already. Rather we want to explain how the RAISE
method will affect typical methods in use already. We therefore need to describe
at least some characteristics of a “typical” method, to explain how we use some of
the basic terms.

We will use the following terms describing the top level procedures that are most
affected when using RAISE:

specification starts with identified requirements, written mostly in a natural lan-
guage such as English, and produces a description in RSL. For all but the
most trivial systems this will be structured into a number of modules. The
specification will define the behaviour of the system in sufficient detail to meet
all the major functional requirements. This procedure covers what is often
described as requirements analysis.

We shall often refer to the main output of this procedure as the initial
specification. This is not because it is the first one written — there may be
several versions attempted before one is selected, and we shall see later that
producing a more concrete version to gain confidence in the more abstract is
also a common technique. It is referred to as the initial specification because it
is the basis for the more detailed specifications produced during development.

Ideally the initial specification will be free from “implementation bias”, i.e.
it should be possible to develop any possible correct final implementation from
it. This is sometimes referred to by saying that the initial specification should
define what the system is to do rather than how it is to do it. So, ideally, it
should not reflect any architectural design decisions.

In practice there may be some variation from this. Large systems with
many requirements will be hard to describe in a single module, and indeed
may need to be modular because we use modularity as one means of dealing
with complexity. While it is theoretically possible to use composition as well
as decomposition to change the modular structure during development, it is
unlikely in practice, and even less so with separate development. So initial
specification often includes some architectural design.

development starts with the initial specification and produces a new, more de-
tailed RSL specification (usually in a number of development steps) that con-
forms to the original and that is ready for translation — the final specification.
This procedure is often called detailed design.
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translation starts with the final specification in RSL and produces a program
or collection of programs in some executable language(s). This procedure is
often called coding.

Note that these procedures may apply to maintenance (when the inputs will also
include the result of previous work) as well as to original development.

1.3.1 Validation and verification

There are two facets to showing correctness that are commonly distinguished, val-
idation and verification:

validation is the check that we are creating what is required, i.e. that we are
meeting the requirements. It can be expressed as the check that we are “solv-
ing the right problem”. Since it is a check against requirements written in
natural language it is necessarily informal.

verification is the check that the process of development is correct. Hence it
includes in particular the formulation and justification of formal relations
between development steps. It can be expressed as the check that we are
“solving the problem right”. Verification can be done with varying degrees of
formality.

Validation requires that we are able to trace requirements, to relate them to where
in the specification they are being met. We should be able to relate a functional
requirement to either the initial specification or to a later development level. Once
we know that a requirement has been captured we use verification to check that it
remains captured.

It is also possible to relate non-functional requirements to development steps,
since it is mainly these that drive the direction of development. Choice of a par-
ticular algorithm or data structure is often determined by a particular intended
programming language or operating system, or by some capacity or efficiency re-
quirement.

1.3.2 Analysing requirements

The great strength of formal methods is that in having to create a formal de-
scription of a system at an early stage in its development one is forced to make
decisions about all kinds of things on which the requirements are silent or open
to interpretation. This uncovers many problems with requirements documents —
problems which are generally inherent in natural language documents no matter
how carefully written.

The second important point to note is that it is particularly valuable to find
errors and resolve ambiguities or contradictions at this early stage. It is a standard
result that the later an error is discovered the more expensive it is to fix, both
because of the work that needs to be re-done and because of the time elapsed.
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Thirdly it is the experience of teams using formal methods that their common
understanding of the problem improves through creating and discussing the speci-
fication. Just as requirements are couched in natural language, so is most commu-
nication between team members, and this too is open to misunderstandings and
confusion. As a specification is developed and agreed it tends to give precise mean-
ings to the components of the system, their functions, their interfaces, etc., and the
communication between team members improves as a result. This effect has even
been reported by teams who have previously worked together on similar systems,
when they first attempt formal specifications.

Because of these effects it is sometimes worth re-writing the requirements from
the specification, since this typically produces a document that has fewer omissions,
contradictions and repetitions, is better structured and is more consistent in its
terminology. This is particularly useful if the original document turns out to be
very inadequate in these respects or if the customer is unable to understand the
formal specifications. Playing back one’s understanding of something is frequently
a good way of checking that one has really understood it.

The value of doing a good job in producing the initial specification should be
apparent. It follows that it is worth spending a considerable amount of time and
effort on it, more than is usually spent on requirements analysis. A good initial
specification will more than pay for itself in making development quick and reliable.
Hence it is normal in the specification procedure to go through several iterations,
to look for alternatives (particularly different architectures), to plan and sketch
out the development route to see if there are any difficult steps that can be made
easier, to create more concrete specifications that can be tested directly by symbolic
execution or translated and run as prototypes. In fact a very iterative style of
development in which, by the time the initial specification is agreed, most of the
design work and even some translation has been done, seems well suited to formal
specification among small teams. With larger teams working separately this is
less practical as far as the interfaces are concerned, but can still be adopted for
components.

“It is a long time before you start to code” is an accusation often made about
formal development. Certainly it is expected, in using formal specification, and
more so in using rigorous development, that coding will start late. But it should
be quick and reliable (and may even be automatic for at least large parts). And
any good development method encourages more work at the early stages, because
rushing into code usually entails trying to debug one’s way out of trouble later.

1.3.3 Maintaining correctness

Achieving a sound and correct starting point for detailed design is the first essential,
and something that the clarity and logic of formal methods makes possible. Then
we try to maintain the correctness; here the implementation relation in particular
and the general ability to reason about specifications are important.
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1.3.4 Concentration on discovery of errors as they are introduced

Software engineers spend much of their time finding and correcting errors. They
also spend much of their time introducing them. Apart from those inherent in
the requirements, all errors in software systems are introduced by their developers
and maintainers. Hence our methods can usefully be directed at avoiding the
introduction of errors or finding them immediately.

Errors fall into several categories:

e requirements that do not reflect the real desires or needs of the customer or
user

e failure to meet requirements like performance or reliability that we try to
design for but can rarely guarantee in advance

e misunderstandings of the requirements or previous development level

e slips by the developers or maintainers in not writing what they meant to write

The first category is often the most expensive to correct, the last probably the most
common.

Using formal methods will help with the first category of error to the extent
that the requirements are obviously unclear or incomplete, because in the analysis
stage lots of questions will arise from the requirements and be resolved with their
authors. But if the requirements say build X when they mean Y, and the request
for X seems reasonable, there is little chance of any formal method detecting the
problem. Building an early prototype to demonstrate is a good idea if this is likely
to be a problem.

Formal methods have some difficulty with the second category of error — failure
to meet requirements that cannot be easily expressed as a property of what partic-
ular components should do. Real-time requirements are a particular example, and
how to deal with them is an active area of research. What we can do with such
requirements is to use them as a guide to the direction in which we develop and the
standards which we adopt. Thus to achieve performance or reliability requirements
we will consider various potential architectures (including both software and hard-
ware), use standard techniques to analyse their potential performance, failure rates,
etc, and then guide our development towards the chosen architecture. To achieve
particular quality levels in the product we will apply the appropriate standards in
the development — and here formal methods have much to offer in achieving more
reliability in the development process.

Formal methods also help with the third category of error, since formality sharply
reduces the possibility of misunderstandings.

As for the fourth category of error, it is not clear if people are more or less likely
to make errors in writing RSL than they would in other techniques. Tools can help
in immediately pointing out some simple slips, and it is often the case that a type
error in a specification indicates a deeper problem than just a slip.

But undoubtedly errors will be made in this way, and formal specifications are by
no means easy to get right, just as programs are not easy to get right. But formal
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specifications do have two advantages over programs. First they can be verified
against the previous level — against requirements by trying to prove requirements
expressed formally, and against previous levels written in RSL by expressing imple-
mentation and then justifying it. Even if this process is only used to the extent of
examining the proof obligations carefully, without actually making and recording
any justification, it is very effective at discovering mistakes.

Secondly, formal specifications can be reviewed. Code reading is recognized as
an effective way of discovering errors, and reading RSL is generally easier because
it is more abstract and less detailed. So reviewing RSL, by people proficient in it
and with check-lists of typical problems, is very effective.

1.3.5 Production of documentation enabling maintenance

Maintaining software is very expensive and very error-prone. Design documentation
is typically missing or out-of-date.

Formal specifications, both initial and development specifications, can help con-
siderably because they provide a means of understanding the code top-down. Com-
ments in specifications can aid this process. Whether the change is an extension,
an adaptation or a correction, it is possible to discover the module(s) affected and
the first development level at which the change can be expressed, and for the de-
velopment to be re-done from that point. The interfaces between RSL modules are
all explicit, so it is easy to check what else is affected (usually using tools).

The process is also much easier (and likely to be followed) if all or most of the
final specification is automatically translatable. This is also a crucial factor in
the specifications being up-to-date. One of the problems with traditional design
documentation is that once it has been created there is no real incentive to maintain
it; changing the documentation as well as the code just seems like two jobs of which
only one matters right now. The more we can make the code generated from designs
the more likely it is that the designs will be consistent with the code.

1.4 Selective use

There are two important ways in which we can be selective in our use of RAISE:
in how formal we choose to be and in what components of a system we choose to
apply it to.

1.4.1 Degrees of formality

In section 1.2.4 we explained that it is not necessary (or sensible) to prove every-
thing. In fact there is a more general principle: The degree of formality that you
apply needs to be appropriate to the problem and an efficient way of tackling it.
And there are many opportunities for being more or less formal in development.
We may broadly classify three development styles:
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formal specification only Formality is applied to the specification procedure.
We write the specification with the aims of:

e achieving and recording a precise, unambiguous statement of what we
understand the system is to do, as a basis for creating it now and main-
taining it in the future

e using this as a guide to doing detailed design and writing the code, but
using informal design techniques

e validating the specification against the requirements to discover any dis-
crepancies and resolve them

e formulating test cases for use after coding

formal specification and rigorous development Formality is applied to the
specification procedure as before, but also to the development procedure. This
means that one writes both abstract and more concrete specifications and also
records the development relations between them. These relations are then
subject to examination and perhaps review, but are not justified.

formal specification and formal development We extend the previous step
to doing the justifications as well. Our previous advice of always concen-
trating on the difficult or interesting parts and hence on doing justifications,
including informal arguments, rather than full proofs, still stands, so per-
haps this category should be called “formal specification and more rigorous
development”.

So what level should be adopted? Most experience with formal methods has been
in using them at the first level, and certainly the formal specification procedure
seems to be extremely effective because it finds so many ambiguities and omissions
in the requirements. It is also effective in providing a basis for test cases and for
determining expected results, and for providing documentation that can be used
in maintenance. In terms of value (mainly increased confidence in the software) for
effort it is extremely cost-effective.

But the first level alone still leaves the gap between the initial specification
and the code. If we only intend to produce one level of specification, we may be
tempted to make it very detailed, to capture all the requirements and be fairly
close to the code. There is then a danger that we lose some of the advantages of
formal specification in not being sufficiently abstract, and in creating specifications
that are hard to reason about (whether mentally or on paper or with tools). Once
we lose the ability to reason about what our specifications mean, we lose much of
the point of producing them. Hence there are very good arguments for adopting
the second level.

It is not necessary to adopt rigorous development uniformly. Our initial specifi-
cation will provide a top-level decomposition into component systems, and some of
these will require more development work than others. Some may be very simple
and easily coded; some will be standard components for which we have already
existing developments with translations.
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Many of the benefits of the first level lie in error discovery — errors, omissions,
contradictions or ambiguities in the requirements. Most of the benefits of the
second level lie in error avoidance: having achieved a good initial specification we
maintain conformity with it. It also produces a record of how the development was
done that is very valuable in maintenance. The second level also produces RSL
that may be automatically translated. In terms of cost-effectiveness — improved
quality for effort — it may well be less effective than the first level, but it can still
be a great improvement over the alternatives. (It is not unusual that increases in
quality become more and more expensive to achieve.)

The third level, of actually doing justifications, continues the trend of increas-
ing the effort substantially in return for a smaller return in quality improvement.
Justification can be very time consuming and is almost certainly reserved for the
more critical components. But it should be noted that it is here that there are
possible gains that cannot be achieved (with any degree of reliability) in any other
way. Even the simplest systems are far too complicated to test comprehensively,
so that there are clear statistical limits that one can place on the reliability achiev-
able through testing. The increasing use of parallel, distributed systems makes
these problems even worse. There are already examples, such as the application by
Bull in the ESPRIT LaCoS project [7], where previously undiscovered errors were
discovered by justification.

Finally, it should be mentioned that it requires some experience to become a good
specifier. It requires a little more to become a good rigorous designer, because it
needs experience to judge what to develop first, how much detail to put in each
development step, when to decompose, what previous developments can be re-
used, which constructs will be easy or hard to translate into the chosen target
language, how to take account of other constraints like timing problems, hardware,
operating system, etc. It requires still more to be able to do justifications, because
there are particular techniques to be learned. So teams new to formal methods
should concentrate on formal specification before trying rigorous development, and
justification skills should be developed later still.

1.4.2 Selective application of formality

In section 1.4.1 we saw that it is possible to be more or less formal in the way in
which we apply formal methods. It is also the case that we may choose only to
apply formal methods to parts of a system and not to others. There are two ways
in which we can do this: selecting properties and selecting components. We will
consider each of these.

1.4.2.1 Selecting properties

We can choose to specify only a few critical properties, like safety or security
properties. We typically achieve two benefits from this:
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e deeper understanding of the property itself through its capture in a formal
language

e understanding (perhaps after some formal development) of how the system
components need to interact in order to maintain the property

1.4.2.2 Selecting components

We can choose to specify only certain system components. Components for which
formal methods are likely to be less useful include:

e standard components like databases or operating systems with which our sys-
tem needs to interface. Specifying such an interface formally would involve
specifying the relevant properties of the standard component, and this is rarely
worthwhile.

e generic components which our system needs to instantiate. We would need
to specify the generic component and also the code we need to write to make
our particular instantiation. Such code is usually in some special language.
For example, language processing systems (lexical analysers, parsers, compiler
generators, syntax editors) will use specialized notations like “regular expres-
sions” and BNF. Trying to use a general purpose specification language like
RSL to specify input in these notations is likely to be clumsy, less clear and
often no more abstract.

User interfaces also come into this category. Modern systems typically use
standard generic components to generate graphic user interfaces, and here
the important features like appearance and response time are hard to specify
effectively in a specification language.

e components whose behaviour is not regarded as very critical.

e existing components that were not formally specified and that we are adapting.
This is a dangerous practice, of course, because it is precisely complex software
with inadequate or outdated documentation that it is dangerous to adapt. But
the cost of formally specifying an existing component first is usually hard to
justify when the hope is to save development time by adaptation. In the long
run it may be cheaper to start from scratch and develop properly, but this is
unlikely to be apparent at the start. We note this category not to encourage
it but to acknowledge it.

So the components we should specify formally are those whose correctness is critical
and that we are creating from scratch or adapting.

Software that is developed formally is also easier to maintain and adapt, because
the specification and development history provide effective documentation for these
purposes. So other criteria for choosing formality are the expected lifetime of the
system and the likelihood of re-use.
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1.5 Formal systems

This section and the next on the RAISE implementation relation discuss aspects
of RAISE as a formal system. This section discusses formal systems in general and
may be skipped by readers with knowledge of the topic.

We have described RAISE as a formal system. What does this mean? A formal
system has four essential components:

a notation with a defined syntax
a set of well-formedness rules

a semantics

a logic

If we take arithmetic expressions as an example, the syntax rules would say that
terms like “17, “2” “4+” and “l1 + 2” are syntactically correct, but that terms like
“l +”7 and “4 +” are not.

Well-formedness rules cover the areas commonly known as “scope”, “visibility”
and “type” checking. If we extend our example to include booleans as well as
arithmetic, and also to allow let expressions, then expressions like

letx=2in1+ y end
and

let x = true in 1 4+ x end
may be violating scope/visibility and type rules respectively. (Though the first
might be well-formed as a component of a larger let expression in which y is
defined.)

The semantics of a system defines its meaning, usually in terms of some well-
understood mathematical theory such as that for the natural numbers, or set theory.
Semantics is usually only defined for well-formed terms.

For our simple example the relationship between our representation of arithmetic
and booleans and mathematical natural numbers and truth values is obvious. But
already we have the problem of explaining what a let expression means.

So far what we have considered includes programming languages, or at least
programming languages that have been given a mathematical semantics. So is
Ada, say, a formal system? For our purposes it still lacks the fourth element, a
logic. This is what allows us to reason about terms in our system. For example, is
it the case that the following equality is true?

1+2=2+1 (1)
One way to answer this problem is to appeal to the semantics, to decide that the two
expressions on either side of the equality symbol represent the mathematical natural
number “3”, that equality represents mathematical equality, and that therefore the
answer is “yes”. Another way, if our system is a programming language, is to test
it and see. Essentially (assuming the execution of a program correctly follows its
semantics) these are the same. We are “executing” the expression, symbolically or
mechanically, to see what semantic value we get.

But if we have a logic we will have rules like
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i+j=j+1 (2)
together with rules for instantiating the names “i” and “j” with integers like “1”
and “2”. Now we can not only answer the problem of whether (1) is true without
having to execute it, symbolically or otherwise, but we can also answer more general
questions, like “Is ‘i + 1’ the same as ‘1 + i’ for any integer ‘i’ ?”

There is a cost in having a logic, a set of rules like (2), as well as a semantics:
since we have two ways of answering questions we must ensure we get the same
answers. In other words the logic must be consistent with the semantics. In RAISE
we tackle this by starting with a small logic containing a minimal set of “basic”
rules, which we can check against the semantics, and then checking other rules by
showing how they are derived from the basic ones.

The formal system whose use we describe in this book is RAISE, based on
its specification language, RSL. The book on RSL [23] describes its syntax, well-
formedness rules and (informally) its semantics. (A deep knowledge of its semantics
is not necessary for its use, but a definition is available [19].) An important aim of
this book is to describe its logic. But it is worth considering first the question of
why we need RSL. Why don’t we provide a logic for Ada, or Pascal or any other
programming language?

The reason is that these languages were designed for writing software. They have
many “low-level” features like pointers that help us write efficient software. But
such low-level features make reasoning very complicated, and so their logics would
be very complicated. A specification language like RSL aims to make reasoning
possible, and so it includes features (like abstract types and axioms) that make
reasoning more tractable, and avoids features (like pointers) that make reasoning
harder.

RSL is, however, a wide spectrum language because it is intended to be used
not just for initial specification but also for development to languages like Ada or
C++. Hence it includes some low-level features like variables with assignment and
loops. We will see that, if we use only the sequential applicative features of RSL,
reasoning is easier than when we include imperative and concurrent features. Hence
the method encourages (but does not force) initial specifications to be sequential
and applicative so that we can reason initially with some ease.

1.6 RAISE implementation relation

This section is more technical than the preceding sections of this chapter and
assumes knowledge of RSL. It aims to provide some intuition for the notions of
implementation and conservative extension.

Any formal system that aims to provide a means of development as well as a
means of specification must provide a notion of implementation. That is, if module
Ay is developed to module A;, we need to know if A; is a “correct” development. We
say that A, is correct if it implements Ay, i.e. Ay and A; are in the implementation
relation. There are in fact several variations on the notion of implementation; the
one in RAISE is chosen to meet two particular requirements that arise from the
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method requirements we have just been examining. If A; implements Ay, we want
the following to hold:

property preservation: All properties that can be proved about Ay can also be
proved for A; (but not in general vice versa).

substitutivity: An instance of Ay in a specification can be replaced by an in-
stance of A;, and the resulting new specification should implement the earlier
specification.

Substitutivity means that we can develop parts of systems separately and then put
them together safely.

Property preservation means that if we prove some properties of a module (and
in particular if we prove it meets its requirements) and then we prove a development
implements it, we know that the development also has the properties. In fact it
ensures that implementation is transitive: if A, implements A; and A; implements
Ay, Ay implements Ag. So we can proceed from initial to final specification in a
number of steps. We formally define the implementation relation in appendix B.8.
A class expression cel implements a class expression ce0 if all the properties of
ce0 are true in the context of cel. That is, the properties of cel must imply the
properties of ce0.

To understand implementation in practice we need to know what is meant by the
(logical) properties of a class expression. The formal definition is in appendix B.8.2;
intuitively it is just the collection of logical expressions that can be deduced from
its definitions and axioms. We will call the collection of logical properties of a
specification the theory of a specification.

So we see that the essential idea behind implementation is that the theory of the
implementation needs to imply the theory of the class being implemented. This
proof theoretic approach is one that RSL shares with Larch [13] and COLD-K
[15, 9]. It contrasts with the “model theoretic” approach of Act One [8], OBJ
[11], ASL [27] and Extended ML [26, 16], in which implementation is sub-classing
of models. The advantage of the model theoretic approach is that it can allow
observational equivalence. The disadvantage is that implementation is not so easy
to prove because the proof theoretic notions are not so easily available [21]. (We
will see in the section 2.8.4.1 that it is recommended and natural to write RSL in
an abstract style that effectively specifies types by observational equivalence.)

We now look at some simple examples. Consider the class expression S1 defined
by
S1 =

class
value x, y : Int
end

All this says is that there are names x and y of kind “value” and that they are
integers. We call the collection of defined names with their kinds and types (or
classes for schemes and objects) a signature. We have not constrained the values
of x and y in any way. In fact because there are no constraints its theory reduces
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to true.
Now consider the class expression S2:
S2 =
class
value x, y : Int
axiom x >y
end

This has the same signature as S1 but it also has an axiom. Since, apart from the
axiom, x and y are unconstrained, the theory of S2 can be presented as “x > y”.

Does S2 implement S17 It is a precondition for asking this question that the
signature of S2 should include the signature of SI. This relation we call static
implementation. In fact the signatures of S1 and S2 are the same. So we have to
prove

x > y = true

which is vacuously true.? Note that SI does not implement S2, since this would
involve proving the reverse implication, which is not true for arbitrary integers x

and y.
Now consider S3:
S3 =
class
value
x:Int =1,
y:Int =0
end

The theory of S3, as you might expect, can be presented as

x=1Ay=0
S3 has the same signature as S1 and S2, and so we can ask what implementation
relations hold. Does S3 implement S27 We would need to prove

x=1Ay=0)=x>y
which is clearly true.

We can also see that S3 implements S1, so we have a simple example of transi-
tivity of implementation.

Now consider a fourth example S4:
S4 =

class

value x, y, z : Int
end

This is like S1 but it has an extra entity, the integer value z. Does it have any
relation to S17 The signature of S4 includes that of S1. The values are completely

2In such implications names like x and y are bound by their definitions in the implementing
class, S2 in this case.
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unconstrained so its theory reduces to true. To check if S4 implements S1 we try
to prove

true = true

which is vacuously true: S4 implements S1. Note that we cannot ask the question
the other way round. S1’s signature does not include S4’s: S1 does not define an
integer z, so S1 does not statically implement S4.
Consider a fifth scheme S5:
ShH =
class
value x, y, z : Int
axiomx >z Az >y
end

It should be clear that S5 is an implementation of SI, S2 and S4. The only
interesting case is the second, where we need to prove

(x>zAz>y)=x>y

which follows from the transitivity of “>”.
So far we have had no hidden names. Now consider a sixth scheme S6:
S6 =
hide z in
class
value x, y, z : Int
axiom x >z Az >y
end

(We could also have defined S6 as “hide z in S5”.) The signature of S6 only
includes the names that are not hidden, i.e. it only includes x and y.

S6 therefore cannot implement S5 as z is in the signature of S5 but not in
the signature of S6: S6 does not statically implement S5. The precondition for
the implementation relation in the opposite direction is satisfied, however, as S5
statically implements S6.

What is the theory of S67 We can in fact present its theory as

dz:Intex>zAz>y (1)

The only free names in (1) are x and y, the names in the signature of S6. It is not
always possible to find such a finite presentation of the theory of a class involving
hiding.

We can now see that S5 does implement S6, since in S5 the definition of a value
z strictly between x and y implies (1), the existence of such a value. In fact the
removal of a hide from a class expression always gives a trivial, but rarely very
useful, example of implementation. S6 also implements S2 (which defined only x
and y with the axiom that x > y), since (1) implies that x is greater than y.

Of rather more interest is whether we can get implementation by removing hidden
entities. We can. For example, S6 is implemented by, for example, S7:
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S7 =
class
value
x: Int = 2,
y:Int =0
end

But S6 is not implemented by S2 since x being greater than y does not imply (1),
that there necessarily exists a value between them. Similarly S6 is not implemented
by S3 (in which x is 1 and y is 0).

So we see that implementation allows us to remove hidden entities, but that we
need to take great care about the ways that properties involving the hidden entities
affect the properties of the non-hidden entities.

1.6.1 Implementation meets its requirements

Having provided some intuition for the implementation relation we should check
that it meets the requirements for property preservation and substitutivity that we
identified earlier. We take the requirements in turn:

Property preservation This is immediate from the definition of implementa-
tion.

Substitutivity There are two questions here:

e Is the result of a replacement in some context always well-formed?
e Does the result of a replacement in some context always give implementation?

To answer the first question we note that since the new signature includes the old,
replacing the old with the new cannot result in any names becoming undefined.
The only possible problem is that of any extra names defined in the new.

First, we may get a result that is ill-formed. Consider the extending class ex-
pression
extend class value x : Int end with class value y : Int end
and then consider replacing either of the constituent class expressions with
class value x, y : Int end
This implements both of them, but replacing either with it would give multiple
declarations of the same name in the extending class expression. Hence there is
the possibility of ill-formedness of the result. (This only occurs with extending
class expressions.)

There is also a possibility of “capture” of free names. Consider the following
example:
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class
scheme S = class value x : Int =y end
value y : Int

end

and then consider the class expression
class value x : Int = y value y : Int end

This class expression might be considered an implementation for the class expres-
sion of S — all we have done is add an extra declaration for y. But clearly the
replacement of the old class expression with this one would change the theory of
the context, the outer class expression. We would lose the equality between the x
within S and the y outside it. Hence such a replacement cannot be allowed. But it
is easy to avoid this problem. It is poor style to mention inside a class expression
a name defined outside it, except for the names of modules defined either globally
or as parameters. Then the only free names in a class expression will be parameter
or global module names, and if we choose names different from either of these for
modules declared inside class expressions, the problem is avoided.

So we can only allow replacement if the result is well-formed and if there is no
capture of free names.

To answer the second question — does the result of a replacement in some
context always give implementation? — we state in appendix B.8.6 the required
“compositional” properties. Implementation can be shown to have these properties.

1.6.2 Conservative extension

We have so far distinguished between the signature of a class expression and its
theory. Mathematicians often refer to these together as a “theory” (or, to be
more precise in this case, a “typed theory”). Then they define a notion of theory
extension. A theory T2 extends a theory T1 if T2 adds to the entities and/or
properties of T1. This is in fact the same as our notion of implementation.

We can then distinguish between conservative extension and non-conservative
extension.

A theory T2 conservatively extends a theory T1 if every property of T2 that
can be expressed using entities defined in T'1 is a property of T1. In other words,
T2 adds no new properties to the entities from T1. An extension that is not
conservative is non-conservative.

A formal definition of conservative extension can be found in appendix B.8.4.
Here we try to give an intuition. Consider

scheme

S1 = class value x : Int axiom x < 10 end,

S2 = extend S1 with class value y : Int = x end
Call the properties that only involve the name x (the only name defined in S1)
“S1-properties”. The only SI1-property available from the definition of S1 is that x
is less than 10. Since S2 extends S1 we may ask what are the SI-properties of S2.
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The answer is, again, that x is less than 10. Since the S1-properties are unchanged
by the extension we say that S2 extends SI1 conservatively. But now consider

scheme
S1 = class value x : Int axiom x < 10 end,
S3 = extend S1 with class value y : Nat = x end

In S3 it is possible to prove that x is at least zero as well as less than 10 (since it
is equal to the natural number y). So the SI-properties of the extension are not
the same as those of S1; S3 extends S1 non-conservatively.

Is conservative extension important? Often it is not, and indeed the extend-
ing class expression construct illustrated here is intended to provide a facility for
extension in RSL that is typically non-conservative. When we consider single de-
velopment steps, conservative extension is also rarely of use, since it amounts to
taking no design decisions — only adding new entities is allowed.

However, conservative extension can be an important issue when we do sepa-
rate development. Consider the following simple scenario. A contract between two
teams says that there is a value x which is an integer. One team adds the property
that it is positive. The other team adds the property that it is negative. What
happens at integration? The result is that the specification as a whole is inconsis-
tent; there is no possible program implementing it. This is obviously something to
be avoided if possible.

The solution lies in noting that there is always only one team that is responsible
for developing the module(s) representing the contract. It is their responsibility,
and theirs alone, to strengthen its properties. When other teams use the module(s)
in the contract they must be careful to ensure that the modules they are developing
only extend the contract conservatively.

In practice this is not particularly difficult to ensure. There are essentially three
ways that a separately developed component module can be used in other modules.
If the component is a scheme it can be used in a formal parameter or to make an
embedded object (an object defined inside a class expression). If the component is
a global object (an object defined globally, i.e. not defined as a scheme parameter
or within a class expression) its name can be mentioned in qualifications. As a
result, all mentions of the entities defined in the component will be qualified — by
the name of the formal parameter, by the name of the embedded object or by the
name of the global object. We can then formulate the following rules. (The rules
apply to any dependency, whether or not the thing being depended on is a contract
with another development or not, because the rules are sensible ones anyway.)

1. Do not write axioms in which all the names are qualified.

2. In value, variable and channel definitions and axioms that involve qualified
names, check that the defining types of the unqualified names do not make un-
warranted assumptions about the types of the qualified names. In particular,
if the unqualified name is defined to be in a subtype, this is “unwarranted”
unless the definitions and axioms ensure that the value must be in the subtype
because of the properties of the qualified names.
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3. Beware of multiple axioms (or conjunctions) relating an unqualified name to
different qualified ones.

For example
axiom Ax >0

breaks the first rule and should obviously be placed in the module defining x.
For the second rule consider

value

y : Nat = A.x,

f: Int — Nat

f(x) = A.g(x)
Here the definition of y extends the object A conservatively only if x is constrained
within the body of A to be a Nat. Otherwise the (sub)typing of y is unwarranted.
Similarly the definition of f extends the object A conservatively only if g is con-
strained within the body of A to be a function that converges to a Nat for all
Ints.

For the third rule consider
valuey : Int e Ax <y Ay <Az
This implicit definition of y extends the object A conservatively only if it is true
within the body of A that x < z.

The first rule seems very natural — the axiom is obviously in the wrong place.
The second and third are more subtle and need care.

There is a fourth possibility that a type declared to be a sort in one module is
extended non-conservatively by a declaration that makes the sort definitely non-
empty. For example

value x : A.T

means that A.T has at least one value in it. If there were no values, variables or
channels of type T in A, this would be a non-conservative extension. Declarations
of variables and channels of type A.T can have the same non-conservative effect.
However, since types are rarely implemented as empty this is unlikely to be a
problem in practice.

So what should be done in the case

scheme
SX = class value x : Int end,
SY = class value y : Int end,
S(X:S8X,Y:9Y) =
class
axiom X.x =Y.y

end

This breaks the first rule, but where else can the axiom go? The way to deal with
it is to note that there is a dependency between SX and SY; this is what the axiom
says. Typically in practice it is clear which direction this dependency should take,
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but if it isn’t we can make an arbitrary choice. Suppose we make SY dependent
on SX. Then we reformulate as

scheme
SX = class value x : Int end,
SY(X : SX) = class value y : Int axiom y = X.x end,
S(X:8X,Y : SY(X)) =

class

end

and this is consistent with the rules.

1.7

Changes to RSL

A few changes have been made to RSL as used in this volume since the original
book describing RSL [23]:

The expansion of explicit and implicit function definitions into signature and
axiom has changed. The quantification in the axiom is over the given types
of parameters rather than their maximal types. This approach is felt to be
much more intuitive.
The evaluation order of application expressions has been changed so that the
function expression is evaluated before the parameters. This means that all
evaluations in RSL are left-to-right.
Axiom quantification (forall) is not used; axioms are quantified individually.
This avoids counter-intuitive interpretations of axioms that did not mention
all the names bound by the axiom quantification. This could be considered
a stylistic restriction but is mentioned here as a reminder that forall should
not be used. Similar remarks apply to V; care should be taken not to bind
names not mentioned in the quantified expression.
The rule that variables and channels from different objects are different has
been extended to the actual parameters of schemes, so that the rule applies
to formal parameters as well as objects defined within schemes or globally.
This is a restriction on scheme instantiations and is necessary to ensure the
compositionality of implementation.
The map type constructor w has the new symbol . The original symbol
has then been added to indicate the subtype of maps that have finite domains
and are deterministic on application. That is, for any types T'1, T2:
Tl & T2 ~
{{m: Tl & T2-
(card dom m post true) A
(Vx: Tle+x € dom m = (m(x) post true)) |}
Thus there are now finite maps as well as finite sets and lists. In addition,
application of such maps to arguments in their domains is deterministic.
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There are also two restrictions on the use of RSL that we follow in this book in
order to ensure that the RSL implementation relation can be expanded.

e We do not use “embedded” scheme declarations, i.e. scheme declarations
within class expressions or local expressions. There are also methodologi-
cal reasons for this: we stated earlier that schemes should have as free names
only the names of their parameters or of global modules. This restriction can
also be overcome: since schemes may not be recursive it is possible to unfold
all their instantiations and then remove their embedded definitions.

e We do not allow the classes of scheme formal parameters to hide any of the
entities defined in them. This is a very minor restriction; it is very unlikely
that one wants to include something in a parameter only to hide it. It might
be convenient to define and hide a value to express a property, but it is then
possible instead to assert in an axiom the existence of such a value.
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CHAPTER 2

Tutorial

2.1 Introduction

This chapter is intended to illustrate how to specify and develop systems using
RAISE. It concentrates on a particular style for consistency, and because this style
has been shown to be useful and widely applicable in practice. But it is therefore not
complete in showing all the possible ways to construct specifications and develop
them. New users of RAISE should find it helpful to follow fairly closely in their own
work; more experienced ones will be able to devise their own styles and techniques.

Before presenting the examples we discuss some alternatives in the styles of
writing specifications. Section 2.2 considers the differences between applicative
and imperative and between sequential and concurrent styles. Section 2.3 considers
abstract and concrete styles. Section 2.4 distinguishes “system” and “subsidiary”
modules and also introduces the notion of “hierarchical structuring”. We then give
an overview of the method in section 2.5.

Then three examples are presented in detail. Section 2.6 shows the specifica-
tion and development of a simple information system (for controlling entry and
exits of ships to a harbour). In section 2.7 we specify and develop a safety-critical
concurrent control system (for a lift). These are followed in section 2.8 by the
development of a data type (a bounded queue) from the specification of an initially
abstract, applicative version into several alternative concrete versions, including
applicative and imperative, sequential and concurrent, suitable for translation into
a programming language. Finally a technical section 2.9 provides the theoreti-
cal underpinnings for the method used, in particular the development steps from
applicative to imperative and from sequential to concurrent.

2.2 Choice of specification style

There are four main options:

applicative sequential: a “functional programming” style with no variables or
concurrency

33
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imperative sequential: with variables, assignment, sequencing, loops, etc. but
with no concurrency

applicative concurrent: functional programming but with concurrency

imperative concurrent: with variables, assignment, sequencing, loops, etc. and
concurrency

Applicative concurrent specifications are often inappropriate as the basis for pro-
gramming language implementations; the main processes are recursive in structure
and their continued execution will keep increasing the size of the call stack. So un-
less we are implementing in an applicative language that can overcome this problem
we shall need to use an imperative style; the use of variables enables the recursion
to be replaced by a loop. Hence there are only three major kinds of module that
we are usually concerned with and that we shall concentrate on in this tutorial:
applicative sequential, imperative sequential and imperative concurrent. We will
generally abbreviate these to applicative, imperative and concurrent.

Our experience is that of the three, the applicative style is the easiest both to
formulate and to reason about in justifications. It also turns out that one can
easily start with applicative specifications and develop them into imperative or
concurrent ones. For this reason we will adopt this as the basis for the method in
the tutorial.

2.3 Abstractness

As well as distinguishing between applicative and imperative, sequential and con-
current styles of specification we can also distinguish between abstract and concrete
styles.

By abstractness we mean, in general, writing specifications to leave as many
alternative development routes open as possible. In other words, the fewer design
decisions we have taken in expressing a specification the more abstract it is. By
design decisions we mean things like

e deciding how to formulate a module using other modules

e deciding on a particular data structure

e deciding on a particular algorithm

e deciding what variables to use

e deciding what channels and patterns of communication to use

The opposite of “abstract” is “concrete”. The distinction between the two is not a
black and white one, but we can characterize modules in each of the three categories
as tending to be abstract or concrete.

abstract applicative modules will use abstract types and will use signatures and
axioms rather than explicit definitions for some or even all functions.

concrete applicative modules will use concrete types and will contain more ex-
plicit function definitions.
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abstract imperative modules will not define variables but will use any in their
accesses and will use axioms.

concrete imperative modules will define variables and will contain more explicit
function definitions.

abstract concurrent modules will not define variables or channels but will use
any in their accesses and will use axioms.

concrete concurrent modules will define variables and channels and will contain
more explicit function definitions.

Again it must be stressed that these are relative rather than absolute distinctions.
A module may be abstract in some ways and concrete in others. And certainly a
system specification will contain modules in both varying styles and varying degrees
of abstractness. We will also use the term aziomatic to describe a style of value
definition in terms of signature and axiom.

We will adopt a naming convention in this tutorial that applicative modules will
be prefixed “A_”, imperative ones “I.” and concurrent ones “C_". We will also use
the convention that the most abstract modules will be suffixed “0”, more concrete
ones “1”, etc.

2.4 Kinds of module

Another distinction we can usefully draw is between system modules and subsidiary
modules. System modules are those we are most concerned with developing; sub-
sidiary ones are (as their name suggests) less important from the point of view of
development.

2.4.1 System modules

System modules will form the majority of any specification. They are the mod-
ules we will develop from abstract to concrete and, typically, from applicative to
imperative and possibly concurrent. They might be more precisely named “sys-
tem or sub-system” modules since they correspond to what we see as the complete
software system and its sub-systems. They will generally be expected to be finally
implemented as software modules with dynamic state: in object oriented terms
they will form the objects of the software system.

We will arrange for each system module to have a type of interest. For abstract
applicative modules it corresponds to the standard use of the term by, for example,
Guttag [12]. For a module specifying an abstract data type it is precisely that type:
Queue or Stack or Array or whatever. For modules specifying software systems or
sub-systems it is the type which is the “state” of the system or sub-system. For
imperative (sequential or concurrent) modules the type of interest is the product of
the types of any variables in the module and the types of interest of its component
modules.
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The first example in this tutorial is concerned with berthing ships in a harbour.
The type of interest of the single system module of the initial applicative speci-
fication, AAHARBOURQO, is the abstract type Harbour. Later we decompose the
specification into sub-systems for the set of ships waiting and the array of berths,
so that the type of interest becomes defined by

type Harbour = P.Set x B.Array

where P and B are the objects instantiating the sub-systems. Their types of interest
are, naturally, Set and Array respectively.

The third example is the development of a data type: the bounded queue. The
type of interest in the single system module of the initial applicative specification,
A_QUEUEDQO, is Queue, defined as an abstract type. When we develop this module
this type becomes more concretely defined, but still remains the type of interest of
any QUEUFE module, whether applicative or imperative, sequential or concurrent.
Some of the developments of QUEUE modules use ARRAY modules, which have
a type of interest Array.

It is possible to write abstract imperative and concurrent modules in which the
type of interest has no name: it is reflected purely in the occurrence of read any
and write any in the signatures of some functions. And even in the development
of such modules there may never be a type definition corresponding to it: it is
implicit in the types of its variables and those of imperative modules instantiated
as objects within it.

It is, of course, possible to write modules with no unique type of interest, for
example by simply merging the applicative modules for two different data types.
But we will not design system modules in this way, and so we will always be able
to identify the type of interest. In applicative modules it will have a name and (in
concrete versions) a defining type expression. In imperative modules it may or may
not have a name, and may be a product of the types of variables and the types of
interest of instantiated modules. (So the order of the types in such a product may
be ambiguous; technically we can see its components rather than be able to form
it uniquely.)

The method we propose for developing system modules starts, if possible, with
a single applicative module whose type of interest therefore is intended to model
the “state” of the entire system. We then develop this applicatively by making
the state more concrete. This often involves introducing some sub-system modules
with their own types of interest.

This process is complete when all the types involved are either

e RSL concrete types (like lists or maps) which we are happy to translate (either
automatically or by hand) into the intended programming language, i.e. whose
translations for these particular uses will be adequately efficient, or

e the types of interest of standard modules like those defined in appendix A
for which we have sufficiently efficient translations already available or, again,
can translate by hand
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Then we can take the step of generating first imperative sequential modules and
then, if we want a concurrent system, concurrent imperative modules from the
applicative ones. This step will preserve the structure of the system modules: each
applicative one will have an imperative counterpart, and the dependencies between
the applicative modules will be mirrored by those between the imperative modules.
The type of interest of an imperative module will be the same as the type of interest
of its applicative counterpart (up to the ordering of product components).

Finally, we often wish to do more development, to improve the specification of
some algorithms and to remove any under-specification still present. Then we are
ready to translate.

2.4.2 Subsidiary modules

There are three kinds of subsidiary module: type modules, auziliary modules and
parameter modules.

Type modules are useful as a place to define all the types that we want to use
across a specification, together with useful applicative functions on these types. In
a large specification it may be useful to have several such modules, one for the
development as a whole and one for each separate sub-development, so that if a
team decide they want to put a new type into it they can do it in their local one. We
recommend using global objects for this purpose as it avoids integration problems.
Teams then only need to agree on a naming convention for such objects to avoid
using the same names. Then there can be no name clashes between the types and
functions defined, even if the types and functions themselves share names.

Type modules are usually only developed in very simple ways, such as by adding
further types and functions.

Auxiliary modules are like type modules in that they are applicative. They are
just convenient groupings of auxiliary functions on some concrete data type(s). An
example would be a module collecting some useful functions on RSL lists, such as
reverse, is_ordered, is_permutation. These should not be defined as part of the type
module of a particular system because the module can be generic, parameterized
by the type of element in the lists and perhaps the ordering relation.

Parameter modules are used to define parameters to other modules. They are
usually applicative. We will only use parameters for two purposes:

e defining generic modules, i.e. modules we expect to instantiate more than once
with different parameters, either in the current development or in the future

e allowing modules to share other imperative or concurrent ones. (Sharing in
this sense is unusual; see section 3.8.3.1 for an example.)

For expressing the dependency of a module on others we will use either embed-
ded objects or global objects instead of parameterization. Where possible we use
embedded objects since they make the objects visible only in the class expression
within which they are defined and, if not hidden, to other users of the scheme or
object defined using that class expression. Where possible such embedded objects
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will be hidden.

This is not the only possible style, as all dependencies can be done using para-
meterization. But on systems of any size and complexity the parameter lists can
become very lengthy.

We will follow object-oriented terminology and refer to a dependent module as a
“client” and the modules it instantiates within it as “suppliers”. We will say that
class A is a client of class B if

e class B is instantiated as an object within class A, or

e class B is the body of a formal parameter of class A, or

e class B is instantiated as a global module and mentioned in class A, or
e A is aclient of C and C is a client of B

If A is a client of B then B is a supplier of A.

This follows closely the common definition of the client—supplier relation (e.g.
[17]) that a client has to use a supplier merely by referring to it, and extends to the
transitive closure. The most important form of client—supplier relation is the first,
where the supplier is instantiated within the client, since our method generally
creates dependencies between imperative modules only in this particular form.

2.4.3 Hierarchical structuring

The aims of hierarchical structuring are:

e to make specifications more understandable by making it possible to under-
stand a particular component by reference only to it and its suppliers

e to limit the effects of changes to a module to it and its clients

e to limit the properties of a module to it and its suppliers (rather than have
them affected by its clients). In particular, to limit interference (changes to
the state of a module by the functions of another) to changes in the states of
suppliers by the functions of a client

There are several ways in which we achieve these aims:

e There should only be one type of interest in a module. If we need to define
an array of queues of something, there will normally be three modules: a
parameter module for “something”, a module for “a queue of something” and
a module for the “array of queues of something”. We can see the notions of
“something”, queue and array all as distinct concepts and reflect this in the
modularity.

e (Clients should only extend their suppliers conservatively.

e A module A should only mention the entities of a module B if A is a client
of B. In particular, if there are two embedded objects in a class expression,
neither should call functions of the other. This is not possible if embedded
objects are defined as instantiations of schemes because of the scope rules of
RSL, but is possible if one of the objects is defined with a basic class expres-
sion. Not allowing calls between embedded objects is particularly important
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in concurrent specifications, since the method we shall describe relies on non-
interference between such objects.

e It is also usually a good idea to make clients refer only to the entities of their
immediate suppliers. Names with multiple qualifications (A.B.C...) indicate
a breach of this.

e Global objects should only be used with care. We suggested their use for type
modules to save having too many parameters for system modules, but there
is a concomitant risk that changes to such modules will affect many others.

The restriction on disallowing calls of functions between embedded objects needs
to be broken when we want to model certain kinds of system. See the discussion
on sharing in section 3.8.3.1.

2.5 Method overview

There are two aspects of a method:

e what is being produced, the particular artifacts
e the order in which they are produced

It is easy to confuse these, to assume that the dependencies between things pro-
duced means that one must produce them in a particular order (like “top-down”
or “bottom-up”). Of course, there are some dependencies that force an order, like
having a specification one can translate before running a translator, but in general
there is room for flexibility and this is often very useful.

We will try to keep these aspects distinct, and describe first what is produced
and then what ordering(s) of their production is appropriate.

2.5.1 What is produced

We concentrate here on the formal documents, mainly RSL specifications. The
overall software engineering process will of course produce many other documents
that are not particular to RAISE.

Our overall aim is a sequence of specifications of the system, where a specifica-
tion is a collection of RSL modules, and a translation of it in some programming
language. We will refer to each specification in the sequence as a development
level, often abbreviated to level. Apart from type and parameter modules, the first
specification (the initial specification) will usually be a single applicative system
module. In subsequent levels there will usually be a module corresponding to each
module in the previous level, but there may be additional modules. The notion
of “correspondence” here is quite loose: we simply say that the module is devel-
oped from its corresponding predecessor, where development includes at least the
techniques described in chapter 3. There are typically at most four levels in the
sequence, and commonly only two. The final level (the final specification) contains
only modules that are sufficiently close to the target programming language to be
translatable, perhaps wholly or in part automatically.
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There should also be a known and stated relation between the specifications
in one level and the next, composed from relations between the modules in the
specifications. We refer to the statement of such a relation between modules as
a development relation. The relation stated needs to be compositional if possible
(see appendix B.8.6) so that the relation between the level as a whole and the
previous one can be determined from relations between the component modules.
Such relations should be justified.

At some point there will usually be a switch in style, so that one level is applica-
tive and the next and subsequent ones include imperative or concurrent modules.
This will not be the case if the initial specification and the programming language
of the final implementation share the same style.

There are some formal developments which only consist of part of a complete de-
velopment. Sometimes we are only interested in specifying a problem and showing
it has some properties. For example, we may have an existing, implemented system
and wish to verify that it has some safety or security property. Then the task will
be to construct a development in reverse, a process known as reverse engineering,
back to a point at which the appropriate property can be stated as a theorem and
justified. A similar process may be employed for maintaining an existing system,
where in order to make some change we first reverse engineer it to an appropriate
level of abstraction, make the change in the specification and redevelop. If the
original development was formal the reverse engineering step will be unnecessary.

2.5.2 Order of production

There are three main stages involved:

e analysis
e design
e translation

The analysis stage produces the initial specification, the design stage the final
specification and the translation stage the executable program. There is some
notion of order here because each of these is needed as an input to its successor.
But in practice the process is iterative.

Obviously we can try to work completely top down: we start with the first level,
the initial specification, followed by the second, then the relation between the first
and second and its justification, then the third, etc. If the requirements are clear
and we know exactly how to design the system then this is fine. But in practice
this is often not the case. Usually the requirements are far from clear or being
understood, and often we are not sure what the best design will be. We need to
explore, to spend time in the analysis stage. Experience with formal methods, and
with RSL in particular, suggests that the process is extremely iterative; it takes a
long time for the initial specification to settle down, and we need to try out designs
before deciding on the initial specification. It is also the case that good initial
specifications are hard to write, because the abstraction that is short and simple
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and at the same time adequate for expressing the important properties is hard to
find and formulate.

Analysis also involves the issues that always arise in designing software. What
are the objects we are concerned with? What are their attributes? What are
the relations between them? Such questions are commonly the subject of other
methods, whether termed “traditional”, “structured” or “object oriented”. We
tend to use the terminology of object orientation because it seems to fit particularly
well with RAISE. In fact it seems effective to start by answering these questions
and developing the first specification to capture the answers to them. This first
specification is unlikely to be the one we term “initial”. In particular, it is likely
to be too concrete and involve several modules. But in constructing it we should
be aiming at analysing the requirements: coming to understand them, looking for
inconsistencies, omissions, etc., looking for appropriate ways of modelling them.
We will typically only sketch the parts that seem obvious and concentrate on what
we see as possible difficulties. This technique of first constructing a more concrete
and elaborated specification has been used with RSL on many projects and found
very useful; see for example the experiences from the ESPRIT LaCoS project [6].

So we have a first specification, perhaps partly sketched. What now? There are
two main options:

e We can complete the first specification and consider this the initial specifi-
cation. It may even serve as the final specification as well, in which case we
might be said to be doing formal specification rather than formal develop-
ment. For some problems, generally in domains we know well, and for some
components of larger problems, this is sufficiently effective.

e We can formulate an abstraction of the first specification to form the initial
specification. We can then check that this first specification is an implemen-
tation of the abstraction, though in practice this does not seem very useful.
Having formulated an abstraction for the initial specification, the first specifi-
cation could be used as the second level. But what usually happens is that a
new second level is formulated, often using some of the ideas in the first spec-
ification but in general differing from it in being more carefully constructed,
more suitable for further development, etc. The aim of the first specification
is requirements analysis; the aim of the initial specification and subsequent
ones is requirements formalization and design (possibly for a generalization
of the requirements). The difference in emphasis often means that the results
are different.

There is also the possibility, since the first specification is quite concrete,
of translating it into a prototype. This may assist further in requirements
analysis. We can test it to gain more confidence that its behaviour is correct;
we can perhaps demonstrate it to the customer to gain confidence that its
behaviour is appropriate.

This choice about how to start is the main way in which the order of activities must
be flexible. Another important flexibility is in the idea of separate development
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discussed in chapter 1. Although we described what is produced as a sequence of
levels, in fact each component may be developed largely separately.

The experience that development is typically iterative suggests that we need to
try to reduce the inefficiency of this, the reworking. So we should

e concentrate on the parts that we expect to be more difficult, as reworking is
usually caused by encounters with problems for which a solution requires a
change in direction

e delay doing justifications until we are sure that the level we are justifying
against the previous one is appropriate, which often means formulating later
levels or trying to translate

2.6 First example: harbour
2.6.1 Aims of example

The example is a simple information system, with functions for changing the data,
functions for interrogating the data, and invariant properties that the data must
satisfy. There is no requirement for concurrent access.

2.6.2 Requirements

Ships arriving at a harbour have to be allocated berths in the harbour which are
vacant and which they will fit, or wait in a “pool” until a suitable berth is available.
Develop a system providing the following functions to allow the harbour master to
control the movement of ships in and out of the harbour:

arrive: to register the arrival of a ship
dock: to register a ship docking in a berth
leave: to register a ship leaving a berth

The harbour is illustrated in figure 2.1.

We assume all ships will have to arrive and be waiting (perhaps only notionally)
in the pool before they can dock. So we can picture the state transitions for ships
in figure 2.2.

2.6.3 Imitial formulation

We first ask what are the objects of the system. Mentioned in the requirements
are ships, berths, pool and harbour. It also seems that the harbour is, for our
purposes, a fixed collection of berths, while the number of ships in the pool will
vary. We can show the entity relationships in figure 2.3.

Then we try to identify attributes of objects and see which ones may change
dynamically. Ships have no attributes given in the requirements, except that they
may or may not fit a berth. We could invent an attribute like size but we don’t in
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Figure 2.1: Harbour
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Figure 2.2: State transitions for ships

fact know if this is what determines fit. So we make a note that we will probably
need a function

fits : Ship x Berth — Bool

which we will leave underspecified, at least until we have discussed with the cus-
tomers what they want here.

Berths change in that they may be vacant at one time and contain a ship at
another time. Hence what we might term occupancy is a dynamic attribute. This
suggests that a berth will be an RSL imperative object with possible state-changing
functions enter and leave, say.

The harbour seems to be a collection of berths. The members of this collection
are apparently fixed, and so we might well have in mind eventually modelling it as
an array.

The pool of waiting ships will change dynamically as ships arrive and dock.
So again there is the suggestion of an RSL imperative object with state-changing
functions enter and leave, say.
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Figure 2.3: Entity relationships for harbour

There is often a choice of what we regard as attributes. We could have a dynamic
attribute location for a ship, which might be elsewhere, waiting or docked in berth
k. We could make ships into RSL imperative objects to model this. Then we
would have duplicate information if we also had dynamic berths and pool of waiting
ships. This would cause extra overhead in changing both objects consistently. Some
systems are designed this way — usually when the amount of information is large,
queries are common and need to be fast, and changes are less common. However,
it is generally a dangerous practice and for this system it seems more appropriate
to structure the system on the basis of the harbour and pool of waiting ships, and
to calculate the location of a ship if we need to.

Now we can consider what are the invariants (properties that are always true)
on the data. Possibilities are

e A ship can’t be in two places at once.
e At most one ship can be in any one berth.
e A ship can only be in a berth it fits.

There are two ways to deal with such invariants. Where possible we build them
into the model. If the occupancy of a berth is modelled as vacant or occupied_by(s)
(where s is a ship), the model avoids any possibility of there being more than one
ship in any one berth, and so guarantees the second invariant. (There is also the
point that we shouldn’t try to dock a ship into a berth that is occupied, but this
is dealt with separately.) We have already decided to build into the model the
fact that the collection of berths does not change, which could be considered an
invariant.
The first invariant suggests the (imperative) predicate
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Vs : Ship «
~(waiting(s) A is_docked(s)) A
(V bl,b2 : Berth «
occupancy(bl) = occupied_by(s) A occupancy(b2) = occupied_by(s) =
bl = b2) A
(V b : Berth * occupancy(b) = occupied_by(s) = fits(s, b))

We expect in the initial specification to use an abstract type for the harbour.
Having identified an invariant property captured by a predicate consistent, say,
then we could use a subtype, as in

type
Harbour_base,
Harbour = {| h : Harbour base * consistent(h) |}

This possibility can be adopted but it will require us to generate confidence con-
ditions (see section 4.1.2) for the concrete applicative specification (when we find
some concrete type for Harbour_base). Otherwise it is very easy to create a con-
crete applicative specification that passes the implementation check but does not
maintain the invariant (and is thus inconsistent). It is a general rule that subtypes
of abstract types should not be used unless confidence conditions of the concrete
modules are generated and carefully checked.

Instead, we will express as a collection of axioms the property that the state-
changing functions maintain the invariant, which makes the property more visible
and will force us to justify it when we justify implementation. This may not seem
too important in this example, but we shall see in the next example, the lift, that
safety properties typically look like invariants.

For example, if arrive is a state-changing function and consistent a predicate
expressing the invariant, we can write the axiom

axiom
[arrive_consistent |
Vs : Ship «

arrive(s) post consistent() pre consistent() A can_arrive(s)

where can_arrive is a predicate expressing the precondition for arrive.

We now have some mental picture of the objects in the system. We can picture
them as in figure 2.4, where only the state-changing functions are shown.

Although we could perhaps fairly easily specify this in RSL by first specifying
schemes for POOL, BERTH and BERTHS, it is generally a good idea to try first for
a single scheme without components that more closely matches the requirements,
and keep the decomposed model in mind as a direction for development.

An alternative to this is to define the decomposed model first, to get more feel
for how the system will go together, and possibly create an abstraction later. As
we noted earlier, experience with using RAISE suggests that constructing a more
concrete and decomposed system is a technique that is generally very successful.
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Figure 2.4: Harbour objects

2.6.4 Method overview

We want to proceed from applicative to imperative. So the particular method we
will use is as follows:

e Define a scheme TYPES containing types and attributes for the non-dynamic
entities we have identified, and make a global object T for this.

e Define an abstract applicative module A_ HARBOURQO containing the top level
functions, the axioms relating these and the “invariants”.

e Develop a sequence of concrete applicative modules, AAHARBOURI1, A_HAR-
BOUR2, etc. which will introduce applicative component modules for the
“pool” and “berths” components.

e Develop to a corresponding collection of imperative modules from the final
applicative ones.

e Consider any efficiency improvements we can make to the imperative ones.

e Translate to the intended target language.

This outline of the method for a particular application we will call a development
plan. In practice such plans will include a number of other activities for documen-
tation, testing, quality assurance, etc. together with schedules, effort to be used,
and so on.

2.6.5 Type module

From our initial thoughts we formulate the module TYPES:
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scheme TYPES =

class
type
Ship, Berth,
Occupancy == vacant | occupied_by(occupant : Ship)
value
fits : Ship x Berth — Bool
end

We then make a global object from TYPES:
object T : TYPES

2.6.6 Abstract applicative

To create an abstraction for the system we follow the method that will be described
in more detail for the queue data type in section 2.8.4.1. But since this is a system
specification rather than a data type like the queue we will try to formulate the
system properties that we can specify at this point. We have already identified the
notion of consistency, which we capture by a predicate.

The method is in summary:

e Define the type of interest as a sort (Harbour).

e Define the signatures of the functions we need.

e Categorize these functions as generators if the type of interest (or a type
dependent on it) appears in their result types and as observers otherwise.
(We shall see that the imperative counterparts to generators are functions
that change (write to) the state. We have previously referred to these as
“state-changing”.) We find we have three generators: arrives, docks and
leaves, and we identify two observers: waiting and occupancy.

e Formulate preconditions for any partial functions. All three generators are
partial: there are situations where they cannot sensibly be applied. We there-
fore identify three functions (termed “guards”) to express their preconditions:
can_arrive, etc. All these guards are derived from (i.e. given explicit definitions
in terms of) the observers.

e Define a function (consistent) to express the invariant, making it another
derived observer.

e For each possible combination of non-derived observer and non-derived gen-
erator, define an axiom expressing the relation between them. We have three
non-derived generators and two non-derived observers, so we have six such
axioms.

e Add axioms expressing the notion that the non-derived generators maintain
consistency. We have three such axioms.

e Hide the invariant function consistent and anything else not needed by clients
of the module.
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This gives the abstract applicative module A_. HARBOURQO:

scheme A_ HARBOURO =
hide consistent in
class
type Harbour
value
/* generators */
arrives : T.Ship x Harbour — Harbour,
docks : T.Ship x T.Berth x Harbour — Harbour,
leaves : T.Ship x T.Berth x Harbour — Harbour,
/* observers x/
waiting : T.Ship x Harbour — Bool,
occupancy : T.Berth x Harbour — T.Occupancy,
/* derived */
consistent : Harbour — Bool
consistent(h) =
(Vs: T.Ship *
~ (waiting(s, h) A is_docked(s, h)) A
(V bl, b2 : T.Berth »
occupancy(bl, h) = T.occupied_by(s) A
occupancy(b2, h) = T.occupied by(s) =
bl = b2) A
(Vb : T.Berth »
occupancy(b, h) = T.occupied by(s) = T fits(s, b))),
is_.docked : T.Ship x Harbour — Bool
is_docked(s, h) =
(3 b : T.Berth * occupancy(b, h) = T.occupied_by(s)),
/* guards */
can_arrive : T.Ship x Harbour — Bool
can_arrive(s, h) = ~ waiting(s, h) A ~ is_docked(s, h),
can_dock : T.Ship x T.Berth x Harbour — Bool
can_dock(s, b, h) =
waiting(s, h) A ~ is_docked(s, h) A
occupancy(b, h) = T.vacant A T fits(s, b),
can_leave : T.Ship x T.Berth x Harbour — Bool
can_leave(s, b, h) = occupancy(b, h) = T.occupied_by(s)
axiom
[ waiting arrives |
YV h : Harbour, s1, s2 : T.Ship
waiting(s2, arrives(sl, h)) = sl = s2 V waiting(s2, h)
pre can _arrive(sl, h),
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[ waiting_docks |
V h : Harbour, s1, s2 : T.Ship, b : T.Berth «
waiting(s2, docks(sl, b, h)) = sl # s2 A waiting(s2, h)
pre can_dock(sl, b, h),
[ waiting leaves |
vV h : Harbour, s1, s2 : T.Ship, b : T.Berth
waiting(s2, leaves(sl, b, h)) = waiting(s2, h)
pre can leave(sl, b, h),
[ occupancy _arrives |
V h : Harbour, s : T.Ship, b : T.Berth «
occupancy (b, arrives(s, h)) = occupancy(b, h)
pre can_arrive(s, h),
[ occupancy _docks |
vV h : Harbour, s : T.Ship, bl, b2 : T.Berth «
occupancy (b2, docks(s, bl, h)) =
if bl = b2 then T.occupied_by(s) else occupancy(b2, h) end
pre can_dock(s, bl, h),
[ occupancy leaves |
V h : Harbour, s : T.Ship, bl, b2 : T.Berth
occupancy (b2, leaves(s, bl, h)) =
if bl = b2 then T.vacant else occupancy(b2, h) end
pre can_leave(s, bl, h),
[arrives_consistent ]
YV h : Harbour, s : T.Ship
arrives(s, h) as h' post consistent(h’)
pre consistent(h) A can_arrive(s, h),
[ docks_consistent |
V h : Harbour, s : T.Ship, b : T.Berth
docks(s, b, h) as h' post consistent(h’)
pre consistent(h) A can_dock(s, b, h),
[leaves_consistent |
YV h : Harbour, s : T.Ship, b : T.Berth
leaves(s, b, h) as h’ post consistent(h')
pre consistent(h) A can_leave(s, b, h)
end

In practice it will typically take several iterations before such a specification can
be settled on. In particular, while the generators may be reasonably apparent from
the requirements (ships can arrive and dock, etc.) it is often much less clear what
good observers will be. Do we, for example, want one for the set of ships waiting?
If one tries to use this as an observer it should soon become apparent that it can
easily be defined as a derived observer from the simple observer waiting that we
have used.

We have also omitted a constant of type Harbour, like empty. This is partly
because the requirements were silent about initial conditions. In practice the ability
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to initialise (and perhaps reset) the system is a likely requirement and an empty
constant would be required. Adding empty (and making the consequent changes
in the remainder of the development) is left as an exercise for the reader.

2.6.6.1 Validation

Validating an initial specification means checking that it meets the requirements.
In practice there are usually some requirements that are not expressed in the initial
specification. These may be either

e requirements that cannot be expressed in RSL, the “non-functional” require-
ments, or

e requirements we have decided to defer because they are too detailed to include
yet

Both these kinds of requirements will give direction to the development because
we will need to deal with them at some point.

So validation means checking, for each requirement we can identify, that it is
either correctly reflected in the initial specification or can be dealt with at some
stage in the development plan. If we consider some of the requirements for the
system, we can record:

1. Ships can arrive and will be registered. A_HARBOURO
2. Ships can be docked when a suitable berth is free. ~A_HARBOURO
3. Docked ships can leave. A_HARBOURO
4. Ships can only be allocated to berths they fit. A_HARBOURO
5.  Any ship will eventually get a berth. outside system

6. Any ship waiting more than 2 days will be flagged. deferred to ...

We could of course give more precise references to requirements we believe to be
met. Thus number 4 could have a reference to can_dock.

If we claim to meet a requirement but the claim is not immediate from the
specification, we can formulate the requirement as a theorem and justify it.

This process will sometimes raise issues that we have not dealt with properly,
causing us to rework the specification. We have assumed, for example, that the
actual choice of a ship to fill a vacant berth is outside the system: we just provide
the facilities for a user to make the choice. This may not be correct, or it may
require a new function, to return, perhaps, a list of ships that can fit a berth,
ordered by date of arrival.

Making such a list of requirements will also give us the opportunity to update the
list as we do the development so that we can eventually show that all the deferred
requirements are met. Showing where and how requirements are met is commonly
called “requirements tracing”.
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2.6.7 Concrete applicative

A natural concrete type to use for Harbour is a set of waiting ships (which consti-
tutes the pool) and an array of berths, for which we can use the standard modules
A_SET and A_LARRAY_INIT, described in appendix A. We cannot be sure that
the array will be applied to an index (for example to see if a berth is vacant) before
it has been changed, and so we use the initialised version of the array (and we will
initialise all occupancies to vacant).

We need enter and leave functions for both the set and the array. For the set
these will be modelled by add and remove respectively. For the array both are
modelled by a change, to an occupancy and a vacancy respectively.

Extending the type module
To instantiate A_SET, we need to provide a type Elem, and we can use the type
Ship from the type module.

To instantiate A_ ARRAY_INIT, we need to satisfy the requirements of the par-
ameter ARRAY_PARM_INIT from section A.1. The type Elem will be Occupancy
from the type module, and the value init will be vacant, also from the type module.
We still need integers min and max, with max no less than min. We can add these
to the type module, with an appropriate axiom. We could then model the type
Berth as equal to the subtype of integers from min to max, but it is more general
to leave Berth as a sort and say there is a function indx from Berth to this sub-
type: effectively the index of a berth is an attribute of it. We then leave open the
possibility of there being other attributes of berths. Presumably there will need to
be some others (and some attributes of ships) to enable us to eventually compute
fits.

We therefore add the following definitions to the type module TYPES:
type

Index = {|i: Int i > min A max >1i |}
value
min, max : Int,
indx : Berth — Index
axiom
[index_not_empty | max > min,
[ berths_indexable |
V bl, b2 : Berth « indx(bl) = indx(b2) = bl = b2
The axiom berths_indexable ensures that indexes identify berths uniquely.

We have chosen just to add these definitions to the type module directly rather
than develop it to a new module TYPES]I, say. This is the most convenient way to
develop type modules. As here, the extensions to them are typically conservative
and making formal developments of them would be more effort than is appropriate.
We could if we wish proceed more formally by

e defining a new types module TYPES1
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e justifying that TYPESI implements TYPES
e defining a new global object T1 as an instantiation of TYPES1
e using T1 in the developments of the system modules

Developing the system module

The method used to do this development step, in which we introduce component
modules, will be described in more detail for the queue data type in section 2.8.4.7.
In summary:

Start by identifying a concrete type for the type of interest Harbour:
type Harbour = P.Set x B.Array

where P and B are the names of the objects that instantiate A_SET and
A_ARRAY_INIT respectively. P represents the pool of waiting ships; B rep-
resents the array of berths.

Create these objects P and B. We can use the global types module T to
provide their actual parameters (with suitable fittings). For instance, the
Elem type for the set module will be the type Ship, so that P models the pool
of waiting ships.

Define the non-derived functions arrives, docks, leaves, waiting and occupancy
in terms of the functions provided by A_SET and A_ARRAY_INIT. The other
functions are derived and so already have explicit definitions.

Hide the objects P and B (along again with consistent). Only this module
should have direct access to the objects’ functions.

This gives us the concrete applicative module A . HARBOURI1:

scheme A_HARBOURI =
hide P, B, consistent in
class

object
/* pool of waiting ships */
P : A SET(T{Ship for Elem}),
/* berths %/
B : AL ARRAY _INIT(T{Occupancy for Elem, vacant for init})
type Harbour = P.Set x B.Array
value
/* generators */
arrives : T.Ship x Harbour = Harbour
arrives(s, (ws, bs)) =
(P.add(s, ws), bs)
pre can_arrive(s, (ws, bs)),
docks : T.Ship x T.Berth x Harbour — Harbour
docks(s, b, (ws, bs)) =
(P.remove(s, ws), B.change(T.indx(b), T.occupied by(s), bs))
pre can_dock(s, b, (ws, bs)),



First example: harbour 53

leaves : T.Ship x T.Berth x Harbour = Harbour
leaves(s, b, (ws, bs)) =
(ws, B.change(T.indx(b), T.vacant, bs))
pre can_leave(s, b, (ws, bs)),
/* observers x/
waiting : T.Ship x Harbour — Bool
waiting(s, (ws, bs)) = P.is.in(s, ws),
occupancy : T.Berth x Harbour — T.Occupancy
occupancy(b, (ws, bs)) = B.apply(T.indx(b), bs),
/* invariant */
consistent : Harbour — Bool
consistent((ws, bs)) =
(Vs: T.Ship «
~ (P.is_in(s, ws) A is_docked(s, (ws, bs))) A
(V bl, b2 : T.Berth »
B.apply(T.indx(b1), bs) = T.occupied_by(s) A
B.apply(T.indx(b2), bs) = T.occupied_by(s) = bl = b2) A
(Vb : T.Berth »
B.apply(T.indx(b), bs) = T.occupied_by(s) = T.-fits(s, b))),
is_.docked : T.Ship x Harbour — Bool
is_docked(s, (ws, bs)) =
(3 b : T.Berth « B.apply(T.indx(b), bs) = T.occupied_by(s)),
/* guards */
can_arrive : T.Ship x Harbour — Bool
can_arrive(s, (ws, bs)) =
~ P.is_in(s, ws) A ~ is_docked(s, (ws, bs)),
can_dock : T.Ship x T.Berth x Harbour — Bool
can_dock(s, b, (ws, bs)) =
P.is_in(s, ws) A ~ is_docked(s, (ws, bs)) A
B.apply(T.indx(b), bs) = T.vacant A T .fits(s, b),
can_leave : T.Ship x T.Berth x Harbour — Bool
can_leave(s, b, (ws, bs)) = B.apply(T.indx(b), bs) = T.occupied_by(s)
end

It would have been possible to define explicit enter and leave functions (plus ob-
servers) for the pool and berths. For example, we could have defined

object
/* pool of waiting ships */
P:
use enter for add, leave for remove, waiting for is_in in
A _SET(T{Ship for Elem}),
/* berths */
B:
hide change, apply in
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extend A_ARRAY _INIT(T{Occupancy for Elem, vacant for init}) with
class
value
enter : T.Ship x T.Berth x Array — Array
enter(s, b, a) = change(T.indx(b), T.occupied by(s), a),
leave : T.Berth x Array — Array
leave(b, a) = change(T.indx(b), T.vacant, a),
occupancy : T.Berth x Array — T.Occupancy
occupancy(b, a) = apply(T.indx(b), a)
end
Another possibility is to define a scheme for the pool that instantiates A_SET as an
object, defines enter, leave and waiting functions, and hides the object. A similar
scheme would be defined for the berths. This possibility, like the object definitions
above, would give a better encapsulation of the supplier modules and would make
the definitions of functions in A_ HARBOURI a little easier to read. For instance
the body of arrive would be

arrives(s, (ws, bs)) = (P.enter(s, ws), bs)
In this small example we did not think the extra complication in the definitions of

the objects for the pool and berths was worthwhile. In a larger example it would
be.

2.6.7.1 Verification

We formulate the development relation A_HARBOURO-1, which asserts that
A_HARBOURI implements A_. HARBOURQO:

development_relation [A HARBOURO0.1] A HARBOUR1 < A_ HARBOURO

A development relation is a named statement of a relation between modules. This
one takes the most simple form of the statement of an implementation relation (<)
between two versions of the harbour module.

Justification of this relation shows that the development step is correct. The
justification amounts to showing that the axioms of A_LHARBOURQ are true in
A_HARBOURI.

2.6.8 Concrete imperative

We describe A . HARBOURI as “composite” because it instantiates other system
modules (the set and array) within it. The method for developing from a composite
applicative module to an imperative module is explained in detail in section 2.8.5.4.
In summary:

e Define objects P and B as in the applicative version, but this time instantiat-
ing the imperative versions of the set and array modules respectively. There
is no definition of the type of interest Harbour.
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e Define imperative functions which correspond to the applicative ones. They
have the same names. Generators have access write any and observers have
access read any. Occurrences of the type of interest are removed from para-
meter and result types (and replaced by Unit if there are no other components
in a parameter or result type).

e Define the bodies of the functions by adapting the applicative versions to use
the imperative functions corresponding to the applicative ones. The general
method for this adaptation is described in section 2.8.5.4 but is easy to follow
intuitively for this example.

This gives the concrete imperative module I HARBOURI1:

scheme I HARBOUR1 =
hide P, B, consistent in
class
object
/* pool of waiting ships */
P : I SET(T{Ship for Elem}),
/* berths %/
B : _LARRAY_INIT(T{Occupancy for Elem, vacant for init})
value
/* generators */
arrives : T.Ship — write any Unit
arrives(s) = P.add(s) pre can_arrive(s),
docks : T.Ship x T.Berth = write any Unit
docks(s, b) =
P.remove(s) ; B.change(T.indx(b), T.occupied_by(s))
pre can_dock(s, b),
leaves : T.Ship x T.Berth = write any Unit
leaves(s, b) = B.change(T.indx(b), T.vacant) pre can_leave(s, b),
/* observers x/
waiting : T.Ship — read any Bool
waiting(s) = P.is_in(s),
occupancy : T.Berth — read any T.Occupancy
occupancy(b) = B.apply(T.indx(b)),
/* invariant */
consistent : Unit — read any Bool
consistent() =
(Vs: T.Ship «
~ (P.isdin(s) A is_docked(s)) A
(V bl, b2 : T.Berth «
B.apply(T.indx(b1)) = T.occupied_by(s) A
B.apply(T.indx(b2)) = T.occupied_by(s) = bl = b2) A
(Vb : T.Berth »
B.apply(T.indx(b)) = T.occupied by(s) = T fits(s, b))),
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is_.docked : T.Ship — read any Bool
is_docked(s) =

(3 b : T.Berth » B.apply(T.indx(b)) = T.occupied_by(s)),
/* guards */
can_arrive : T.Ship — read any Bool
can_arrive(s) = ~ P.is_in(s) A ~ is_docked(s),
can_dock : T.Ship x T.Berth — read any Bool
can_dock(s, b) =

P.is.in(s) A ~ is_docked(s) A

B.apply(T.indx(b)) = T.vacant A T fits(s, b),
can_leave : T.Ship x T.Berth — read any Bool
can_leave(s, b) = B.apply(T.indx(b)) = T.occupied_by(s)

end

2.6.8.1 Verification

Since this development step was from applicative to imperative, we need to decide
what level of assurance we need for correctness. We can either

e check that the method for this transition has been followed correctly, or
e formulate the imperative axioms corresponding to the applicative axioms from
A_HARBOURO and justify them for L HARBOURI1

Both of these are verifications since they check on the correctness of the develop-
ment process. The first is informal and is almost certainly all that is necessary for
this fairly straightforward development. The second is formal and can be done if
we have any doubts or require the highest level of assurance of correctness. How
to do it is described in section 2.9.

2.6.9 Further development

There are a few issues left to be resolved:

e The definition of is_docked still involves an existential quantifier and is prob-
ably not translatable yet. So we formulate a development of  HARBOURI,
I HARBOUR2, in which is_docked is defined by

value
is_docked : T.Ship — read any Bool
is_docked(s) =
local variable found : Bool := false, indx : Int := T.min in
while ~ found A indx < T.max do
found := B.apply(indx) = T.occupied_by(s) ; indx := indx + 1
end ;
found
end
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We can then formulate and justify the implementation relation between
I HARBOUR2 and . HARBOURI to check this is correct.

e We have still left unspecified the types Ship and Berth and the values min,
max, fits and indx; all defined in TYPES. In practice we should either have
been able to define all of these by getting more detailed requirements, or
we could regard them as system parameters to be instantiated for particular
harbours.

When we are in a position to make definite choices for these types and
values we can define a new module, TYPES1, say. We then justify that
TYPES1 implements TYPES and create a new object T1, say. Now all we
have to do at the translation stage is to use T'1 instead of T. The correctness
of this follows from the compositionality of the implementation relation. If
TYPES]I implements TYPES then, if T1 : TYPES1 and T : TYPES, for any
specification SPEC in which the name T1 does not occur, SPEC[T1/T | im-
plements SPEC, where SPEC[T1/T | means SPEC with all free occurrences
of T replaced by T1.

It would be possible to create a new RSL specification by replacing all
mentions of T by T1 in all the modules, but, unless we actually need to use
properties of TYPES] that were not in TYPES for further development of
these modules, this is not necessary.

e Final implementation also assumes we have translations of the standard mod-
ules LARRAY_INIT and I_.SET that are sufficiently efficient for our purposes.
In the case of the latter, in particular, we might want a specialized transla-
tion if the set was to become large (though for this example it seems most
unlikely).

2.6.10 Translation

Translation of this example is discussed in section 5.4.1.

Exercise Adapt A . HARBOURI and . HARBOURI to meet the extra require-
ment that ships are docked in vacant berths in order of arrival, provided they fit.
In other words, a ship B arriving after a ship A will only be docked before A if a
berth is vacant that B will fit and A will not fit. As a consequence, docks will no
longer have a parameter of type T.Ship.

A possible data type to use for the waiting ships is developed in the exercise at
the end of section 2.8.

Also add to these modules a function to produce a report of the current status
of the harbour, showing

e the names of ships waiting, in order, with the set of berths each will fit
e for each berth, the name of the ship in it or the fact that it is vacant
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2.7 Second example: lift
2.7.1 Aims of example

The example is a simple safety-critical system involving concurrency.

We will want to be very careful to state the safety properties and justify them.
Hence it is worth starting with an applicative specification and developing it into
a concurrent one. So the example is designed to show

e how to specify axiomatically an applicative system satisfying safety properties

e how to develop such a system into one with explicit applicative functions over
a global state

e how to decompose the applicative global specification into applicative compo-
nents

e how to obtain a concurrent, decomposed system from the applicative one

The example also shows how to develop an asynchronous system, i.e. one in which
there is no particular relation between the timing of different events (like buttons
being pressed). Note also that some components (like buttons, doors and the lift
motor) are hardware components; their specifications will describe the assumptions
about them.

2.7.2 Requirements

A lift is required to serve a number of floors. Each floor has doors which must only
be open when the lift is stationary at that floor. Each floor except the top one
has a button to request the lift to stop there and then go up; each floor except the
bottom one has a button to request the lift to stop there and then go down. The
lift also has a button for each floor to request the lift to go to that floor.

2.7.2.1 Simplifying assumptions

e We do not distinguish between lift doors and floor doors. This reflects either
that the lift cage has no door, or that the lift door and a floor door are
constrained by hardware only to open and close together (when the lift is
stationary at the floor).

e We only consider doors at each floor as being in one of two states: “open”
(when the lift must be at the floor and stationary) and “shut” (when the lift
may be elsewhere and/or moving).

e We do not consider the time taken for the lift to move or the doors to open or
close. We will at the detailed level, however, have both “do” and “acknowl-
edge” events for such actions and assume the hardware will tell us by the
acknowledgements when the actions are completed.

e We do not consider lights on buttons or audible signals that the lift is stopping
at a floor. We assume these will be done purely by hardware.
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e We make some assumptions about the way the lift motor is controlled — these
will be described later.

e We do not consider how to deal with hardware failures, or how to re-start the
system after such a failure.

e We assume floors are numbered consecutively.

2.7.3 Initial formulation

A lift is an example of an asynchronous system, since buttons may be pressed at
any time. In other words, there are external stimuli that may happen at any time,
or may never happen. We have to be careful with such systems to make them
“loosely coupled”. We must not create the situation where a lift is waiting for one
button to be pushed while a user is trying to push another.

We handle this problem quite naturally in our development style. There will be
a button module with functions allowing a user to press it and allowing the lift to
check if it has been pressed and to clear it. Each button is modelled as a separate
process, so that there is no synchronization between users pressing buttons and the
lift inspecting and clearing them.

2.7.3.1 System components

As usual we start by considering the objects of the system and whether they will
have dynamic state:

o The lift itself will presumably change its position, direction and speed via
commands to its motor.

e Doors will be open or closed.

e Buttons will be pressed (and lit) or cleared (and unlit).

e A floor could be dynamically “visited” by a lift or not but this would duplicate
the lift position. So floors seem only to have static attributes, like their
number, whether they are above or below other floors, whether they are the
top or bottom floor.

Certainly it looks as if the lift motor, the doors and the buttons will have dynamic
state and hence be modelled as RSL objects.

We can construct an entity relationship diagram (figure 2.5) illustrating the
physical entities in the system.

We have not included a door for the lift cage because of our assumption that
either the lift has no door or it is controlled by the floor door.

For our specification we will adopt a different structure between modules, since
we do not feel constrained by the physical one: we remove the intermediate levels
“Cage” and “Floor”, merging the collections of buttons.

We can then picture the intended components in the specification as in figure 2.6
where only the generating functions are shown.
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Lift

Cage Floor

I I

Motor Button Door Button

Figure 2.5: Physical entity relationships

push |
move
halt close clear
MOTOR DOORS BUTTONS
LIFT

Figure 2.6: Specification components

It is not clear at present what the external functions of the component objects
are. Certainly it must be possible to push any buttons. Does the lift then behave
independently of external control (as long as there is no failure)? Or do we exter-
nally keep telling it to perform the next action? We have assumed the latter for
now, but we will return to this question later.

Next comes the question of what attributes are necessary for these objects. In
this case there is a question of how finely we need to model things. Are doors just
open or closed, or do they also have intermediate opening and closing states? Do
we need to go further and measure their current separation, their velocities and
accelerations? Similar questions apply to the lift’s movements.

The answers to such questions will lie in the detailed requirements (or should
be clarified before we start if not stated there). Here we will just distinguish a
door which is “closed” (by which we mean shut and locked) from a door which is
“open”, and demand that a door is open at a floor only when the lift is stationary
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at that floor. (Hence we shall ignore, for instance, the need to let a technician
unlock a door manually when the motor fails.) The state transitions for each door
are shown in figure 2.7.

[ [

open
Figure 2.7: State transitions for a door

We will make similar assumptions about the lift. We will assume it can be
sufficiently characterized by being halted at a floor (when the doors there may be
open), or in some other state which we will call “moving”. When halted it will be
at a floor; it turns out to be convenient to always associate it with a floor even when
moving, and this will be the (next) floor it is moving towards. When moving it
must have a direction, up or down. Again it turns out to be convenient to associate
a direction with the lift when it is halted, which is the direction in which it was
last moving. A state transition diagram for the lift is shown in figure 2.8.

next floor next floor
up down

next floor down m

moving
down

next floor up

close and
next floor
down

close and
next floor

and open and open

Figure 2.8: State transitions for lift
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2.7.3.2 Types module

The preceding discussion gives us enough to formulate the type module for the
system, which we will call TYPES and instantiate as the global object T*

scheme TYPES =
class

value
min_floor, max floor : Int,
is floor : Int — Bool
is floor(f) = f > min floor A f < max floor

axiom [some floors | max floor > min floor

type
Floor = {| n : Int « is_floor(n) |},
Lower_floor = {| f : Floor « f < max_floor |},
Upper_floor = {| f: Floor * f > min floor |},

Door_state == open | shut,

Button state == lit | clear,

Direction == up | down,

Movement == halted | moving,

Requirement :: here : Bool after : Bool before : Bool
value

next_floor : Direction x Floor = Floor
next_floor(d, f) =
ifd =up thenf+ 1 elsef — 1 end
pre is_next_floor(d, f),
is_next_floor : Direction x Floor — Bool
is_next_floor(d, f) =
if d = up then f < max floor else f > min_floor end,
invert : Direction — Direction
invert(d) = if d = up then down else up end
end

We have no indication that there will be any attributes of floors other than their
numbers. Unlike the berths of the harbour system of section 2.6 we have chosen
to model the type Floor directly as a subtype of Int. We assume that floors are
numbered consecutively. This is merely for simplicity: we could have modelled
floors as we did berths.

The type Requirement will be explained when we discuss below how buttons are
checked.

2.7.3.3 Safety and liveness properties

For a control system like a lift there are usually two kinds of property that we
are interested in. The first kind is that of safety properties. A safety property
states that some situation must never arise, which we can formulate as “always
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the predicate describing the situation is false”. Safety properties are generally not
difficult to formulate in RSL.

The second kind of property is that of liveness properties. A liveness property
says that something must eventually happen. Unfortunately such properties are
generally difficult to express in RSL in their full generality. But we can provide an
effective substitute, as we shall see.

2.7.3.4 Generators

As noted earlier we are dealing with an asynchronous system, with messages coming
in at times and with frequencies beyond the influence of the lift controller, which
is the part we want to specify. We need to ensure that the controller checks for
new messages sufficiently frequently. For example, a detailed requirement for a
lift might be that if it leaves a floor because there is a request to go to some floor
above, and someone presses the up button at some intermediate floor before the lift
passes it, the lift should stop there. A standard means of designing such a control
system is as a small loop:

while true do

read messages ;

take next appropriate action
end

where “smallness” is measured by the amount of “action” that can be taken during
each cycle. In our case the difference between the current floors before and after
the next action will be limited to at most one, to meet the detailed requirement
just mentioned. This means we assume that the lift motor is able to give a smooth
trip across several floors although only given instructions to move one floor at a
time.

This standard idea of a control loop also suggests what the generators should
be: they should correspond to “read messages” and “take next action”. The first
will be a result-returning generator; it will tell us something about the state of the
buttons and also change the state. It may not seem clear why such a function should
generate a new state but it turns out this is the way to model it. It is as if there is the
stream of all future button pushes encoded in the state, and this function reads the
next set and changes the stream to the remaining stream. Leaving underspecified
what the result of this function is and what the characteristics of the new state are
means that it behaves just like a sensor seems to. This is the way that all such
sensor functions should be modelled applicatively.

We do need to consider what the result type of this function should be. An array
of boolean values for all buttons? The lift would need to do some processing on
this: whether it should stop at the floor it is moving towards, for example, depends
on whether the lift button for that floor is lit, or the button at the floor in the
current direction is lit, or the button at the floor in the other direction is lit and
there are no requests to go to further floors in the current direction. Clearly all this
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kind of processing can be done elsewhere, and we decide that the button sensor
function, which we term check_buttons, will return a value of type Requirement,
which is a record of three booleans, representing whether the lift is required here,
after (i.e. at a later floor in the same direction) or before (i.e. at a floor in the
opposite direction). We can make sure these predicates are false at the boundary
cases (like after at the top floor). Calculation of these values from the buttons will
clearly need the current floor and direction, but these can probably be obtained
from the type of interest Lift, say. So we have a signature for check_buttons:

value
check_buttons : Lift — T.Requirement x Lift

(Recall that T is the global instance of TYPES.)
Now we need a signature for next, the other generator suggested by the control
loop. This presumably needs the results of check_buttons, so we have

value next : T.Requirement x Lift = Lift

check_buttons can be total so there is no need for a precondition. It is not clear
yet what next should do if, say, after is true but it has reached the top. So we will
leave it as partial for now. But we will defer defining its precondition.

2.7.3.5 Observers

We add the observers:

value
movement : Lift — T.Movement,
door_state : Lift — T.Floor — T.Door_state,
floor : Lift — T.Floor,
direction : Lift — T.Direction

2.7.3.6 Axioms

The normal method is next to try to define the observer—generator axioms, but in
this case we will interpose an additional step. The initial purpose is to capture the
critical properties of the lift. These we take to be:

e a safety property that the doors are always shut if the lift is not stationary at
a floor (so people outside the lift cannot fall into the lift shaft), and open if
the lift is stationary at a floor (so that people inside the lift can get out)

e a liveness property that the lift does something useful, that it will eventually
get to and stop at a floor if requested there

The safety property can be expressed by an “invariant” function safe, with defini-
tion



Second example: lift 65

safe(s) =
(V f: T.Floor »
(door_state(s)(f) = T.open) =
(movement(s) = T.halted A floor(s) = f))
As we noted earlier, liveness properties are harder to specify. What we can do,
instead of trying to describe what “eventually” means, is describe some relation
between a lift state and the next state. In fact this will be a relation over three
states: the initial one, the one after check_buttons and the one after next.
Call these states s, & and s”. We will express the properties that

e If 5 is safe, so are s’ and 5.

e If the lift is halted in state s”, the lift was either wanted here or nowhere else,
and the floor of §” is the same as the floor of s.

e If the lift is not halted in state s”, the lift was wanted either after or before,
and the floor it is moving towards is next to the floor in state s and a valid
floor.

e If the lift has changed direction between states s and s, after must be false.

The first of these is the property that the invariant safe is maintained. We could
specify it as a separate axiom but it is convenient in this case to include it as
part of the liveness axiom. If we made it separate we would still use safe(s) as a
precondition of the liveness axiom.

Another approach to stating liveness requirements is to form some measure of
how close a state is to satisfying the property required and then show that the next
state strictly reduces this measure. This can be quite tricky to do when, as here,
each “read messages” part of the loop changes what is required. The argument
that the lift will eventually reach a floor for which a button is lit is as follows:

o If the lift is currently halted somewhere else, here for that floor must be
true. If here eventually becomes false, either before or after must be true
and the lift must go into a non-halted state (which we hope means physically
moving). But note that we make the assumption that here must become
false. We are tempted to specify this (on the assumption that the lift clears
the relevant buttons when it halts at a floor) but we cannot give any guarantee
that someone does not immediately press one of them again. In fact we can
never predict what the result of check buttons will be (or we would restrict
the ability of people to press buttons). We could specify at this level that the
relevant buttons are cleared, of course, but

— it would complicate the specification since it involves defining what those
buttons are, and
— it wouldn’t help to specify safety or liveness, as we have seen

so we prefer to leave it as a requirement to be satisfied later.

Similarly, we assume that only the lift will be able to clear a button and so
a button once pressed will stay lit. This in turn means that before and after,
once true because a button is lit, will remain true until the lift either reaches
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the relevant floor or reverses direction, when before takes the value of after
and vice versa.

It is never possible to guarantee absolutely that even a functioning lift
will eventually do anything. Someone may hold the doors open somewhere
indefinitely, for example. (We can, though, specify systems that detect such
events and go into special states when they occur. Then liveness properties
include assumptions about “normal” states as well as “safe” ones.)

o If we accept the assumption that the lift will not stay halted indefinitely
anywhere, it will keep going to the “next” floor. There it may halt but, again,
will eventually move. So we know that the lift always “makes progress”.

— If this movement is towards the floor in question, after is true and the
lift is not allowed to change direction. So it must make progress until it
reaches the floor.

— If this movement is away from the floor in question, before is true. The
liftt must eventually change direction, since there are only finitely many
floors in front of it, and before will stay true until it changes direction.
When it changes direction, since before was true, after becomes true,
and we have already established that it will eventually get to the floor
in question.

Note that this analysis assumes the correct relation between the buttons and the
values here, before and after for any floor. We will formalize these later and assume
for now that they mean what we say they mean.

We now formulate the initial specification A_LIFTO:

scheme A _LIFTO =
hide movement, door_state, floor, direction, safe in
class
type Lift
value
/* generators */
next : T.Requirement x Lift = Lift,
check_buttons : Lift — T.Requirement x Lift,
/* observers x/
movement : Lift — T.Movement,
door_state : Lift — T.Floor — T.Door state,
floor : Lift — T.Floor,
direction : Lift — T.Direction,
/* derived */
safe : Lift — Bool
safe(s) =
(V f: T.Floor »
(door state(s)(f) = T.open) =
(movement(s) = T.halted A floor(s) = f))
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axiom
[safe_and_useful |
Vs : Lift »
safe(s) =
let (r, s') = check_buttons(s) in
safe(s’) A
let s” = next(r, ') in
safe(s”) A
(movement(s”) = T.halted =
(T.here(r) v (~ T.after(r) A ~ T.before(r))) A
floor(s) = floor(s")) A
(movement(s”) = T.moving =
(T.after(r) vV T.before(r)) A
T.is_next_floor(direction(s"), floor(s)) A
floor(s") = T.next_floor(direction(s"), floor(s))) A
(direction(s) # direction(s") = ~ T.after(r))
end
end
end

2.7.3.7 Validation

As we did in section 2.6.6.1 we check that all the requirements are either reflected
in the initial specification or catered for in the development plan. In this system
the most important things to be checked are the safety and liveness properties; we
will need to check that the definition of is_safe and the axiom safe_and_useful are
adequate.

2.7.4 Development of main algorithm

The first aim is to define the function next and show that it satisfies safe_and_-
useful. To do this we introduce two new generators move and halt and define
next in terms of them. So next changes from being a generator to being a derived
function.

move changes the current floor to the next. To avoid having separate move-up
and move-down functions it has a direction parameter, and changes the current
direction to the value of this parameter. It also has a movement parameter, since
if the lift is already moving move need not shut any doors, but otherwise the door
of the current floor must be shut before the move. halt halts the lift at the current
floor and opens (or unlocks) the doors. (We still need to specify later that it clears
the buttons for that floor.)

The preconditions for move and halt are is_safe and, for move, that there is a
next floor. It is standard to make the safety or invariant predicate a precondition
for generators, since the strategy is to show that it is preserved by next, which
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is defined in terms of move and halt. This allows us to effectively compute the
precondition for next from its body, noting that it only calls move in the original
direction when after is true, and in the opposite direction when before is true. This
further allows us to compute a postcondition for check_buttons. The construction
of A_LIFT1 is otherwise according to the method for abstract applicative modules
described in section 2.8.4.1.

scheme A _LIFT1 =
hide movement, door_state, floor, direction, move, halt, safe in
class
type Lift
value
/* generators */
move : T.Direction x T.Movement x Lift — Lift,
halt : Lift — Lift,
check_buttons : Lift — T.Requirement x Lift,
/* observers x/
movement : Lift — T.Movement,
door_state : Lift — T.Floor — T.Door state,
floor : Lift — T.Floor,
direction : Lift — T.Direction,
/* derived */
next : T.Requirement x Lift = Lift
next(r, s) =
let d = direction(s) in
case movement(s) of
T.halted —
case r of
T.mk _Requirement(_, true, _) — move(d, T.halted, s),
T.mk Requirement(_, _, true) —
move(T.invert(d), T.halted, s),
_—s
end,
T.moving —
case r of
T.mk _Requirement(true, _, _) — halt(s),
T.mk_Requirement(_, false, false) — halt(s),
T.mk _Requirement(_, true, _) — move(d, T.moving, s),
T.mk Requirement(_, _, true) —
move(T.invert(d), T.moving, s)
end
end
end
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pre
(T.after(r) = T.is_next_floor(direction(s), floor(s))) A
(T.before(r) = T.is_next_floor(T.invert(direction(s)), floor(s))),
safe : Lift — Bool
safe(s) =
(V f: T.Floor »
(door_state(s)(f) = T.open) =
(movement(s) = T.halted A floor(s) = f))
axiom
[ movement_move |
Vs : Lift, d : T.Direction, m : T.Movement e
movement(move(d, m, s)) = T.moving
pre T.is_next_floor(d, floor(s)),
[ door_state_move |
V s : Lift, d : T.Direction, m : T.Movement, f : T.Floor *
door state(move(d, m, s))(f) =
if m = T.halted A floor(s) = f then T.shut
else door_state(s)(f) end
pre T.is_next_floor(d, floor(s)),
[floor_move |
V s : Lift, d : T.Direction, m : T.Movement e
floor(move(d, m, s)) = T.next_floor(d, floor(s))
pre T.is next_floor(d, floor(s)),
[ direction_move |
Vs : Lift, d : T.Direction, m : T.Movement e
direction(move(d, m, s)) = d pre T.is_next_floor(d, floor(s)),
[ move_defined |
Vs : Lift, d : T.Direction, m : T.Movement -
move(d, m, s) post true pre T.is-next floor(d, floor(s)),
[movement_halt | V s : Lift « movement(halt(s)) = T.halted,
[door state_halt |
Vs : Lift, f: T.Floor e
door_state(halt(s))(f) =
if floor(s) = f then T.open else door state(s)(f) end,
[floor_halt] V s : Lift « floor(halt(s)) = floor(s),
[ direction_halt |
V s : Lift « direction(halt(s)) = direction(s),
[ check_buttons_ax |
Vs : Lift »
check_buttons(s) as (r, )
post
movement(s') = movement(s) A
door_state(s') = door state(s) A
floor(s') = floor(s) A
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direction(s') = direction(s) A

(T.after(r) = T.is_next_floor(direction(s’), floor(s'))) A

(T.before(r) = T.is_next_floor(T.invert(direction(s')), floor(s')))
end

2.7.4.1 Verification

We express the claim that A_LIFT1 implements A_LIFTO0 by formulating this claim
as a development relation and justifying it. This justification consists largely of
justifying that the axiom safe_and_useful is true in A_LIF'T1, i.e. that the algorithm
will give a safe and useful lift.

2.7.5 Decomposition of the state

We decide to model the system in terms of three sub-systems: the doors, the
buttons and the motor. Each of these has an abstract state and functions acting
on this state with which we can decompose the actions of the generators of the
A_LIFT1 module.

scheme A_DOORSO0 =
class
type Doors
value
/* generators */
open : T.Floor x Doors — Doors,
close : T.Floor x Doors — Doors,
/* observer x/
door_state : Doors — T.Floor — T.Door_state
axiom
[door_state_open |
V £, f : T.Floor, s : Doors »
door_state(open(f, s))(f) =
if f = f' then T.open else door_state(s)(f') end,
[door_state_close |
V £, f : T.Floor, s : Doors »
door_state(close(f, s))(f') =
if f = f then T.shut else door_state(s)(f') end
end

scheme A_BUTTONSO =
class
type Buttons
value
/* generators */
clear : T.Floor x Buttons — Buttons,
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check : T.Direction x T.Floor x Buttons — T.Requirement x Buttons
axiom
[ check_result |
V s : Buttons, d : T.Direction, f : T.Floor «
check(d, f, s) as (1, §')
post
(T.after(r) = T.is_next_floor(d, f)) A
(T.before(r) = T.is_next_floor(T.invert(d), f))
end

scheme A_MOTORO0 =
class
type Motor
value
/* generators */
move : T.Direction x Motor = Motor,
halt : Motor — Motor,
/* observers x/
direction : Motor — T.Direction,
movement : Motor — T.Movement,
floor : Motor — T.Floor
axiom
[ direction_move |
YV s : Motor, d : T.Direction *
direction(move(d, s)) = d pre T.is_next_floor(d, floor(s)),
[ movement_move |
YV s : Motor, d : T.Direction «
movement(move(d, s)) = T.moving
pre T.is_next_floor(d, floor(s)),
[floor_move |
V s : Motor, d : T.Direction
floor(move(d, s)) = T.next_floor(d, floor(s))
pre T.is next_floor(d, floor(s)),
[ move_defined |
YV s : Motor, d : T.Direction ¢
move(d, s) post true pre T.is_next_floor(d, floor(s)),
[direction_halt| V s : Motor « direction(halt(s)) = direction(s),
[movement halt | V s : Motor « movement(halt(s)) = T.halted,
[floor_halt] V s : Motor » floor(halt(s)) = floor(s)
end

To formulate A_LIFT2 we follow the method we used in section 2.6.7, using the
following concrete type definition for Lift:

type Lift = M.Motor x DS.Doors x BS.Buttons
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We also decide to remove the hidden functions movement, door_state, floor and
direction as they are hidden and have simple definitions in terms of corresponding
functions from the constituent objects (allowing us to easily unfold their occur-
rences). This in turn makes it sensible to define A_LIFT2 in two stages, using a
“BODY” module:

scheme A _LIFT2 = hide M, DS, BS, move, halt, safe in A LIFT2 BODY

scheme A_LIFT2_BODY =
class
object
/* motor x/
M : A MOTORQO,
/* doors */
DS : A_LDOORSO,
/* buttons */
BS : AABUTTONSO
type Lift = M.Motor x DS.Doors x BS.Buttons
value
/* generators */
move : T.Direction x T.Movement x Lift = Lift
move(d, m, (ms, ds, bs)) =
(M.move(d, ms),
if m = T.halted then DS.close(M.floor(ms), ds) else ds end,
bs)
pre T.is next_floor(d, M.floor(ms)),
halt : Lift — Lift
halt((ms, ds, bs)) =
(M.halt(ms), DS.open(M.floor(ms), ds), BS.clear(M.floor(ms), bs)),
check_buttons : Lift — T.Requirement x Lift
check_buttons((ms, ds, bs)) =
let (r, bs') = BS.check(M.direction(ms), M.floor(ms), bs) in
(r, (ms, ds, bs'))
end,
/* derived */
next : T.Requirement x Lift = Lift
next(r, (ms, ds, bs)) =
let d = M.direction(ms) in
case M.movement(ms) of
T.halted —
case r of
T.mk_Requirement(_, true, _) —
move(d, T.halted, (ms, ds, bs)),
T.mk _Requirement(_, _, true) —
move(T.invert(d), T.halted, (ms, ds, bs)),
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_ — (ms, ds, bs)
end,
T.moving —
case r of
T.mk Requirement(true, _, _) — halt((ms, ds, bs)),
T.mk _Requirement(_, false, false) — halt((ms, ds, bs)),
T.mk Requirement(_, true, _) —
move(d, T.moving, (ms, ds, bs)),
T.mk Requirement(_, _, true) —
move(T.invert(d), T.moving, (ms, ds, bs))
end
end
end
pre
(T.after(r) = T.is_next_floor(M.direction(ms), M.floor(ms))) A
(T.before(r) =
T.is_next_floor(T.invert(M.direction(ms)), M.floor(ms))),
safe : Lift — Bool
safe((ms, ds, bs)) =
(V f: T.Floor »
(DS.door_state(ds)(f) = T.open) =
(M.movement(ms) = T.halted A M.floor(ms) = f))
end

2.7.5.1 Verification

We would like to state and justify a development relation between A_LIFT1 and
A_LIFT2. We could state this as

A LIFT2 < A LIFT1

but this relation cannot be justified since A_LIFT1 defines and hides entities (move-
ment and three other functions) that are not defined in A_LIFT2. We clearly do not
need them as A_LIFT2 defines all the non-hidden entities from A_LIFT1. What we
do instead is to show that an extension of A_LIFT2 BODY (where the extension
defines movement and the other three functions) implements A_LIFT1. We state
the relation in the development relation A_LIFT1_2:

development_relation [A_LIFT1 2|
extend A_LIFT2 BODY with
class
value
movement : Lift — T.Movement
movement((ms, ds, bs)) = M.movement(ms),
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door_state : Lift —+ T.Floor — T.Door_state
door_state((ms, ds, bs)) = DS.door_state(ds),

floor : Lift — T.Floor
floor((ms, ds, bs)) = M.floor(ms),

direction : Lift — T.Direction
direction((ms, ds, bs)) = M.direction(ms)
end
< A LIFT1

If tools are available these will check that this relation is well-formed, i.e. that we
have included everything and not changed any signatures. We can then justify
this relation, which amounts to showing that the axioms from A_LIFT1 hold in
A_LIFT2.

Note the following points:

e We needed to split A_LIFT2 into a “BODY” and a hide to be able to construct
this relation as the extension defining movement, etc. needs to be able to
mention names like M hidden in A_LIFT2.

e The extension adding the hidden entities contains only explicit definitions,
and hence is unlikely to be inconsistent. It also, for the same reason, is likely
only to conservatively extend A_LIF'T2.

e If we can be sure that the extension conservatively extends A_LIFT2, we can
be sure that the properties of the entities defined in A_LIFT2 are not affected
by the extension. The extension used here is indeed conservative; how to
demonstrate this is discussed in section 3.12.2.

e A_LIFT1 involves hiding but this can be ignored in the justification since all
the hidden names are now defined in the extension of A_LIFT2_ BODY .

We can justify the development relation A_LIFT1_2 to show that A_LIFT2 imple-
ments A_LIFT1. Since implementation is transitive, this will show that A_LIFT?2
implements A_LIFTO0, and in particular that the decomposed design is still safe
and useful.

2.7.6 Development of components

Before making the shift to a concurrent system we will make the applicative com-
ponents concrete by defining appropriate types for their types of interest. For each
component we follow the method described in detail later in section 2.8.4.6. In
summary:

e Choose a concrete RSL type for the type of interest. A possible type to use is
the product of the result types of the non-derived observers, but other choices
can be made. The important criterion is that all the observers can be defined
in terms of the concrete type.
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e Supply explicit bodies to functions using the RSL features available for the
concrete type.

2.7.6.1 Motor

We need a concrete type for Motor. An obvious choice is
type Motor = T.Direction x T.Movement x T.Floor

since there are three observers in A_MOTORQO each giving one of the types in the
product. The remainder of the formulation of A MOTORI is simple.

scheme A_MOTORI1 =
class
type Motor = T.Direction x T.Movement x T.Floor
value
/* generators */
move : T.Direction x Motor = Motor
move(d’, (d, m, f)) =
(d', T.moving, T.next_floor(d’, f))
pre T.is_next_floor(d’, f),
halt : Motor — Motor
halt((d, m, f)) = (d, T.halted, f),
/* observers x/
direction : Motor — T.Direction
direction((d, m, f)) = d,
movement : Motor — T.Movement
movement((d, m, f)) = m,
floor : Motor — T.Floor
floor((d, m, f)) = f
end

2.7.6.2 Doors

We only have one observer in A_DOORSO0, with signature

door_state : Doors — T.Floor — T.Door_state
This suggests the concrete type definition for the type of interest Doors
type Doors = T.Floor — T.Door_state

It may seem odd to regard a function type as sufficiently concrete (since function
types are not generally available in programming languages), but when the para-
meter type of this function type is a finite type it can be developed to an array
of objects. That is, we will have a single door module for each floor. This gives

A_DOORS1:
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scheme A_DOORS1 =
class
type Doors = T.Floor — T.Door_state
value
/* generators */
open : T.Floor x Doors — T.Floor — T.Door_state
open(f, s)(f) = if f = f then T.open else s(f') end,
close : T.Floor x Doors — T.Floor — T.Door_state
close(f, s)(f') = if f = ' then T.shut else s(f') end,
/* observer x/
door_state : Doors — T.Floor — T.Door_state
door_state(s) = s
end

2.7.6.3 Buttons

We have no observers yet and so no clear guide as to what the concrete type should
be. We also need to remember that we have not yet modelled the user function of
pressing a button.

We have assumed that the lift has a button for each floor, and each floor has (at
most) an “up” button and a “down” button. The bottom floor has only an “up”
button; the top floor has only a “down” button; intermediate floors have both.

We remember that for the doors, where we expect to have an array, the concrete
type was a function with parameter type Floor and result type Door_state. We
can model the buttons with three such arrays: lift buttons, “up” floor buttons and

“down” floor buttons. This suggests a product of function types for the concrete
type, and we can formulate A_BUTTONSI:

scheme A_BUTTONSI1 =
hide required_here, required_beyond in
class
type
Buttons =
(T.Floor — T.Button state) x
(T.Lower_floor — T.Button state) x
(T.Upper_floor — T.Button_state)
value
/* generators */
clear : T.Floor x Buttons — Buttons
clear(f, (1, u, d)) =
(A f : T.Floor » if f = f' then T.clear else 1(f') end,
A f : T.Lower_floor ¢ if f = f then T.clear else u(f) end,
A f : T.Upper_floor « if f = f then T.clear else d(f') end),
check : T.Direction x T.Floor x Buttons — T.Requirement x Buttons,
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/* observers x/
required_here : T.Direction x T.Floor x Buttons — Bool
required_here(d, f, (lift, up, down)) =
lift(f) = T.lit v
d=T.up A
(f < T.max_floor A up(f) = T.lit V
f > T.min_floor A
down(f) = T.lit A ~ required beyond(d, f, (lift, up, down))) V
d = T.down A
(f > T.min floor A down(f) = T.lit vV
f < T.max_floor A
up(f) = T.lit A ~ required_beyond(d, f, (lift, up, down))),
required_beyond : T.Direction x T.Floor x Buttons — Bool
required beyond(d, f, s) =
T.is_next_floor(d, f) A
let f' = T.next_floor(d, f) in
required_here(d, f', s) V required_beyond(d, f', s)
end
axiom
[ check_result |
V s : Buttons, d : T.Direction, f : T.Floor
check(d, f, s) as (r, s')
post
Tr =
T.mk _Requirement
(required_here(d, f, s),
required_beyond(d, f, s),
required_beyond(T.invert(d), f, s))
end
Note that we have been able for the first time to define what clear does and how
here, before and after are computed.

2.7.6.4 Verification

For each of the applicative motor, doors, and buttons modules it is easy to formulate
and justify that the concrete version implements the abstract version.

2.7.6.5 Validation

Since we have elaborated clear and here, before and after for the buttons module for
the first time, we need to check that these are what is required. For example, clear
will clear the down button for a floor if the lift stops there on the way up (because of
some other request). We assume that in this situation it is most likely that anyone
waiting to go down will get into the lift and that therefore stopping again at this
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floor on the way down will typically be a waste of time. This may be appropriate
for a single lift system; it would not be for a multiple lift system. Conversely the
lift will only stop when going up for a down button if there is no request for it
to go higher. There are undoubtedly other, perhaps better, alternatives, but the
primary purpose of this example is to show how such systems can be specified and
developed rather than to discuss in detail control algorithms for lifts.

2.7.7 Introduction of concurrency
2.7.7.1 Lift

We have four concrete applicative modules to transform into concurrent ones. The
easiest is the composition module A_LIFT2, which will become C_LIFT2. We
follow the method described in detail later in section 2.8.6.4. In summary:

e Define objects M, DS and BS as in the applicative version, but this time
instantiating concurrent imperative versions of the motor, doors and buttons
modules.

There is no definition of the type Lift.

e For each of the functions include in its type the access in any out any and
remove the type of interest Lift from its parameter and result types (replacing
by Unit if there are no other components in a parameter or result type).

e Define the bodies of the functions by adapting the applicative versions to use
the imperative functions corresponding to the applicative ones. The general
method for this adaptation is described in section 2.8.6.4 but is easy to follow
intuitively for this example.

e Add an init function to call all the init functions of the constituent objects in
parallel.

This gives C_LIFT2:

scheme C_LIFT2 =
hide M, DS, BS, move, halt in
class
object

/* motor x/
M : CMOTORI1,
/* doors */
DS : C_DOORSI,
/* buttons */
BS : CBUTTONS1
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value
/* generators */
move : T.Direction X T.Movement — in any out any Unit
move(d, m) =
if m = T.halted then DS.close(M.floor()) end ; M.move(d),
halt : Unit — in any out any Unit
halt() =
let f = M.floor() in BS.clear(f) ; M.halt() ; DS.open(f) end,
check_buttons : Unit — in any out any T.Requirement
check_buttons() = BS.check(M.direction(), M.floor()),
/* derived */
next : T.Requirement — in any out any Unit
next(r) =
let d = M.direction() in
case M.movement() of
T.halted —
case r of
T.mk_Requirement(_, true, _) — move(d, T.halted),
T.mk_Requirement(_, _, true) —
move(T.invert(d), T.halted),
_ — skip
end,
T.moving —
case r of
T.mk _Requirement(true, _, _) — halt(),
T.mk Requirement(_, false, false) — halt(),
T.mk_Requirement(_, true, _) — move(d, T.moving),
T.mk Requirement(_, _, true) —
move(T.invert(d), T.moving)
end
end
end,
/* initial %/
init : Unit — in any out any write any Unit
init() = M.init() || DS.init() || BS.init(),
/* control */
lift : Unit — in any out any Unit
lift() = while true do next(check_buttons()) end
end
(We have not yet formulated the component modules C_.MOTORI, etc., but the
method is sufficiently regular for us to write down C_LIFT2 even if we cannot type
check it yet.)
We have now also included the control function Iift that follows the pattern we
indicated earlier: it repeatedly checks the buttons and does the next action. Why
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didn’t we write the counterpart to this function in the applicative version A_LIFT?2
(or an earlier one)?

If we tried to write this function in the applicative version we would have written
something like

value
lift : Lift — Lift
lift(s) = lift(next(check_buttons(s)))

But this definition is likely to be contradictory. The function lift is claimed (by
the total function arrow in its type) to be convergent when applied and (since it
is applicative) must therefore terminate when applied. But such a function will in
general not terminate. The concurrent counterpart is convergent because, although
it involves an infinite loop this loop communicates. So we note again that the way
to specify and analyse such systems starting from an applicative specification is in
terms of a “next” function.

2.7.7.2 Motor

The motor is the easiest of the three components because it involves no component
arrays. This module is sufficiently simple to follow the simplified method that will
be described in detail later in section 2.8.6.3. In summary:

e Define a variable for each component of the applicative type of interest from
A_MOTORI1.

e Give signatures to the functions corresponding to the applicative ones by
adding the accesses in any out any and removing the type of interest Motor
(as usual adding Unit where necessary).

e Define channels for (at least) the parameter and result types of the functions
that are not Unit.

e Define the body of each function as an output of its parameter (unless of Unit
type with no channel) followed by an input of its result (unless of Unit type
with no channel).

e Add a “main” function (here called motor) which is a while true do loop
containing an external choice between an expression for each of the other
functions. Each of these expressions

— inputs the parameter value from the function (if any), then
— for generators, updates the variables as appropriate, then
— outputs the result value to the function (if any).

The updating of the variables and the result returned are the imperative
counterparts to the bodies of the applicative functions.

e Define an init function that calls the main function after, possibly, initialising
the variables.
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scheme C_MOTOR1 =
hide CH, V, motor in
class
object
CH :
class
channel
direction : T.Direction,
floor : T.Floor,
movement : T.Movement,
move : T.Direction,
halt, move_ack, halt_ack : Unit
end,
V:
class
variable
direction : T.Direction,
movement : T.Movement,
floor : T.Floor
end
value
/* main %/
motor : Unit — in any out any write any Unit
motor() =
while true do
let d = CH.move? in
CH.move_ack ! () ; V.direction := d';

lift
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V.movement := T.moving ; V.floor := T.next_floor(d’, V.floor)

end ||

CH.halt? ; CH.halt_ack ! () ; V.movement := T.halted []

CH.direction ! V.direction []
CH.movement ! V.movement |]
CH floor ! V.floor
end,

/* initial */

init : Unit — in any out any write any Unit

init() = motor(),

/* generators */

/* assumes move only called when next floor in direction exists */

move : T.Direction — in any out any Unit
move(d) = CH.move ! d ; CH.move_ack?,
halt : Unit — in any out any Unit

halt() = CH.halt ! () ; CH.halt_ack?,
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/* observers x/

direction : Unit — in any out any T.Direction
direction() = CH.direction?,

floor : Unit — in any out any T.Floor

floor() = CH.floor?,

movement : Unit — in any out any T.Movement
movement() = CH.movement?

end

Some design decisions are of interest here:

e Since the concrete state was a product of three components it was natural to

use three variables.

As with the channels, we have put the variables into an object V of their own
to facilitate hiding them.

We give no initial value to the variables. This reflects the intuition that it may
be necessary to start or re-start the lift in any state. We might in this module
want to assert that the lift is, say, stationary at the bottom floor and prepared
to go up, but then it would not be applicable for a restart of the system in
some other state. (Such a restart facility would need some additional functions
to allow the system to be made safe before starting normal behaviour.)
There are “acknowledgement” channels for the results of the move and halt
functions, although these are of type Unit. This allows us to assume that
the lift motor has actually carried out the corresponding action when the
function terminates. Note that there is nothing in the specification about
actually sending the commands to the physical motor. There are two ways of
interpreting this specification (which will affect the way it is translated):

— We regard the definition of motor as a specification of the assumptions
about the hardware interface; it specifies that after doing a move, for
example, the variables are set so that consequent functions like floor will
obtain information that corresponds both to what the move was supposed
to do (change the floor variable to the next floor) and also to what the
physical lift has actually done. The functions move, halt, etc. are the
interface to the hardware. In this case the translation of the module
will ignore motor and translate the functions in terms of calls on the
hardware.

— We regard motor as implicitly calling the hardware functions in the ap-
propriate places, such as telling the actual motor to move after receiving
an input on the CH.move channel and then waiting for an acknowledge-
ment from the motor before outputting on the CH.move_ack channel. In
this case the motor function will be translated to include the appropriate
hardware calls.

Which interpretation we take depends mostly on how close motor is to how
the hardware actually operates. For the purposes of this tutorial we take the
first interpretation.
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Note that, if we take the second interpretation, the translation of C_LIFT2
is also affected; we would need to make sure that its init function is invoked
initially, since it will invoke the initial motor, door and button processes. With
the first interpretation these are all “running” as hardware already.

e The applicative move function in A_MOTORI had a precondition that in-
volved a parameter, so we could not use the “if precondition then commu-
nicate else stop” style (see section 2.8.6.4). We can, however, check that in
all calls of move the precondition (that there is a valid floor to move to) is
true, so this is an instance where the check can be omitted. The check was in
fact part of the proof of the safe_and_useful axiom earlier, since in that proof
we could only unfold calls of move for which the precondition is true. Since
this reduces the robustness of C_MOTOR1 we have included a comment on
this feature. A more robust implementation would include some code in the
appropriate part of motor, which would require more knowledge about the
hardware involved.

2.7.7.3 Doors

We need a method for decomposition into an object array. This is as follows:

e We have in the concrete type of interest a component which is a function type.
The parameter type of this function type will be the type of the array index.
(This can be done in RSL even if this type is infinite, but is typically only of
use if the type is finite and fairly small. Otherwise we need to reconsider the
concrete type.)

e We need a class expression for the array. We normally define this as a separate
scheme.

e The type of interest of this scheme will be the result type of the function type,
in this case T.Door_state.

e This method only makes sense if the current scheme is applicative and the
development is to an imperative or concurrent one with an imperative or
concurrent component.

e We need to define the functions of the component scheme. Usually this is very
obvious, or soon becomes so, because they are the functions needed to model
the (imperative or concurrent counterparts of the) functions in the current
module. Any generator in the current module that changes or depends on an
application of this component will need one or more corresponding functions;
any observer that either produces a value of the type or in its body applies a
value of the type will need one or more corresponding functions.

e We complete the definition of the functions of the component module and use
them in the development of the current module.

e For a concurrent development, the init function in the current module will be
defined as the parallel composition of the init functions of the components.
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It is clear that the component module for a single door will need open, close, and
door_state functions. We formulate it as the concurrent module C_DOORI:
scheme C_DOORI1 =

hide CH, door_var, door in

class
object
CH:
class
channel
open, close, open_ack, close_ack : Unit,
door_state : T.Door_state
end
variable door_var : T.Door_state
value
/* main */
door : Unit — in any out any write any Unit
door() =

while true do
CH.open? ; CH.open_ack ! () ; door_var := T.open |]
CH.close? ; CH.close_ack ! () ; door_var := T.shut []
CH.door_state ! door_var
end,
/* initial */
init : Unit — in any out any write any Unit
init() = door(),
/* generators */
close : Unit — in any out any Unit
close() = CH.close ! () ; CH.close_ack?,
open : Unit — in any out any Unit
open() = CH.open ! () ; CH.open_ack?,
/* observer x/
door_state : Unit — in any out any T.Door state
door_state() = CH.door state?
end

Note that as with the motor module:
e We have made no assumptions about the initial state.
e We have included acknowledgements so that we can assume that hardware
interactions are completed when their functions terminate.
This allows us to formulate C_DOORS1:

scheme C_DOORS1 =
hide DS in
class
object DS[f: T.Floor|: C_ DOOR1
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value

/* initial %/
init : Unit — in any out any write any Unit
init() = || { DS[{].init() | f : T.Floor },
/* generators */
open : T.Floor — in any out any Unit
open(f) = DS|f].open(),
close : T.Floor — in any out any Unit
close(f) = DS[f].close(),
/* observer x/
door_state : T.Floor — in any out any T.Door_state
door_state(f) = DS[f].door_state()

end

2.7.7.4 Buttons

The method is just like that of section 2.7.7.3 except that we will need three arrays,
each of the same component scheme C_BUTTONI1. The state transitions for each
button are shown in figure 2.9.

push clear clear

—

push
Figure 2.9: State transitions for a button

scheme C_ BUTTON1 =
hide CH, button, button_var in
class
object CH : class channel push, clear : Unit, check : T.Button_state end
variable button_var : T.Button_state
value
/* main %/
button : Unit — in any out any write any Unit
button() =
while true do
CH.push? ; button_var := T.lit []
CH.clear? ; button_var := T.clear ]
CH.check ! button_var
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end,
/* initial %/
init : Unit — in any out any write any Unit
init() = button(),
/* generators */
push : Unit — in any out any Unit
push() = CH.push ! (),
clear : Unit — in any out any Unit
clear() = CH.clear ! (),
/* observer x/
check : Unit — in any out any T.Button_state
check() = CH.check?
end

As with the motor and doors, we have made no assumptions about the buttons
initially.

The development step from A_BUTTONS1 to C_.BUTTONSI using arrays is
now straightforward.

scheme C_BUTTONS1 =
hide LB, UB, DB, required_here, required_beyond in
class
object
/* lift buttons */
LB[f: T.Floor|: C.BUTTONI,
/* up buttons */
UB[f: T.Lower_floor| : C_BUTTONI,
/* down buttons */
DB|f: T.Upper_floor| : C_BUTTON1
value
/* initial %/
init : Unit — in any out any write any Unit
init() =
|| { LB[f].init() | f: T.Floor } ||
|| { UB[f].init() | f : T.Lower_floor } ||
|| { DB[f].init() | f : T.Upper_floor },
/* generators */
clear : T.Floor — in any out any Unit
clear(f) =
LBJ[f].clear() ;
if f < T.max floor then UB[f].clear() end ;
if f > T.min floor then DB|f].clear() end,
/* observers x/
check : T.Direction x T.Floor — in any out any T.Requirement
check(d, f) =
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T.mk_Requirement
(required_here(d, f),
required_beyond(d, f),
required_beyond(T.invert(d), f)),
required_here : T.Direction x T.Floor — in any out any Bool
required_here(d, f) =
LB[f].check() = T.lit Vv
d=T.up A
(f < T.max_floor A UB|[f].check() = T.lit v
f > T.min floor A
DB f].check() = T.lit A ~ required_beyond(d, f)) Vv
d = T.down A
(f > T.min_floor A DBJ[f].check() = T.lit V
f < T.max floor A
UB|f].check() = T.lit A ~ required_beyond(d, f)),
required_beyond : T.Direction x T.Floor — in any out any Bool
required_beyond(d, f) =
T.is_next_floor(d, f) A
let f = T.next_floor(d, f) in
required_here(d, ') V required_beyond(d, f)
end
end

2.7.7.5 Verification

Since this development step was from applicative to concurrent, we need to decide
what level of assurance we need for correctness. We can either

e check that the method for this transition has been followed correctly, or

e formulate the concurrent axiom corresponding to the applicative safe_and_-
useful axiom from A_LIFTO and justify it for C_LIFT?2.

Both of these are verifications since they check on the correctness of the devel-
opment process. The first is informal and is generally all that is necessary. The
second is formal and can be done if we have any doubts or require the highest level
of assurance of correctness. How to do it is described in section 2.9.

2.7.8 Translation

Translation of this example is discussed in section 5.4.2.

Exercise Extend the example to allow for multiple lifts.

The natural extension of the scheduling algorithm is probably too inefficient for
multiple lifts as a request from a floor button would be passed to all lifts. This
would ensure the one that can arrive first does so, but would mean all currently idle
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lifts starting to move towards the floor. It is suggested, however, that a different
algorithm is left as a separate, optional exercise.

2.8 Third example: queue
2.8.1 Aims of example

This example is of the development of a component, an abstract data type. The
discussion is rather more detailed than in the previous examples, where the empha-
sis was on system specification and development and where the method summaries
were written to reflect the particular example rather than offer full details. We will
present in detail the method for specifying abstract applicative modules and for
developing them to concrete and eventually imperative, sequential or concurrent
modules.

The actual example is the simple (but not entirely trivial) example of a queue.
To make it a little more realistic we will make the queue bounded, i.e. there will
be a maximum number of elements it can hold.

2.8.2 Requirements

To start we need some requirements. The basic requirements for a bounded queue
are that items may be extracted (“dequeued”) only in the order in which they were
inserted (“enqueued”) and that at any time any number of items up to the max-
imum may have been enqueued and not yet dequeued. Note that in this case of
a typical component rather than a complete system the requirements can usually
be expressed in terms of the facilities (functions) to be provided. So we will have
enqueue and dequeue functions, which we will abbreviate to enq and deq respec-
tively. For formulating the boundedness we might also think of a “count” function,
but since only two values of the count would probably be of interest (zero and the
bound) we will choose instead to also have is_empty and is_full functions. The
formulation of the queue largely consists of expressing the properties of these four
functions.

2.8.3 Overview

There are a large number of specifications of the queue in this section. A particular
development will only produce a few of these, and we first give an overview of the
possible development routes and the sections relevant to them.

We always start with an abstract applicative specification, which is in this case
A_QUEUEQ. Its formulation is described in section 2.8.4.1.

We then decide how to develop this into a more concrete data structure. There
are two choices:
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e using the built-in RSL list type constructor. This gives the applicative con-
crete queue A_QUEUE]I, described in section 2.8.4.6.

e using an array as a circular buffer. This gives the applicative concrete queue
A_QUEUE2, described in section 2.8.4.7. Since A_QUEUE?2 instantiates an-
other module (an array) we describe it as composite; its properties will be
composed from the module(s) it instantiates. A module that does not instan-
tiate others we describe as single.

The technique of developing a module into a module that depends on others
is modular decomposition. The ability to do so, and to compose the proper-
ties of a module from its particular properties and those of its components
is critical to any method to be used for anything larger than the smallest
problems.

Having developed to either A_.QUEUE1 or A_QUEUE2, if all we want is an applica-
tive queue we are finished. But more typically we will need either an imperative
or a concurrent queue. The first would be used in a purely sequential system, the
latter in a concurrent one. In either case we will in general get greater efficiency
because the queue value will not be passed as a parameter.

For an imperative queue, if we have developed to A_QUEUE1 we develop
I. QUEUE1 from it in section 2.8.5.3 and we are finished. The overall develop-
ment is illustrated in figure 2.10. Here the development steps are labelled “I” for
implementation and “A_1” for applicative to imperative.

| A.QUEUE( (2.8.4.1)]
I

Al

| AL QUEUE1 (2.8.4.6) |

» L. QUEUE1 (2.8.5.3) |

Figure 2.10: Development of I QUEUE]1

If we have developed to A_.QUEUE?2 using an applicative array we develop to
I. QUEUE? using an imperative array in section 2.8.5.4. The overall development
is illustrated in figure 2.11. Here the development steps are labelled “I” for imple-
mentation, “A_I” for applicative to imperative and “C” for the clientship relation.
For example, A_QUEUE?2 is a client of (instantiates) A . ARRAY .

For a single concurrent queue, we need to develop an imperative version first.
So if we have developed to . QUEUE1 we develop C_QUEUEI as a client of it in
section 2.8.6.3. The overall development is illustrated in figure 2.12.

The single concurrent queue C_QUEUEI has a sequential imperative supplier
I. QUEUE1. The composite concurrent queue C_QUEUE2 will have a concurrent
supplier CARRAY that will in turn, we can presume, have its imperative supplier.
So if we have developed to A_QUEUE?2 using the applicative array we can develop
directly to C_QUEUE?2 as illustrated in figure 2.13.

There are also sections showing how to formulate abstract imperative modules
(ILQUEUEQ in section 2.8.5.1) and abstract concurrent modules (C_.QUEUEQ in
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| A.QUEUEO (2.8.4.1)]

I
[A_QUEUE2 (2847) 21 I TQUEUEZ 2854) ]
A A
c c
[ AARRAY (A6) 21 I TARRAY (A6) |

Figure 2.11: Development of I QUEUE?2

IA_QUEUEQ (2.8.4.1)|
I

Y
IA_QUEUEI (2.8.4.6)|L>|I_QUEUE1 (2.8.5.3) |—C>|C_QUEUE1 (2.8.6.3)|

Figure 2.12: Development of C_.QUEUEI1

section 2.8.6.1). It is suggested that these sections are omitted in a first reading.

2.8.4 Applicative queue

In this section we develop first in section 2.8.4.1 an abstract applicative queue
A_QUEUEQ and then two alternative concrete versions: the “single” A_QUEUEI1
in section 2.8.4.6 and the “composite” A_QUEUE2 in section 2.8.4.7.

2.8.4.1 Abstract applicative queue

The method in summary is

e define an abstract type of interest

e define a parameter module

e define the signatures of the constants and functions, taking care about whether
functions are partial or total

| A.QUEUE( (2.8.4.1)]

I
[A_QUEUEZ (2847) 2 J[CQUEUEZ (2.564)]
A A
c c
[ AARRAY (A6) 2 I CARRAY (A6) |

Figure 2.13: Development of C. QUEUE2
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e formulate preconditions for partial function
e classify the functions as generators and observers
e define “observational” axioms relating the generators to the observers

Type of interest

We will need to identify the signatures of the functions required. It is immediately
apparent that in the applicative case we need a type for the queue itself, the type
of interest. In the abstract module this will be defined as an abstract type by a
sort, definition:

type Queue

Parameter module

The parameter type of enq will be Elem X Queue where Elem is the type of the
things to be put on the queue. It seems appropriate to define a generic queue, so we
need to define a parameter module. Is there anything else to put in it? We might
immediately realize that it would be sensible to have the bound as a parameter as
well. Should this go into the same parameter module or be a separate parameter?
Our advice is that things that are unrelated can go into separate parameters, but it
is not essential that they do. It turns out that, as long as parameters contain only
applicative sequential entities (types, values and axioms), it is always possible to
create the appropriate actual parameter(s) regardless of how many different objects
the actual types or values are defined in. So it is largely a question of style, with
the general advice to use fewer rather than more parameters for simplicity. In our
case we will choose for simplicity to use just one parameter.

It looks reasonable to make the bound a natural number. Then we might ask if
it is allowed to be zero. Such a question is often difficult to answer until we try
to define the queue itself, when we may discover that allowing it to be zero will
make some functions impossible to implement, so we might have to come back to
the parameter module and change it. But certainly a permanently empty queue is
useless, and so we will constrain the bound to be strictly positive. So we formulate
the parameter module:

scheme ELEM = class type Elem end

scheme ELEM_BOUND =
extend ELEM with class value bound : Nat « bound > 0 end

Considering the effect of the bound may have suggested that when the bound is 1
the queue should behave like a one place buffer. If we have such a buffer already
defined we might make a note that a useful confidence check on the queue will be
that it implements the one place buffer.
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Total and partial functions

Now we consider the signatures of enq and deq. Are they to be total or partial?
Certainly neither can be immediately defined as total, since enq may fail if the
queue is full and deq if it is empty. There are two main approaches here:

1. We can make them partial and give them preconditions.

2. We can make them return a value indicating success or not. In the case of

deq this can be achieved by a special “error” value of Elem (which should
be defined in ELEM_BOUND) or by making it return a value of new variant
type:
type Deq result == deq_fail | success(deq-res : P.Elem)
This is preferable to defining deq_fail as a value of Elem in ELEM _BOUND.
We don’t have to check that deq_fail is never enqueued because it cannot be
— it has a different type from Elem. In addition, modules using the queue
module and forgetting to check the status value will usually be detected by
type checking.

(There is another possibility: we can define subtypes like “non-empty-queue” and
“non-full-queue” and make the functions total over such subtypes. For the purposes
of this discussion this is effectively the same as the first alternative.)

Unfortunately it is difficult to decide between these two approaches without
knowing how the queue will finally be implemented. These are the main possibili-
ties:

e It may be possible to prove that the queue is never enqueued when full or
dequeued when empty. In this case the first solution with preconditions is
acceptable, though we might well think the queue not very suitable for reuse
and not very robust against user errors.

e If the final implementation of the queue is to be concurrent, the natural de-
velopment in the first case (as we shall see) will be to make the eng and deq
functions unavailable when the queue is full and empty respectively. Then if
the queue is running in parallel with one or more “writers” doing enq and one
or more “readers” doing deq with the queue acting as a buffer, writers will
be forced to wait while the queue is full and readers to wait while it is empty.
In the second solution a writer will be able to make repeated unsuccessful
communications with a full queue and readers with an empty one. This may
be too inefficient.

e If the final implementation of the queue is to have one user (reader and writer),
for the first alternative we would probably provide is_empty and is_full func-
tions so that the user could check before using deq and enq. But this means
that the user will make two calls on the queue each time, which will tend to
be less efficient. (It is also less obvious if the formulator of a reader or writer
module forgets to include the check.) The is_full and is_empty functions are
of little use for a queue that may be used by multiple readers and writers: the
result of such a function may not still hold at the next call of enq or deq.
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The second approach, including a value indicating success or failure, should always
be adopted when one expects to have multiple users and the precondition depends
not just on the current value of the type of interest but also on the parameter(s).
Consider for example a database relating keys to data values. The precondition
for lookup(k) will be something like is_in(k, db), which depends on the parameter
to lookup, k, as well as db. For a concurrent database with multiple readers and
writers we again cannot assume that the value returned by is_in will hold when we
do the lookup, and we will see later that the method we are adopting will force the
main database process to give some output after receiving the message to lookup a
key; we cannot make the database unavailable to lIookup in general, and can only
calculate whether the lookup can succeed when the key has been received.

For this tutorial we will generally adopt the first approach (of partial functions
with preconditions). There is then a simple technique to extend a module with
partial functions to one with total ones. We will present such an extension for the
queue in section 2.8.4.3 when we have completed the version with partial enq and
deq.

So the signatures of enq and deq can finally be formulated, plus is_full and
is_empty:
value

enq : P.Elem x Queue = Queue,

deq : Queue = P.Elem x Queue,

is_full : Queue — Bool,

is_empty : Queue — Bool

Preconditions

Next we formulate preconditions for each partial function (here enq and deq).
It is generally best if preconditions are expressed as calls of functions, or possibly
conjunctions of such calls. This may suggest additional functions. We have already
identified is_full and is_empty, which we can use to formulate the preconditions of
enq and deq.

Generators and observers
We classify the functions as either generators, which are those in which the type of
interest (Queue in this case) occurs either directly in the result type or indirectly
via type abbreviations, or observers, which are those in which it does not.

For instance, if we defined

type Elem_and_Queue = P.Elem x Queue
value deq : Queue = Elem_and_Queue

then deq would still be classified as a generator, as its result type depends on the
type of interest Queue.
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Constants
We consider the need for constants. Data types like queues commonly have a
constant empty.

Whether to include empty depends on the requirements. If we are only develop-
ing an applicative queue then we may well intend to create instances of queues, and
we cannot do that with our current generators. If we are developing an imperative
or concurrent queue then there will be only one such queue for each object created
from the queue module, and the question is whether we want either to be able to
say that the queue is initially empty or be able at any point to make it empty. This
is probably appropriate for queues, but may not be for other data types, like an
array, for example.

We count constants which are either of the type of interest, or dependent on it,
as generators. We have therefore identified the generators empty, enq and deq.

Axioms

For generators that are either constants or functions that only return a new value
of the type of interest, we try to formulate “observer—generator” axioms. These
are equational in form: each is an equivalence where the left-hand side applies an
observer to a generator, such as

axiom
[is_full enq |
Ve : P.Elem, q : Queue ¢
is_full(enq(e,q)) = ...
pre ~is_full(q)
For generators that return a result as well as a new value of the type of interest,
we try to formulate axioms which are post expressions, such as

axiom
[deq ax |
Y q: Queue *
deq(q) as (e, ') post e = ... Ais_full(q) = ... A is.empty(q) = ...
pre ~ is_empty(q)
where the post expression includes one conjunct for the result and a conjunct for
each observer applied to the new value of the type of interest.

We could also write axioms for non-result-returning generators in the post ex-

pression form, with a post expression like
enq(e, q) as q post is_full(q) = ... A is_empty(q’) = ...
but we want to describe both styles.

We will describe axioms in one of these two forms, equational or post expression,
as observational axioms.

It should be clear that, if there are gy non result-returning generators, g result-
returning generators and o observers, there will be o * g; axioms of the equational
form and g» axioms of the post expression form, each of which will have a post
expression with (o + 1) conjuncts. Hence it is easy to check if everything is
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included. It is also apparent that the amount we have to write is proportional to
the product of the number of generators and the number of observers. We need to
minimize these numbers, a point we return to later, particularly in section 2.8.4.2.

Sometimes one or more axioms can be omitted because they would become vacu-
ous. For example, suppose we had an observer head for the queue. The equational
axiom for head and empty would be

axiom
[head_empty |
head(empty) = ...
pre ~is_empty(empty)
and since the precondition would reduce to false the axiom would reduce to true
even if we could find something to write on its right-hand side.
There are generally preconditions on the axioms. These preconditions are con-
junctions of

e the precondition for the generator, if any, and
e the precondition for the observer(s), if any

If we formulate this set of observational axioms we are assured of the following:

consistency: For any value of the type of interest produced by a generator, and
provided the appropriate preconditions hold, there is precisely one axiom for
the result of applying an observer to the value, and precisely one axiom that
gives the result if the generator is result-returning. Thus we are assured
that we have very little danger of inconsistency through two axioms being
applicable and giving different results. It is possible to write, for example,

obsl(genl(x)) = obs2(gen2(x)),

obs2(gen2(x)) = ~ obsl(genl(x))
which gives a contradiction, but this is unlikely in practice. In our method
of construction, where there is only an observer applied to a generator on the
left-hand side, it is possible to avoid having generators on the right (or in the
postconditions), and then such contradictions cannot arise.

completeness: If the terms on the right-hand sides of the equivalences, and the

postconditions, do not involve the generators, and if the observers do not have
preconditions, then (by repeated application of axioms) we can evaluate the
result of an observer and the result of a result-returning generator applied to
any term built up from the generators.

But we still have not done the hard part, which is formulating the right-hand sides
and postconditions!

Exercise Find observational axioms that characterize an unbounded set, with
constant empty, generators add and remove, and observer is_in. Can this be done
with a bounded set? Can it be done with a stack or a queue, either bounded or
unbounded?
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Additional observers

You will find if you try the exercise above that it is impossible (with the constant
and functions we have identified) to find a set of observational axioms that char-
acterize a queue (bounded or unbounded). There are two alternatives to overcome
this problem:

1. Add axioms relating generators.
2. Introduce one or more extra observers.

In the case of the queue it is possible to find a solution by adding axioms relating
generators, but there are also known to be cases where this is impossible. There
are, however, other reasons for choosing the second alternative:

e It is generally easier to formulate.
e It is possible to maintain the consistency and completeness results.
e It allows more implementations.

We hope to illustrate the first two points in what follows. But for the third we
consider a possible generator-relating axiom:

axiom
[deq_enq]
Ve : Elem, q : Queue *
deq(enqg(e,q)) =
if is_empty(q) then (e,q)
else let (¢',q") = deq(q) in (¢’,enq(e,q’)) end
end
(This may also be an example of the first point; it is not particularly easy to
formulate.)

The problem with such generator-relating axioms is that they involve equiva-
lences between values of the type of interest (which our axioms never do). Consider
a possible implementation of a queue as an array and a pair of pointers (intuitively
a pointer to each end). An enq puts the new value in the array and increments one
pointer; a deq reads a value and increments the other pointer. Now consider an
enq followed by a deq to an initially empty queue. According to the axiom deq_enq
above the new queue should be identical to the old, since we have as a consequence
of it

is_empty(q) = (deq(enq(e,q)) = (e,q))
But we do not get the same (array, pointer, pointer) triple for the value q as
before, because one array value has probably changed and both pointers have been
incremented. So the axiom deq_enq will not hold for this implementation.

So we strongly advise only writing observational axioms. Then the properties of
the type of interest will only be those that are observable.!

1This is not the only possible approach in RAISE. For example, it is possible to follow the
Larch [13] approach, by introducing observational equivalence as part of the step from applicative
to imperative.
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What is the extra observer to be? An obvious choice might be length, since it
should enable us to define is_full and is_empty and we know that enq and deq will
(when their preconditions hold) increment it and decrement it respectively. But it
turns out to be inadequate; there is still no way to complete deq_ax. An adequate
alternative is to note that a queue can be seen as a list, and to define the extra
observer by

type List_of Queue = {|1: P.Elem* « len | < P.bound |}
value list_of : Queue — List_of Queue

We have used a subtype because it most accurately models the bounded queues.

Derived functions

Now we check if any of the observers or generators can be defined directly in terms
of the others. We note that is_full and is_empty can be defined in terms of list_of.
Such generators or observers are called derived functions. We can exclude them
from the axioms (since the properties we would have expressed as axioms will follow
from their definitions), so we now have one observer and three generators, for which
the axioms will take the forms

axiom
[list_of empty ] list_of(empty) = (),

[list_of_enq ]

Ve : P.Elem, q : Queue *
list_of(enq(e, q)) = list_of(q) ~ (e)
pre ~ is_full(q),

[deq ax |
Y q: Queue °
deq(q) as (e, q') post e = hd list_of(q) A list_of(q') = t1 list_of(q)
pre ~ is_empty(q)
Note that these axioms take the form we wanted for completeness; the right-hand
side expressions and postconditions do not involve the generators.

Making functions derived tends to make things clearer and also reduces the
amount we have to write. If is_full and is_empty were not derived we would save
their two definitions but have to write four more axioms (relating them to empty
and enq) and add two more conjuncts to deq_ax.

Definedness axioms

If we are interested in doing proofs it is worth including extra axioms for the
definedness of any partial (and non-derived) generators and observers. These take
the form

axiom [f defined] V ... f(...) post true pre ...
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where the precondition is as in the other axiom(s) for f. Such axioms for result-
returning generators like deq can be derived from the other axioms, since these use
post expressions (unless we made a mistake and the post expressions themselves are
not total when the preconditions are true). For generators like enqg the definedness
axiom is not a consequence of the other axioms,? but presumably something we
intend to ensure in any development. So we include the axiom enq_defined.

Definedness axioms will also be unnecessary when we have already included
consistency axioms which use post expressions, like those in A_.HARBOURO in
section 2.6.6.

The last thing to do is to remember to hide the new observer (and its result
type). list_of was not required of us and there is no reason to make it visible. So
we can finally formulate A_QUEUEQ:

scheme A_QUEUEQ(P : ELEM BOUND) =
hide List_of Queue, list_of in
class
type Queue, List_of Queue = {|1: P.Elem* » len 1 < P.bound |}
value
/* generators */
empty : Queue,
enq : P.Elem x Queue = Queue,
deq : Queue = P.Elem x Queue,
/* hidden observer */
list_of : Queue — List_of_Queue,
/* derived */
is_full : Queue — Bool
is_full(q) = len list_of(q) = P.bound,
is_empty : Queue — Bool
is_empty(q) = list_of(q) = ()
axiom
[list_of_empty | list_of(empty) = (),
[list_of_enq ]
Ve : P.Elem, q : Queue -
list_of(enq(e, q)) = list_of(q) ~ (e) pre ~ is_full(q),
[deq ax]
Y q: Queue *
deq(q) as (e, q)
post e = hd list_of(q) A list_of(q") = t1 list_of(q)
pre ~ is_empty(q),
[enq_defined |
Ve : P.Elem, q : Queue - enq(e, q) post true pre ~ is_full(q)
end

2Strictly speaking we can deduce from list_of enq that enq terminates when its precondition
is true, but not that it is deterministic. deq_defined implies both termination and determinacy.
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We have added brief comments to distinguish the generators, observers and derived
functions. These comments are useful to quality assurance reviewers (and ourselves
in the future) to check that the construction of the module follows the method we
have described.

Using variant types

It is natural to ask if a variant type definition would have been useful. Certainly it
will give us a useful shorthand for some of the generators, and may provide us with
an easy means of defining some observers if they correspond to destructors. To use
a variant type we first decide on a sufficient set of generators for all values of the
type. For the queue this will naturally be empty and enq. Then we can include any
observers that correspond with destructors. But remember that such observers will
then only apply to values that can be generated by their corresponding constructors.
So for a stack, for example, we might be tempted to write

type Stack == empty | push( top : Elem, pop : Stack )
top and pop can probably not be applied to empty stacks, so their definition as

destructors seems appropriate (and saves us writing axioms for them explicitly).
But now we have implicitly defined the axiom

axiom
[pop-push |

Ve : Elem, s : Stack * pop(push(e,s)) = s
and we know that such an axiom that relates generators causes problems with
implementation. So we should not define destructors in variant types whose result
types involve the type of interest (directly as here or indirectly through other
types) unless we are sure that we want to implement the complete inverse of the
corresponding constructor.?

There is also a choice illustrated here between defining pop as a result-returning
generator (avoiding the need for top) just like our deq, and having separate pop
and top functions. If in particular the intention is to develop to an imperative
version where the discipline is intended to be that each element should only be
popped once, having separate pop and top functions makes it harder to check that
users of imperative stacks do so, and impossible to prove (unless we impose some
extra machinery) that multiple readers of concurrent stacks can do so.

Using a variant type for queue, and noting that none of our observers correspond
to possible destructors, we consider using the variant type definition

type Queue == empty | enq(P.Elem, Queue)

We need to consider the consequences of using such a variant type definition. To
do so we first present the definitions which are together equivalent to it:

3These comments on whether to use variant types do not apply if applicative specifications
are intended to express “abstract” properties, leaving imperative specifications to express “ob-
servational” properties, as in the Larch [13] approach.
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type Queue
value

empty : Queue,
enq : P.Elem x Queue — Queue
axiom
[empty_enq |
Ve : P.Elem, q : Queue » empty # enq(e,q),

[ Queue_induction |
YV p: Queue — Bool ¢
(p(empty) A (V e : E.Elem, q : Queue * p(q) = p(enq(e,q)))) =
(V q : Queue » p(q))
If we compare this with A_QUEUEQ we note several things:

totality of constructors: The constructor enq is here defined to be total, but
enq in A_QUEUEQ is not total because the queue is bounded. For this reason
we cannot directly use a variant type. We could if we wished do the following
instead:
type Queue == empty | enql(P.Elem, Queue)
value

enq : P.Elem x Queue = Queue
enq(e,q) = enql(e,q) pre ~is_full(q)

We would also hide enql. This is sometimes a useful technique, especially
when we want the rest of the variant type axioms without having to write
them in full.

disjointness: A variant type also implicitly includes axioms saying that values
constructed by different constructors are different. So you need to be sure
that this is true. In our case there are two constructors and hence just one
such axiom empty_enq. Such axioms are useful in that they make it possible
to evaluate case expressions over values of the type of interest. They are
generally harmless since they involve inequalities over this type rather than
equalities, and they often hold anyway because of the presence of observers
that can distinguish the two values (in this case is_empty). But if they might
cause problems variant types should not be used.

induction: A variant type without a wildcard constructor also implicitly includes
an induction axiom, in our case Queue_induction. This induction rule implies
that all queues can be finitely generated by the two constructors in the variant
type definition: empty and enq. This is very useful. However, the observer
list_of allows us to calculate a finite RSL list from any term built from the
generators (empty, enq and deq). Finite RSL lists form an inductive type,
and theorems about queues that do not involve equality between queue values
can be proved by induction on lists. For example, for our queue we cannot
prove

V q: Queue « 3 n: Nat » deq®(q) = empty



Third example: queue 101

but we can prove

YV q: Queue « 3 n: Nat * is_ empty(deq”(q))
deq™ is meant to mean “apply deq n times” (discarding the element values
returned and defaulting to the identity function when n is zero). In other
words, we cannot prove that for any Queue value there is an n such that
applying deq to it n times will make it precisely the same as the constant
empty, but we can prove that we can create an empty queue that way. (Recall
from the discussion about queues implemented as circular buffers that there
may be more than one such buffer representing an empty queue.) In practice
the slightly weaker, second property is sufficient. See also the discussion below
on observational equivalence.

If the induction rule is not wanted it can be avoided by including an extra
wildcard constructor:

type Queue == empty | enq(P.Elem, Queue) | _

If there is no wildcard constructor then there must be at least one constructor
that is either a constant or has a parameter type that does not involve the type
of interest (directly as with enq or indirectly through other types). Otherwise
it can be shown that the type of interest is empty. The intuition behind this is
that the induction rule implies that all values of the type of interest are finitely
generated, but if all generators take arguments dependent on this type then
the only possible values are infinitely generated.

We will not reformulate our example using variant types.

Observational equivalence

Before proceeding to develop the queue further we go back to the issue of avoiding
axioms relating generators. We saw previously that this allowed us some imple-
mentations that would otherwise be unavailable. Another way of looking at this
issue is that it gives us an “observational equivalence” over the type of interest.
If we pose the question of whether two queue values are equal, there are several
possibilities:

e They are identical expressions, so we know they are equal.
e One or more of our observers can distinguish them by giving different results

when applied to them, so we know they cannot be equal.

All the observers and result-returning generators give the same results but the
expressions are not the same. We cannot tell if the values are equal, but we
can regard them as observationally equivalent. Two expressions of the type of
interest of a module are observationally equivalent if all observers and result-
returning generators give the same results when applied to them (or cannot
be applied to either because their preconditions do not hold).

Consider, for example, the expressions (for arbitrary e)

empty

and
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let (¢',q') = deq(enq(e,empty)) in ¢’ end
All the queue observers will agree about these two values: list_of gives the empty
sequence for both (and hence the derived observers are bound to agree). The only
result-returning generator, deq, cannot be applied to either as its precondition is
false for both. So we conclude that they are observationally equivalent. However,
we cannot prove from the axioms of A_QUEUEQ that these two expressions have
equal values. This is in fact a great advantage from the point of view of imple-
mentation, as we noted earlier. But although it looks like the theory is weak (since
we can write down predicates that we cannot prove) it in fact causes no problems
for the clients of the A QUEUE(. Queue values that cannot be distinguished by
the functions available to them can be regarded by clients as equivalent without
any danger of inconsistency. If the theory is not strong enough this will become
apparent in the lack of some function and can be rectified by its inclusion, without
changing the principle. In particular we can add an abstract equality that models
observational equivalence. See section 3.5.3 on how to define an abstract equality.

2.8.4.2 A more concrete approach

Formulating abstract modules usually involves several iterations. It is particularly
important that abstract modules are well constructed because future development
depends on them. Iterating until one is perfectly happy with the result, or until
one is convinced one can’t find a better one, is time well spent. Several attempts
may be retained until one is settled on.

Also be aware of the option to decompose first. Where a natural specification
would involve more than one data type with their own constructors, try to de-
fine them in separate modules. There is a good rule of thumb that if the type
seems to involve more than two generators that are not constants or derived, one
should consider a decomposition. For example, the module A_.HARBOURO in sec-
tion 2.6.6 has three generator functions and is close to the point at which we would
need to decompose in order to create an initial specification of reasonable size and
complexity. If we did so, something like A . HARBOURI would become the initial
specification. We have to balance carefully the need to be abstract against the need
to be simple and comprehensible.

Using abstract types is not always necessary and can lead to unnecessary length
of specifications. Abstract types need only be used when the natural concrete
types — particularly sets, lists and maps — would be too inefficient for the final
implementation. Records (especially those not involving recursion) and products
are frequently useful even in initial specifications. (Technically, records in RSL are
considered abstract, but since they can typically be directly translated they can be
considered concrete for the purposes of this discussion.)

Consider, for example, a specification of part of a (personal) banking system. We
will need to record for each customer details like name, address, current balance,
PIN number (for validating card transactions), card expiry date, overdraft limit,
etc. We could model concretely something like
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type

Customer_id, Name, Address, Date, PIN_number,

Customer_info = Customer_id  Customer_details,

Customer_details ::

name : Name

address : Address

balance : Int

pin : PIN_number

expiry : Date

limit : Int
The first five types we expect to leave as abstract, and these would be immediate
candidates for the type module.

Suppose we tried to specify Customer_info abstractly. We would also have a num-
ber of functions to change details of a customer, like change name, change_address,
withdraw, deposit, issue_card, change_limit, etc., plus things like new_customer
and remove_customer. We have identified at least 6 observers (corresponding to
the components of Customer_details) plus probably is customer and at least 8
generators, giving at least 56 axioms (or conjuncts in post expressions). These
axioms will typically be stating things like changing an address doesn’t change the
overdraft limit. This is clearly unmanageable.

Decomposition
One thing to note is that the type Customer_details could be defined in one module
and used in that defining Customer_info. This immediately partitions the genera-
tors and observers into two sets. And since
ol * gl + 02 x g2 < (ol + 02) * (gl + g2)
for positive numbers of observers and generators, this decomposition will certainly
give a reduction in the overall number of axioms (or conjuncts). But there are still
likely to be at least 36 axioms or conjuncts in the module defining Customer_details.
We can easily deal with this situation as well. There is no reason not to use the
record type directly for this type, as a direct translation of it is almost certainly
adequate. This defines the observers directly. We can even define many of the
change_ functions directly as reconstructors, by
type
Customer_details ::
name : Name « change name
address : Address «< change_address
balance : Int « change_balance
pin : PIN number « change_pin
expiry : Date « change_expiry
limit : Int & change_limit
and we are probably finished — all the axioms we want relating the observers and
generators are implicitly given in this record type definition. We may need a few
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extra generators to change more than one component (if, for example, a new PIN
number is given as well as a new expiry date when a new card is issued to replace
a lost one) but these can easily be defined explicitly in terms of those we have.

The type we probably do want to make abstract is Customer_info in the other
module, because a simple implementation of the RSL map type is unlikely to be
sufficiently efficient. We could do this from scratch, starting with generators like
empty and add, but there is a solution that is generally easier, and that we have in
fact adopted for the queue example. We define Customer_info as a sort and define
a hidden observer map_of, say, with signature

map_of : Customer_info — (Customer_id & Customer_details)

As in the queue example, we will find that all the other observers become derived
and we are only left with the axioms relating map_of to the generators. Thus by
adding one observer we can typically reduce o * g axioms to o definitions plus g
axioms. What is more, we can use all the predefined operators for RSL maps in
our definitions and axioms, which tends to make them shorter and more readable.

This technique of starting with concrete type definitions and then finding a
suitable decomposition and abstracting where appropriate is one that is generally
very successful. It is often worth going further and writing down some of the
concrete value definitions based on the concrete type before doing the abstraction
step. This gives us confidence that we have all the data we need in the types, that
we can model the problem in this way, and often helps in formulating the abstract
version.

Invariants
Before we leave this example it is worth considering another issue. What if a cus-
tomer has more than one account? (The converse, joint accounts, is also possible
but we will not deal with it here.) To deal with multiple accounts we could add
a new type Account_number, say, and split Customer_details into, say, Personal_-
details (like name and address, that are constant across accounts) and Account_-
details (like balance, that are particular to accounts). When we come to consider
the concrete types there are several alternative ways of defining them. One possi-
bility is
type

Personal_info = Customer_id # Personal_details,

Account_info = Account_number + Account_details

where we would include the account numbers particular to a customer as part of
his or her personal details.
Another alternative is
type
Customer_info = Customer_id  Customer_details,
Customer_details ::
person : Personal_details
accounts : Account_number w Account_details
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These two alternatives are illustrated on the left and right of figure 2.14, where C_id
is Customer_id, P_d is Personal_details, A_n is Account_number, A_d is Account_-
details and C_d is Customer_details.

C.d
C.id A n
C.d
Pd An
P.d Ad

Ad

Figure 2.14: Entity relationship diagrams for bank accounts

Both these can hold the same information, but it turns out that the second of
these is preferable even though at first sight it may look less natural (and may
indeed be less like the final implementation where the two sets of data about
customers are held separately). The entity relationship diagrams suggest that the
second (on the right of figure 2.14) is better structured. There are two other reasons
why the second is preferable:

e The first will need some axioms which are really invariants about the data:
we will need to ensure that the set of account numbers in the domain of the
second map is the union of all the account numbers found in the customer
details, and that the sets of account numbers in different customer details are
disjoint. No such axioms will be necessary in the second version. (It does
not matter if account numbers are reused for different customers because the
account details can only be found by knowing both the customer identifier
and the account number.) It is this interdependence between the two maps
in the first version that makes it difficult to use two modules corresponding
to the two definitions, which is the first technique we considered to reduce
complexity.

e When we create the abstract version, the first will need two observer functions,
while the second needs only one. (It is possible to define a single observer in
the first case but it would effectively be creating the second example in an
obscure way.) This immediately tends to halve the number of axioms we need
for the second compared to the first. We may need to define a few derived
functions to unpack the more complicated data structure, but in general there
is a definite gain.

There is a general rule that, where there are two maps with some invariant property
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relating them, a nested map structure is preferable. And one can draw the con-
clusion that a structure of type definitions that avoids (or reduces the complexity
of) invariants is better than one that does not. We can see the solution with fewer
invariants is a better fit to the problem. A similar example and discussion are in
Jones’ book on systematic software development [14].

2.8.4.3 Making functions total

We promised earlier to show how to make partial functions total. In our case enq
and deq are the only partial functions provided by A_QUEUEQ. We need first
to define special values to indicate failure. For an observer or a result-returning
generator (like deq) a convenient technique is to define a variant type, like

type Deq_result == deq_fail | deq_success(deq-res : P.Elem)

For a non-result-returning generator (like enq) we make it result-returning, the
result being of a variant type like

type Enq_result == enq_fail | enq_success

We can now use these types to define an extension of A_.QUEUEQ:

scheme A_SAFE_QUEUE(Q(P : ELEM_BOUND) =

hide enq, deq in
extend A_ QUEUEO(P) with

class
type
Engq result == engq_fail | enq_success,
Deq result == deq_fail | deq_success(deq_res : P.Elem)
value

safe_enq : P.Elem x Queue — Enq_result x Queue
safe_enq(e,q) =
if is_full(q) then (enq_ fail,q) else (enq_success,enq(e,q)) end,
safe_deq : Queue — Deq_result x Queue
safe_deq(q) =
if is_empty(q) then (deq_fail,q)
else let (e,q') = deq(q) in (deq_success(e),q’) end end
end

For generators like enq and deq, as well as defining new results we need to decide
what will be the new Queue value when they fail to have their normal effect. The
most common thing to choose is (as here) to make the value unchanged.

It is also possible, of course, to define A_SAFE_QUEUEQ from scratch rather
than as an extension to A_QUEUEQ, starting with the appropriate total types for
enq and deq and otherwise following the method used for A_.QUEUEQ.
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2.8.4.4 Method summary: abstract applicative formulation

10.
11.

12.

13.

. Decide on the type of interest and whether it needs to be formulated as an

abstract type. If it can be made concrete (including the use of a record),
define it that way.

. Consider whether the module should be decomposed into simpler ones. This

sometimes occurs quite naturally because there seems to be more than one
type of interest (often a main type and component types that could be defined
separately). Decomposition can also be needed when there are more than
two generators that are not constants or derived. If the module should be
decomposed, do so, using the method for each module.

. Consider whether the other types involved should come from a parameter

(for a generic module) or from a global type module, and either define the
parameter module or make sure the type module contains what is needed.

. Formulate the signatures of the constants and functions needed. If the func-

tions are not immediately total, decide between making them partial and
making them total with result types that are variants including status values.
For partial functions formulate their preconditions, which may suggest more
observers. If the type of interest is concrete, add their definitions and go to
step 11.

. Classify the constants and functions into generators and observers according

to whether or not the type of interest occurs (directly or indirectly) in their
types (for constants) or result types (for functions).

. Consider whether any generators or observers can be defined in terms of

others, and if so give them explicit definitions and re-classify them as derived.

. Consider whether a variant type or short record definition should be used for

the type of interest, and if so formulate it. Remember to include any observers
as destructors if appropriate. Remember to check that generators made into
constructors are total; add new constructors and define the partial ones in
terms of them otherwise.

. For all the non-derived generators (including the constructors if a variant type

definition is being used) and for observers that are not derived or defined as
destructors, try to formulate the observational axioms. Remember to give
axioms names.

. If these axioms cannot be formulated, either invent one or more extra observers

and return to step 6, or add generator-generator axioms, but be careful about
the latter.

For the non-derived partial functions add definedness axioms.

Hide any functions and types that are not required to be available outside the
module.

Include comments aimed at helping future readers to read and comprehend
the module quickly.

Use tools if available to check the module is well-formed (no syntax, scope or
type errors).
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14. Use tools if available to generate and check confidence conditions for the mod-
ule (see section 4.1.2).
15. If not entirely satisfied, keep iterating.

2.8.4.5 Concrete applicative queue

The main step in formulating a concrete applicative module from an abstract one
is to decide on a suitable type to use for the abstract type Queue. The simplest
choice is to take the product of the result types of the non-derived observers (or just
the result type if there is only one). This will be an adequate basis for a concrete
implementation since we know that all the non-derived observers can be defined
in terms of it (they will just extract the corresponding component), the other
observers are by construction derived, and all the properties of the generators are
given in terms of the observers.
This assumes the non-derived observers have types of the form

T—U
where T is the type of interest. If such an observer has a type of the form

TxU—=V

then the contribution to the concrete type will be “U — V7, as if the observer’s
type had been written instead in a “curried” style

T—-U—=V
In A_.QUEUEQ we have just one non-derived observer, list_of, with type
Queue — List_of_Queue

and so the suggestion for the concrete type is its result type, List_of Queue, i.e.
bounded lists of elements. But before making this choice we need to consider the
route to the final code in our programming language. There are several possibilities:

e We have an automatic translator that translates RSL lists. This translation
is likely to use linked lists. Is this appropriate for our purposes? This is not
immediately obvious for a queue, because we will be putting things on the
back of the list when we do an enqueue. If the queue is long this will be quite
inefficient. An implementation like one in which pointers to both ends of the
queue are maintained, or (since we have a bounded list) a circular buffer,
will be much more efficient. If we want such a special translation, it may
be appropriate to go ahead with the development into RSL lists, translate
using the translator and then modify the code to get an efficient translation.
Effectively we use the translator to provide us with a template.

e If we decide we need a special implementation, such as a circular buffer, we
may have one already available in a library of standard data types, in which
case we should develop by defining a concrete queue in terms of it. There
should already be a translation so we would then be finished.

e Otherwise we might decide that a circular buffer would be a useful addition
to the library and we develop one first, and then use it as in the previous case.
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In this tutorial we will present two applicative developments of the queue, one in
terms of the RSL list constructor and one in terms of a circular buffer defined in
terms of an array. The array module A_ARRAY is among the standard modules
defined in appendix A and we assume there is already an implementation of it in
our programming language.

2.8.4.6 Development to single applicative

The simplest style of development is to choose to develop the type of interest into
a concrete RSL type that does not involve a type of interest from another system
module, so that our module remains “single”. For the concrete queue we can define

type Queue = {| 1 : P.Elem* ¢ len 1 < P.bound |}

Then we try to give definitions to all the constants and functions in terms of the
operators available for lists in RSL. (Effectively we are making the observer list_of
an identity.) We should get something like A QUEUEI:

scheme A_QUEUE1(P : ELEM_BOUND) =
class
type Queue = {|1: P.Elem* « len | < P.bound |}
value
/* generators */
empty : Queue = (),
enq : P.Elem x Queue = Queue
eng(e, q) = q ~ (e) pre ~ is_full(q),
deq : Queue = P.Elem x Queue
deq(q) = (hd q, tl q) pre ~ is_empty(q),
/* observers x/
is_full : Queue — Bool
is_full(q) = len q = P.bound,
is_empty : Queue — Bool
is_empty(q) = q = ()
end
Note we have made all the constant and function definitions explicit. This is often
enough for the specification to be translatable.

We would like to state and justify a development relation between the abstract
and concrete queues in a development relation. We need, as we did in section
2.7.5.1, to use an extension since A_QUEUEI does not define the entities list_of
and List_of Queue that were hidden in A_QUEUEQ. This gives the development
relation A_QUEUEO_1:

development_relation [A_ QUEUE(_1 |
class object P : ELEM _BOUND end
extend A_ QUEUE1(P) with
class
type List_of Queue = {|1: P.Elem* « len | < P.bound |}
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value
list_of : Queue — List_of_Queue
list_of(q) = q
end
< A_ QUEUEO(P)

The relation stated in this development relation is more complicated than those we
have seen previously. We are formulating a relation between parameterized schemes
A_QUEUEO and A_QUEUE]1. To do so we need to create class expressions by ap-
plying the schemes to a suitable object. The schemes both have a formal parameter

whose body is ELEM_BOUND, so we define an object with body ELEM_BOUND
in the context of the implementation relation.

Confidence conditions

As well as checking that we have implementation we should be aware of possi-
ble inconsistencies in concrete modules. If there is an inconsistency it is possible
to prove true = false, which means it is possible to prove anything, including
the development relation we just asserted. We can look for some common forms
of inconsistency by generating and justifying confidence conditions for a module.
Confidence conditions are described in detail in section 4.1.2. Here we note that
the most common conditions for applicative specifications are:

e For applications of functions or operators, any preconditions are true and the
arguments are in the appropriate subtypes.

e For constant and function declarations, defining expressions are in the appro-
priate subtypes.

Confidence conditions can be generated by a tool. If we generate them for A_-
QUEUEI, in the first category we find that the applications of hd and tl in the
body of deq both generate the condition that g is not empty, which is provable
from the precondition of deq.

In the second category we find the conditions that the defining expression for
empty and the bodies of enq and deq are in the subtype Queue, i.e. lists of length
at most P.bound. These can also be justified. For empty we need the condition
that P.bound is not negative, and for enq we need, as well as the subtype condition
on the argument g, the precondition that the length of q is not already equal to
P.bound.

Experience suggests that it is generally very useful to generate and inspect con-
fidence conditions, as they often point to things that have been overlooked. It is
usually sufficient to justify them only informally (as we did in the previous para-
graph) rather than go through what can be quite tedious proofs. As their name
suggests, confidence conditions are intended to help give more confidence in a speci-
fication, and in particular that particular kinds of common slips have been avoided.
If the specification is inconsistent because a condition is not met, it is possible to
prove anything about it — including its confidence conditions! So any proof of
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confidence conditions itself needs inspection to make sure it is not covering up an
inconsistency.

2.8.4.7 Development to composite applicative

As in the previous version using the RSL list type, the aim is to make the abstract
type Queue concrete. But instead of using the built-in type we will use a type
provided (in part) by another module. The other module will become a supplier
and the composite module its client. We start by considering the standard module
A_ARRAY defined in appendix A.6.

This is constructed in the way described earlier for applicative modules. There
is a generator change and an observer apply.

We can use the version of arrays without initialisation since the use of an array
to model the queue will never apply an array to an index without previously setting
the array for that index. ARRAY_PARM defines the type Elem as abstract, but
makes the Index type the integers in a non-empty finite range. This is a restriction
for the users of arrays but will make it possible for the developers of the array
module to use finite arrays in an implementation. We allow min to be any integer
rather than, say, zero, to allow flexibility.

To use the array as a circular buffer for the queue we need to define a concrete
type for Queue. Since this concrete type will involve an array, we need to to in-
stantiate A_LARRAY . This in turn means creating an object to meet the parameter
requirement ARRAY_PARM.

A suitable concrete type for a queue is a product of an array, a value representing
the current length of the queue, and an index representing the current position of
the front of the queue, collectively forming a “circular buffer”.

D A B C

0 1 2 3 4 5 6 7
Figure 2.15: Circular buffer

Figure 2.15 illustrates a circular buffer of bound 8 holding the values A, B, C, D
with A at the front. Hence the front position is 5 and the length is 4. To enqueue
a value we calculate the appropriate position as the sum of the front and length
modulo bound, i.e. (5 + 4) \ 8, which is 1. So an enqueue will be done by changing
the array at position 1 and increasing the length to 5. To dequeue a value we return
the value (A) at the front position, increment the front position modulo bound and
decrement the length.

We then ask whether all such triples must represent queue values, or whether
we should use subtypes. We note immediately that the length of a queue must lie
between zero and bound inclusive. We also realize that we are using an uninitialised
array for which apply is partial, while for a non-empty queue we must be able to
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obtain values within the queue. Hence we will need two subtypes, one for the
length component and one for the triple:
type

Queue = {| (a, n, f) : A.Array x Length x A.Index « is_queue((a, n, f)) |},

Length = {| n: Nat ¢« P.bound > n |}
value

/* invariant %/

is_queue : A.Array x Length x A.Index — Bool

is_queue((a, n, f)) =

(Vi: Nateie{l.n}=
let k =(i+f— 1)\ P.bound in A.apply(k, a) post true end)

where A is an object which is an instance of A_ARRAY. We define this by

object
X:
class
type Elem = P.Elem
value min : Nat = 0, max : Nat = P.bound — 1
end,
A : A ARRAY(X)

Note that where possible (as in the type Length) we use subtypes of components.
The function is_queue could be unfolded and its definition removed, but it is gen-
erally clearer to define it separately and we shall see it plays a special role when we
come to do the development to the imperative queue. This is why we use the com-
ment that it represents an invariant. Note also that it is defined over the product
A.Array x Length x A.Index, not over the type Queue it is used to define. (If any
observers were used in its definition, these must also be defined over the product.)
We have chosen zero for min on the assumption that we know our intended
programming language and this is how arrays are indexed in that language (and
because it simplifies the definitions of our functions). We could if we wished defer
this decision (and even allow the array to be larger than we need) by using an
axiom in the object X:
objec
X:
class
type Elem = P.Elem
value min, max : Int
axiom [array_large_enough | max — min > P.bound — 1
end,
A : A ARRAY(X)

Note that in each case we can prove the axiom from ARRAY_PARM, that max >
min, from the condition in ELEM_BOUND that P.bound > 0. So the object X is
in each case a suitable actual parameter for A ARRAY.

Finally we hide anything either not defined or hidden in the abstract module,
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giving us A_QUEUE2:

scheme A_QUEUE2(P : ELEM_BOUND) =
hide X, A, Length, is_queue in

class
object
X:
class
type Elem = P.Elem
value min : Nat = 0, max : Nat = P.bound — 1
end,
A : A ARRAY(X)
type

Queue = {| (a, n, f) : A.Array x Length x A.Index ¢ is_queue((a, n, f)) |},
Length = {| n : Nat ¢« P.bound > n |}
value
/* generators */
empty : Queue,
enq : P.Elem x Queue = Queue
enq(e, (a, n, f)) =
let back = (f + n) \ P.bound in
(A.change(back, e, a), n + 1, f)
end
pre ~ is_full((a, n, f)),
deq : Queue = P.Elem x Queue
deq((a, n, f)) =
let f = (f + 1) \ P.bound in (A.apply(f, a), (a,n — 1, f')) end
pre ~ is_empty((a, n, f)),
/* observers x/
is_full : Queue — Bool
is_full((a, n, f)) = n = P.bound,
is_empty : Queue — Bool
is_empty((a, n, 1)) = n = 0,
/* invariant */
is_queue : A.Array x Length x A.Index — Bool
is_queue((a, n, f)) =
(Vi: Nateie{1l.n}=
let k = (i+ f— 1) \ P.bound in A.apply(k, a) post true end)
axiom [empty_ax | is_.empty(empty)
end

Although the module is otherwise concrete, empty is still only characterized by an
axiom, empty_ax. This is because any circular buffer with zero length can represent
an empty queue; it does not matter what the contents of the array or the front
position are.
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We have used the same idea as we did in constructing A_QUEUEI; we have
omitted the hidden list_of and List_of Queue from A_QUEUE2. The development
relation is A_QUEUEQ_2:

development_relation [A_ QUEUE(_2 |
class object P : ELEM_BOUND end
extend A_QUEUE2(P) with

class
type List_of Queue = {|1: P.Elem* « len 1 < P.bound |}
value
list_of : Queue — List_of_Queue
list_of(q) =
if is_empty(q) then ()
else let (e, ') = deq(q) in (e) ~ list_of(q') end
end
end

< A_QUEUEO(P)

As with the single concrete module A_QUEUE]1 we should also generate confidence
conditions for A_.QUEUEZ2. We obtain:

e a subtype condition from the definition of X.max that P.bound is at least 1

e subtype conditions that the defining expressions of enq and deq are in the
subtype Queue

e conditions from the three places where the remainder by P.bound is calculated
that P.bound is not zero

e conditions from the applications of A.change in enq and A.apply in is_queue
that their first arguments, back and k respectively, are in the subtype A.Index

Most of these are immediate from the restriction that P.bound is strictly positive
and the definitions of X.max and X.min. The conditions that enq and deq give
queue values involves checking that the new lengths and front indices are in the
right ranges and that is_queue is true, i.e. that the array can safely be applied
to any index from the front of the queue to the back. For deq this is immediate
since the queue is shortened. For enq the queue is lengthened by one and the last
element set by change. We know that apply can be used for any changed index
from the apply_change axiom in A_ ARRAY. Checking these results carefully will
give us confidence that we have not made any “off by one” errors that are common
in using arrays.

2.8.5 Imperative queue

The main development method we adopt in this tutorial is as follows. For each
module:

e Formulate an abstract applicative module first, then
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e Formulate a concrete applicative module and show it implements the abstract
applicative one, then

e Formulate a concrete imperative module from the concrete applicative one.

e If we want a concurrent module, formulate it from the imperative one.

The formulation of the concrete imperative module follows from the concrete ap-
plicative one in a very precise manner, and its properties are related to those of the
concrete applicative one in a similarly precise manner. The same applies to devel-
oping the concrete concurrent module from the concrete imperative. This makes
the formulation of abstract imperative or concurrent modules in general unneces-
sary. This style is proposed since the justifications to be done about correctness
then come in the following places:

1. development from abstract applicative to concrete applicative
2. development from concrete imperative to concrete imperative
3. development from concrete concurrent to concrete concurrent

We do not in general do justifications about the step from applicative to imperative
or imperative to concurrent because these steps are done according to precise rules
(and could largely be automated).

The first kind of justification arises mainly from development of data structures.
The justifications tend to cover the whole module. The second and third kinds
come mainly from algorithm development, and the justifications tend to be local
to particular functions. This approach also avoids the more difficult kinds of justi-
fications relating abstract to concrete imperative and concurrent specifications.

However, this method does depend on doing standard steps from applicative
to imperative and imperative to concurrent in a particular way. This allows us
to infer rather than state the abstract properties of the imperative or concurrent
versions. For many applications this should be sufficient, but for critical systems,
or critical properties like safety properties, it may be necessary to state and prove
the abstract imperative or concurrent properties. So in section 2.8.5.1 we describe
how to formulate an abstract imperative queue. At a first reading readers may
want to skip this section and go straight to the concrete version in section 2.8.5.2.

2.8.5.1 Abstract imperative queue

The method of this section can only be used if the generators are all either constants
or have only one mention of the type of interest in their parameter types. It cannot
be used, for example, for a Tree type with definition

type Tree == empty | node(Tree, Elem, Tree)

because node has two mentions of Tree in its parameter type. In such a case the
method of section 2.8.5.3 may be used. An abstract applicative module may be
used in that section instead of a concrete one, and, since types like Tree above

can usually be translated directly using pointers, there may be no need to develop
the abstract applicative module further. Alternatively, a development using object
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arrays is described in section 3.8.4.
We suggest formulating the applicative version of a module first. The abstract
imperative version can then be constructed by the following method:

Use the same module parameter (if any) as in the applicative module.
Define imperative function signatures.

Copy any auxiliary type or value definitions from the applicative module.
(These are definitions not involving the type of interest.)

Define imperative axioms.

Define the bodies of derived imperative functions.

Consider defining an initial axiom.

Hide (the counterpart of) anything that was hidden in the applicative module.

We now consider in more detail the definitions of the imperative function signatures,
axioms, function bodies and initial axioms.

Defining imperative function signatures
For each constant whose type is the type of interest we define a function with the
same name of type Unit — write any Unit.

For each generator and each observer in the applicative module we define a func-
tion of the same name whose type is constructed from the corresponding applicative
function’s type by:

1.

w

removing occurrences of the type of interest from the parameter and result
types

. inserting Unit in the parameter or result type if the type of interest was the

only type in the parameter or result type respectively

. retaining the total or partial function arrow
. inserting write any in the case of a generator and read any in the case of

an observer.

Defining imperative axioms
For each observer—constant and observer—generator axiom in the applicative module
we define an axiom where:

1.
2.

the axiom name is the same as the applicative version
quantification is like the applicative version but without the quantification
over the type of interest

. the precondition (if any) is formulated using the function(s) that correspond

to the functions used in the applicative precondition.

. the body of the axiom takes one of the following forms:

e If the applicative axiom is an equivalence
obs(x,gen(y,q)) = e
where q is of the type of interest, the imperative axiom has the form
gen(y) ; obs(x) = gen(y) ; €
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where €' is the imperative counterpart of e.

If e mentions any observers (and remember our method precludes e from
mentioning generators), let expressions are needed to ensure that these
observers are evaluated on the right-hand side before the generator. For
example, an applicative axiom often takes the form

obs(x,gen(y,q)) = g(obs(f(x,y),q),2)
for some functions f, g and expression z. Here the imperative axiom
would take the form
gen(y) ; obs(x) = let r = obs(f(x,y)) in gen(y) ; g(r,z) end
e If the applicative axiom is a postcondition

gen(x,q) as (r,q’) post ... obs(y,q) ... obs(z,q’) ... pre ... obs(w,q) ...
then the imperative one also involves a postcondition, and has the form

let a = obs(y) in gen(x) as r post ... a ... obs(z) ... pre obs(w) ... end

Note that observers applied to q must be dealt with by introducing let
expressions; observers applied to ¢’ just become imperative observers.

There may also be other axioms in the applicative version. These may generally
be dealt with using the techniques described in section 2.9.

Defining imperative derived functions

We also need to consider any functions that were derived in the applicative version,
i.e. were given explicit definitions. In this case the bodies are rewritten using the
corresponding imperative functions. Nested application must be replaced by let
expressions or sequencing to ensure the evaluation order is correct. For example,
if we start with the applicative expression

obsl(x,0bs2(y,q),gen(z,q))
the evaluation order (being innermost first, and left to right if there are several
parameters) is obs2, gen, obsl. Hence the imperative version of this expression is

let a = obs2(y) in gen(z) ; obsl(x,a) end

Defining an initial axiom

We also need to consider adding an initial aziom, to state what queue we want to
have initially. We can leave this underspecified by not including such an axiom,
but typically it is required. There are two ways to do this.

1. If there is a suitable generator like empty we can write
axiom
[initial | initialise = initialise ; empty() (1)
This says that empty does nothing new to the initial state, so one possible

eventual implementation would be to initialise the queue by calling empty. It
is possible to write, instead of the body of (1),

initialise = empty/() (2)
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but for some developments (2) is too strong. If we have several variables
and/or imperative supplier modules, the form (2) would force us to implement
empty as initialising all of them, and this may be unnecessary. For example,
in section 2.8.5.4 we develop the queue using a circular buffer and all empty
needs to do is set the length of the buffer to zero.

2. If there is a suitable observer like is_empty we can write

axiom
[initial | initialise post is_empty()
This is effectively the same as (1) and is perhaps clearer.

If we develop from an abstract imperative module to a concrete single imperative

module (like . QUEUETI in section 2.8.5.3), we will normally include suitable initial

values for the variables we introduce and the initial axiom in the abstract module

will be satisfied. If we develop to a composite imperative module (like I QUEUE2

in section 2.8.5.4), the initial axiom will normally be satisfied by the initial values

of variables and the initial properties of the imperative supplier modules.
Following this method gives the following abstract imperative queue:

scheme I QUEUEOQ(P : ELEM_BOUND) =
hide List_of_Queue, list_of in
class
type List_of Queue = {| 1 : P.Elem* « len | < P.bound |}
value
/* generators */
empty : Unit — write any Unit,
enq : P.Elem = write any Unit,
deq : Unit = write any P.Elem,
/* hidden observer */
list_of : Unit — read any List_of_Queue,
/* derived */
is_full : Unit — read any Bool
is_full() = len list_of() = P.bound,
is_empty : Unit — read any Bool
is_empty() = list_of() = ()
axiom
[list_of empty | empty() ; list_of() = empty() ; (),
[list_of enq ]
Ve: P.Elem
enq(e) ; list_of() = let 1 = list_of() in enq(e) ;1 ~ (e) end
pre ~ is_full(),
[deq_ax]
let 1 = list_of() in
deq() as e post e = hd 1 A list_of() = tl | pre ~ is_empty()
end,
[enq_defined | enq() post true pre ~ is full(),
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[initial | initialise post is_empty/()
end
It should be clear that the imperative module will behave just like the applicative
one, though it is perhaps not so clear just how to formalize “just like”. We will
come back to this issue in section 2.9.

2.8.5.2 Concrete imperative queue

As stated earlier in section 2.8.5 the main method being proposed here means that
we have formulated the abstract applicative module (A_QUEUEQ in our case) and
developed this to either a single concrete applicative module (like A QUEUE1) or
a composite concrete applicative module (like A QUEUE2). We show in the next
two sections how to continue by developing a single concrete imperative module in
the first case, and a composite concrete imperative module in the second.

2.8.5.3 Development to single imperative

The single concrete imperative module I QUEUE] is developed from the applica-
tive version A_QUEUEI by the following overall method:

e Use the same module parameter (if any) as in the applicative module.
e Define the state variable(s).
e Define an object as an instance of the applicative module:

object A : A QUEUE1(P)

e Define imperative functions.

e It is normally the case that the applicative module has no axioms, because
we developed it applicatively first. But if it does, deal with them by creating
corresponding imperative axioms, using the same technique as we used to
develop the axioms in I QUEUEQ in section 2.8.5.1.

e Hide the variable(s) plus (the counterpart of) anything that was hidden in the
applicative module plus A (unless it has been removed during the function
definition stage).

We now consider in more detail the definitions of the state variables and of the
imperative functions.

Defining state variables

We define a variable whose type is the concrete type of interest (Queue in this
case):

variable queue : {|1: P.Elem* « len 1 < P.bound |} := ()

It is quite likely that the concrete type of interest is a product (since this is how
we suggested developing the applicative version when there is more than one non-
derived observer). If so it is natural to define a variable for each component of the
product.



120  Tutorial

We have also given the variable an initial value, making the queue initially empty.
It is good practice always to give initial values for variables, even when a suitable
value does not immediately suggest itself.

Defining imperative functions

For each constant whose type is the type of interest we define a function with the
same name of type Unit — write any Unit that assigns to the variable(s) (queue
in our case) the corresponding applicative value(s):

value

empty : Unit — write any Unit

empty() = queue := A.empty
For each generator and each observer in the applicative module define a function
of the same name whose type is constructed from the corresponding applicative
function’s type by:

1. removing occurrences of the type of interest from the parameter and result
types

2. inserting Unit in the parameter or result type if the type of interest was the

only type in the parameter or result type respectively

. retaining the total or partial function arrow

4. inserting write any in the case of a generator and read any in the case of
an observer.

5. adding bodies involving the variable(s) v, say, as follows:

w

e An observer will have a body of the form
obs(x) = A.obs(x,v)

e A non-result-returning generator will have a body of the form
gen(x) = v := A.gen(x,v)

e A result-returning generator will have a body of the form
gen(x) = let (r,v') = A.gen(x,v) inv := v ; r end

6. adding preconditions which are obtained from the applicative preconditions
by using the corresponding imperative functions.

This gives a first (and adequate) set of function definitions. But we can often
improve on these by “unfolding” the mentions of the applicative functions. For
instance, the imperative definition of deq obtained by the above procedure is
deq() = let (r,q') = A.deq(queue) in queue := ¢ ; r end
“Unfolding” the applicative function gives
deq() = let (r,q') = (hd queue, tl queue) in queue := q' ; r end
and we have removed the call of the applicative function.
We can easily simplify this a little further, but it needs care and since we do not

expect this step to be formally verified, but rather informally by quality control as
“correct by construction” we would not advise taking it any further. If we wish
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we can even leave the original form mentioning A.deq and do the unfolding (and
perhaps simplification) as a further development step. Since this further step will
relate two concrete imperative specifications using the same types and variables, it
is easily justified.

It should be apparent that by this unfolding we can often remove all occurrences
of the applicative observers and generators. If this is so, it is tempting to remove
the object A. However, doing so is only sensible if we are sure that the applicative
module will never be modified and will never be used elsewhere, i.e. it was developed
purely as a step in the construction of the imperative one. If these conditions are
not met, removing it is likely to lead to duplicated code. For the purpose of our
example we will assume these conditions are met and remove the applicative object.

Following this method gives the concrete imperative queue I QUEUET:

scheme I_.QUEUEL(P : ELEM_BOUND) = hide queue in I QUEUE1_BODY(P)

scheme I_.QUEUE1_ BODY (P : ELEM_BOUND) =
class
variable queue : {| 1: P.Elem* « len1 < P.bound |} := ()
value
/* generators */
empty : Unit — write any Unit
empty() = queue := (),
enq : P.Elem = write any Unit
enq(e) = queue := queue ~ (e) pre ~ is_full(),
deq : Unit = write any P.Elem
deq() =
let (r, ') = (hd queue, tl queue) in queue := q' ; r end
pre ~ is_empty(),
/* observers x/
is_full : Unit — read any Bool
is_full() = len queue = P.bound,
is_.empty : Unit — read any Bool
is_empty() = queue = ()

end
We have chosen to separate out the “body” of . QUEUEI as a separate module.
The reason for this is that we want later on to express an implementation relation
between I QUEUE1 and I QUEUEQ from the previous section. Using two modules
where only one involves hiding makes this possible.

The method of formulation of . QUEUE]1 from A_QUEUEI is quite precise and
could be largely automated. Even if not automated it is so regular that it is very
easy to check afterwards as part of quality assurance. It is possible, but somewhat
complicated, to formalize the relationship between A_QUEUEI and I_.QUEUEI1
(and we do this in section 2.9.3.1) but the idea behind our method is to make this
step informal. It should be clear that the imperative module “behaves like” the
applicative one and the idea is, generally, to leave this notion informal and check
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this step by quality assurance.

Before we finish this section we should comment on the relation between
I.QUEUEI] and the abstract imperative module I QUEUEQ developed in section
2.8.5.1. The relation is defined in the development relation I QUEUE(_1:

development_relation [I QUEUE(Q_1 |
class object P : ELEM _BOUND end

extend I QUEUE1 BODY(P) with
class
type List_of Queue = {|1: P.Elem* « len | < P.bound |}
value
list_of : Unit — read any List_of_Queue
list_of() = queue

end
< I.QUEUEO(P)

(It should now be apparent why we needed to define I QUEUEI_BODY'; we need
to be able to refer to the variable queue in the definition of list_of.) Justification
of this relation is straightforward; part of it is done in section 4.4.6.

With the applicative version we also generated and checked confidence condi-
tions. Do we need to do this for the imperative one? The answer is generally no.
The conditions we obtain will mostly be the imperative counterparts of the applica-
tive ones and will therefore hold by construction if we have followed the method
carefully. In fact, if we generate the conditions for  QUEUE1 we get conditions
corresponding to those for A QUEUEI plus a subtype one for the initialisation of
the variable queue.

On the other hand, if we have made some other improvements as part of the
applicative to imperative step, generating and inspecting the confidence conditions
is a useful check that we have not made some kinds of mistake.

We also consider the relation of imperative confidence conditions to invariants
in section 2.8.5.4.

2.8.5.4 Development to composite imperative

In the previous section 2.8.5.3 we developed a single concrete imperative module
from a single concrete applicative module. In this section we will develop a compos-
ite concrete imperative module I QUEUEZ2 from the composite concrete applicative
A_QUEUE2. . QUEUE?2 will be a client of an imperative array module _ ARRAY,
defined in section A.6. . ARRAY is a standard module just like the applicative
version A_ARRAY used by A.QUEUE2. It has been constructed from A_ARRAY
in just the same way that . QUEUEQ was constructed from A_QUEUEQ. But the
details of construction are not of much interest here: we expect to have a trans-
lation of imperative arrays already available. Hence we can just use the abstract
module and develop it no further ourselves.
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We can now develop the concrete imperative . QUEUE2 from the concrete ap-
plicative A_QUEUE2 using a method very similar to that by which we developed
the concrete imperative I QUEUE1 from the concrete applicative A_QUEUE].
The main difference is that the type of interest in A_QUEUE?2 is defined as (a
subtype of) a product:

type
Queue = {| (a, n, f) : A.Array x Length x A.Index « is_queue((a, n, f)) |}

This suggests we might use three variables, one for each component. But in fact
what we do is instantiate  ARRAY as an object which will give us an imperative
component object with a variable (or variables — we do not need to know how
I ARRAY is developed) for the first component. So we only need variables length
and front, say, for the second and third components. The overall method is as
follows:

e Instantiate imperative supplier modules.

e Add variables.

e Define imperative functions.

e Add axioms.

e Hide objects, variables and the counterparts to anything hidden in the ap-
plicative module.

We now consider in more detail the first four of these.

Instantiating imperative supplier modules

We replace the instantiations of the applicative module(s) (like AL ARRAY') with
instantiations of the imperative module (like I ARRAY) This may also involve
copying other objects used to make actual parameters (like X). This gives

objec
X:..,
I: T ARRAY(X)

Adding variables

We add variables for each component of the type of interest which is not the type
of interest of a component module — if there are any such components. In our
case there are two, and we have

variable

length : {| n: Nat ¢« P.bound > n |} := 0,

front : I.Index := X.min
Note that the type of front comes now from the object I.

Note also that we include initial values of the variables. We expect the queue to
be initially empty, for which it is sufficient, as we shall see, to initialise only the
length variable. front is initialised (arbitrarily) to the lowest value in its type.
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Defining imperative functions
We define the functions with the same signatures as we did in I QUEUEI.

We want to supply concrete definitions for each of the functions that corre-
spond to concrete definitions in A_-QUEUE2 (which are all of them except empty).
First, preconditions are written just like their applicative counterparts, using the
corresponding imperative functions by dropping the type of interest parameters.
In addition, if the applicative function has the type of interest Queue as a para-
meter (rather than the product type A.Array x Length X A.Index), it is normal
to conjoin a call of the invariant function to the precondition. This is because the
applicative version implicitly includes the subtype constraint on the type Queue.
In the imperative version we are instead using the variables of this and component
modules. These variables do not (separately) ensure that the subtype constraint
on Queue is met. We can omit the condition if we are sure it is irrelevant. In our
case is_queue provides a convergence condition for apply from the array module.
This is obviously relevant to deq. If apply is not mentioned (directly or indirectly)
in the body of a function, and we are convinced that no later development of such
a function will cause it to be mentioned, there is no need to include is_queue in the
function’s precondition. We have only added a call of is_queue to the precondition
of degq.

The bodies of the functions are constructed directly from those in A_ QUEUEZ2.
That is:

e An applicative observer will have a definition

obs(x,(p,q,r,---)) = expr
and the imperative one will have the form

obs(x) = expr’

We need to formulate expr’.

The names p,q,r,... are bindings for the components of the applicative type
of interest. These correspond either to the type of interest of a component
imperative module or to one of the variables defined in this module.

Suppose p corresponds to the type of interest of a component module. Then
p will only occur in expr as an argument of an observer of a component
applicative module and we just replace it with its imperative counterpart,
dropping the type of interest parameter. So an expression in expr of the form

A.obs(y,p)
becomes in expr’ an expression of the form

Lobs(y)
Suppose q corresponds to a variable qv defined in this module. Then occur-
rences of q in expr simply become occurrences of qv in expr. This gives the
following definitions for the observers:
value

is_full : Unit — read any Bool
is_full() = length = P.bound,
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is_empty : Unit — read any Bool
is_empty() = length = 0
e Now we deal with the generators. These will take the applicative form

gen(x,(p,q,r,...)) = ... (e,(el,e2,e3,...))
where e will be omitted if the generator is not result-returning.

The imperative counterpart we are trying to construct will take the form

gen(x) = ... let z=¢'inel’ ;e2';e3’ ;.. z end
where, again, the let expression will be omitted if the generator is not result-
returning.

Suppose again p is of the type of interest of a component module and g
corresponds to a variable qv in the imperative module.

If p occurs as an argument of an applicative observer or generator we just
replace by the imperative counterpart, dropping the p parameter. In addition,
if el is p, el’ is just skip (and can be omitted); the intuition here is that this
part of the state is not being changed.

In the case of q, we replace g by qv except within e2'. If e2 is q, e2' is again
just skip. But otherwise e2' becomes an assignment to qv of the expression
obtained from e2 by the other rules. So if e2 is, say,

q-—1
then e2' will be
qv:=qv — 1

We need to be careful if a mention of p, say, occurs in e2. This will cause a
problem since by the time we evaluate e2' the state of the variable or module
corresponding to p will have been changed by el’. Usually this problem can
be solved by changing the order of el’, e2', etc. to make sure such references
always come before the corresponding assignment or function invocation, but
sometimes extra let expressions are needed.

Finally we need to obtain €. This is obtained from e in the standard way,
except that we have to be careful to evaluate it before the state changes from
el’, etc. Otherwise a mention of qv, say, would refer to the wrong value. This
is why the form we suggest above puts €' in a let expression.

This gives the following definitions for the generators:

value
enq : P.Elem = write any Unit
eng(e) =

let back = (front + length) \ P.bound in
I.change(back, e) ; length := length + 1

end

pre ~ is full(),
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deq : Unit = write any P.Elem
deq() =
let f = (front + 1) \ P.bound in
let e = Lapply(front) in
length := length — 1 ; front :=f ; e
end
end
pre ~ is_empty() A is_queue()

Adding axioms
We also need to consider any axioms. In our case we have one applicative axiom
axiom [empty_ax | is_.empty(empty)
It is possible to deal with this axiom in the manner suggested in section 2.8.5.1.
This would give the imperative axiom
axiom [empty_ax | empty() ; is_empty() = empty() ; true
But we can often improve on this. We know the definition of is_empty just checks
for the length variable having the value zero. So empty will satisfy this axiom if it
just sets this variable to zero. Moreover there are no other constraints on empty.
This allows us to complete the definition of empty:
value

empty : Unit — write any Unit

empty() = length := 0
This gives us I QUEUEZ2:
scheme I_.QUEUE2(P : ELEM_BOUND) =

hide X, I, length, front, is_queue in

class
object
X:
class
type Elem = P.Elem
value min : Nat = 0, max : Nat = P.bound — 1
end,
I: . ARRAY(X)
variable

length : {| n: Nat « P.bound > n |} := 0,
front : I.Index := X.min

value
/* generators */
empty : Unit — write any Unit
empty() = length := 0,
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enq : P.Elem = write any Unit
enq(e) =
let back = (front + length) \ P.bound in
I.change(back, e) ; length := length + 1
end
pre ~ is_full(),
deq : Unit = write any P.Elem
deq() =
let f = (front + 1) \ P.bound in
let e = Lapply(front) in
length := length — 1 ; front :=f ; e
end
end
pre ~ is_empty() A is_queue(),
/* observers x/
is_full : Unit — read any Bool
is_full() = length = P.bound,
is_empty : Unit — read any Bool
is_empty() = length = 0,
/* invariant */
is_queue : Unit — read any Bool
is_queue() =
(Vi: Nat«ie {1. length} =
let k = (i + front — 1) \ P.bound in Lapply(k) post true end)
end
It may seem strange that we do not include an axiom of the form
axiom [invariant | O is_queue()
This would preclude the need to include the invariant condition in any precondi-
tions and make it clear that it must hold after any functions have been called. The
problem with such an axiom is that it would mean that a composite module like
I QUEUE2 would most likely be a non-conservative extension of its components.
For example, such an invariant would typically restrict the application of com-
ponent functions in certain situations when the component module itself includes
no such restriction. We have already warned about making such non-conservative
extensions; they suggest poor structuring and they increase the likelihood of in-

consistencies. In fact this possibility of inconsistency can be demonstrated for
I.QUEUE2. In the body of enq we have the sequence

I.change(back, e) ; length := length + 1

The two expressions in sequence are “assignment disjoint”, i.e. they cannot affect
the same variables, and so they can be commuted, giving the equivalent expression

length := length + 1 ; I.change(back, e)
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Suppose this equivalent were used in the body of enq. After the first expression
and before the second the length has been increased by one but we do not know
that apply applied to back would be convergent until after the call of change. So
is_queue does not necessarily always hold. This may seem a rather subtle case but
the problem is a general one, which is why there are no imperative invariants in
RSL. The notion of imperative invariance is not compositional.

In the applicative types of empty, enqg and deq in A_QUEUE?2 the subtype Queue
appears as a result. Where is the imperative counterpart of this condition? That is,
after calling the imperative empty, enq or deq, do we know the invariant is_queue
will hold (assuming for deq and enq that the invariant and any other precondition
held before the call)?

Such conditions are precisely the imperative counterparts of some of the applica-
tive confidence conditions. So we know that, if we generated and checked them for
the applicative specification A_QUEUE2 and followed the method correctly, they
will hold for the imperative version.

If we require more confidence that invariance is maintained, it is insufficient to
generate confidence conditions for a composite module like I QUEUE2 because
there is no subtype covering the separate components. So instead we formulate the
appropriate theorem:

theorem [I QUEUE2 INVARIANCE |
extend class object P : ELEM_BOUND end with I QUEUE2(P) +
(empty() post is_queue()) A
(V e : P.Elem * enq(e) post is_queue() pre is_queue() A ~is_full()) A
(deq() post is_queue() pre is_queue() A ~is_empty())

This theorem can then be justified. Theorems record, and provide an opportunity
to justify, properties of modules that are not stated as axioms but that we believe
follow from the definitions of the module. They are used for two kinds of property:

1. properties that are relevant to showing that a specification meets its require-
ments

2. properties that are useful in justifications — perhaps of development relations
or other theorems

I.QUEUE2_INVARIANCE is an example of the first kind. The second is like the
use of a lemma in a justification but allows the property to be proved separately
and to be used in more than one justification.

Development relations are similar to theorems but are statements of a relation
between modules rather than about a single module.

We now consider any simplifications that will give performance improvements,
but there are not likely to be many, or at least not significant ones. Such im-
provements are likely to come from component modules rather than a module like
I.QUEUE2 that uses components. So, provided I QUEUE2 can be translated, we
are finished with the RSL development. In particular, if there are still any axioms
we shall have to think how to remove them. This will typically involve taking some
more design decisions. We did this in the case of defining empty, by deciding that
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only the length variable would be changed. We could also have defined empty by

value
empty : Unit — write any Unit
empty() = length := 0 ; front := X.min
to take just one example.

2.8.6 Concurrent queue

As we remarked at the start of section 2.8.5, the main development method we
are following means that before developing a concurrent module an applicative
version will have been created in first abstract and then concrete versions, and an
imperative sequential one from the concrete applicative. A concrete concurrent
version may then be formulated based on the imperative one.

In this section, as in the imperative sequential case, we present first an abstract
concurrent version of the queue in section 2.8.6.1. This is not part of the main
method and at a first reading the reader may want to skip this section and go
straight to the concrete version in section 2.8.6.2.

2.8.6.1 Abstract concurrent queue

We suggest formulating the imperative version of a module first (normally by de-
veloping this from an applicative version as described in section 2.8.5.2).
The overall method is as follows:

e Use the same parameter module (if any) as in the imperative module.
e Define an object as an instance of the imperative module:
object I : . QUEUEO(P)
e Define a function main:
value main : Unit — in any out any write any Unit
Define an initial function.
Define the interface function signatures.
Define concurrent axioms.
Hide the name (I in our case) of the object which is an instance of the imper-
ative module and main.

We now consider in more detail the definitions of the initial function, the interface
function signatures and the axioms.

Defining an initial function

For each function corresponding to a constant in the applicative module whose
type is the type of interest we have a choice. Commonly there is only one such
function, like empty, and we want to start the queue in the empty state and never
reset it. In that case we define empty as in:
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value

empty : Unit — in any out any write any Unit

empty() = Lempty() ; main()
In this case we refer to empty as an initial function, one that should be called once
to start the concurrent process.

Or we may want to be able to reset the queue to empty occasionally, i.e. to have
empty available in the same way as functions like enq. In this case we define empty
as in :
value empty : Unit — in any out any Unit

(note there is no write any) and instead of giving it an explicit definition we define
an axiom like the following:

axiom

[empty_ax |

main() # empty() = Lempty() ; main()
If empty is not an initial function, we still have the problem that we have to start
the queue initially, which means calling Lempty followed by main. But we do
not want to export the object I containing the state variables; these must only be
affected by starting the queue and then using the queue’s functions. So we define
an initial function init, say, and define it as a call of L.empty followed by a call of
main:
value

init : Unit — in any out any write any Unit

init() = Lempty() ; main()
If there is no function like I.empty, it is possible to invent one and add it to the
imperative module, but it is also possible to define the body of the initial function
as “I.initialise ; main()” instead.

Defining interface function signatures
For each of the other functions in the imperative module we define a function of the
same name whose type is constructed from the corresponding imperative function’s
type by

e using a total function arrow

e removing the access descriptor read any or write any

e inserting the access descriptor in any out any.

We will refer to the functions (plus empty if we defined a separate initial function)
as interface functions as they provide the interface to the module. We thus distin-
guish them from main and the initial function. Only main and the initial function
include write any in their signatures; the interface functions have no access to
the variables of the imperative module. It is essential for RSL concurrency that
functions that may execute concurrently do not share access to variables.

Note that all the functions have total arrows. This is because we expect to
develop the interface functions as simple sequences of inputs and outputs and main
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as a loop containing an external choice of simple sequences of inputs, outputs and
assignments. Such functions are in general total, and defining them as such eases
any justifications we may want to do. The partiality in concurrent specifications
typically comes from the parallel or interlocked composition of such functions, not
in the functions themselves.

Defining concurrent axioms

For each such interface function we define an axiom like one of those in C_QUEUEO
below:

scheme C_QUEUE(O(P : ELEM_BOUND) =
hide I, main in
class
object I : . QUEUEO(P)
value
/* main %/
main : Unit — in any out any write any Unit,
/* initial %/
empty : Unit — in any out any write any Unit
empty() = Lempty() ; main(),
/* generators */
enq : P.Elem — in any out any Unit,
deq : Unit — in any out any P.Elem,
/* observers x/
is_full : Unit — in any out any Bool,
is_empty : Unit — in any out any Bool
axiom
[eng-ax |
Ve: P.Elem
main() # enq(e) = Lenq(e) ; main() pre ~ Lis_full(),
[deq_ax]
V test : P.Elem = Unit -
main() {} test(deq()) =
let e = I.deq() in main() § test(e) end
pre ~ Lis_empty(),
[is_full ax |
V test : Bool = Unit *
main() {} test(is_full()) =
let b = ILis_full() in main() {} test(b) end,
[is_empty_ax |
V test : Bool = Unit »
main() {} test(is_empty()) =
let b = Lis_empty() in main() {} test(b) end
end
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The construction of the axioms is the same in each case:

e The left-hand side is a call of main interlocked with a call of the interface
function, and this call is an argument to a test function if the interface function
has a result type that is not Unit. test functions are needed in such axioms
because the interlock operator may only be used with operands of type Unit.
The right-hand side takes one of two forms:

— If the interface function has a result type Unit, it is a sequence of a call
of the imperative function (with the same argument as the concurrent
one) and a call of main.

— If the interface function has some other result type, it is a let expression
binding the result of a call of the imperative function (with the same
argument as the concurrent one) followed by a call of main interlocked
with the test function applied to the let binding.

e Preconditions are the same as in the imperative module.

The intuition behind constructing the module in this way is that it is now possible
to evaluate expressions like

empty() # enq(a) {} enq(b) {} let x = deq() in ... end

since under appropriate conditions such an expression can be shown to be equivalent
to

Lempty() ; L.enq(a) ; Leng(b) ; let x = I.deq() in main() § ... end

and then further evaluated using the axioms for the imperative functions.

The “appropriate conditions” referred to above are in particular that the main
process will complete an interlocked composition with each interface function. That
is, an interlock of main() with a call of an interface function will (possibly) change
the state of variables and (possibly) produce a result but will always allow the in-
terface function to terminate and leave the main process running. This is ensured
by the four axioms in C_QUEUEQ. Effectively each interface function acts like
a transaction that locks the main process. This makes the use of interlock very
useful in specifications of data types like the queue. Interlock is not suitable for
main processes that allow portions of the execution of interface functions to be in-
terleaved. For example, we did not try to specify the lift system in terms of a single
process that could both move the lift and allow buttons to be pressed. We would,
for example, expect the button transaction to take place within a movement of the
lift. Instead, we decomposed the lift system into component processes executing
concurrently that would each complete one transaction at a time.

It should be clear that the concurrent module will behave just like the imperative
one, though it is perhaps not so clear just how to formalize “just like”. We will
come back to this issue in section 2.9.
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2.8.6.2 Concrete concurrent queue

As stated earlier in section 2.8.5 the method we are following means that we have
formulated the abstract applicative module (A_QUEUEQ in our case) and devel-
oped this to either a single concrete imperative module (like . QUEUEI) or a
composite concrete imperative module (like I QUEUE2). We show in the next two
sections 2.8.6.3 and 2.8.6.4 how to develop further to a single concrete concurrent
module in the first case, and a composite concrete concurrent module in the second.

The use of an imperative module means that the design of the variable(s) and
the algorithms to manipulate them sequentially is already done. All we need to do
is design the concurrent control structure.

2.8.6.3 Development to single concurrent

The single concrete concurrent module C_QUEUE] is developed from the impera-
tive version I_ QUEUEI1 by the following overall method:

e Use the same module parameter (if any) as in the imperative module.
e Define an object as an instance of the imperative module:
object I : . QUEUE1(P)

Define a function main:

value main : Unit — in any out any write any Unit

Define an initial function.

Define interface function signatures.

Define channels.

Define interface function bodies.

Define the body of main.

Hide the object I, the channels and the function main.

We now consider the definitions of the initial function, interface function signatures,
channels, interface function bodies and body of main in more detail.

Defining an initial function

For each function corresponding to a constant in the applicative module whose
type is the type of interest we have a choice. Commonly there is only one such
function, like empty, and we want to start the queue in the empty state and never
reset it. In that case we define empty as in:

value

empty : Unit — in any out any write any Unit

empty() = Lempty() ; main()
In this case we refer to empty as an initial function, one that should be called once
to start the concurrent process.

Or we may want to be able to reset the queue to empty occasionally, i.e. to have
empty available in the same way as functions like enq. In this case the type of
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empty will be as above but without the write any, and it will be defined like the
other interface functions described below.

If empty is not an initial function, we still have the problem that we have to
start the queue initially, which means calling I.empty followed by main. But we do
not want to export the object I containing the state variables; these must only be
affected by starting the queue and then using the queue’s functions. So we define
an initial function init, say, and define it as a call of L.empty followed by a call of
main:

value

init : Unit — in any out any write any Unit

init() = Lempty() ; main()
If there is no function like I.empty, it is possible to invent one and add it to the
imperative module, but it is also possible to define the body of the initial function
as “I.initialise ; main()” instead.

For this example we will assume that empty will only be called initially and
hence can provide the initial function.

Defining interface function signatures
For each of the other functions in the imperative module we define a function of the
same name whose type is constructed from the corresponding imperative function’s

type by

e using a total function arrow
e removing the access descriptor read any or write any
e inserting the access descriptor in any out any

We will refer to the functions (plus empty if we defined a separate initial function)
as interface functions as they provide the interface to the module. We thus distin-
guish them from main and the initial function. Only main and the initial function
include write any in their signatures; the interface functions have no access to
the variables of the imperative module. It is essential for RSL concurrency that
functions that may execute concurrently do not share access to variables.

Defining channels

So far we have the signatures of all the functions. We also need to define channels,
since each interface function will communicate with the main process. There will
be at least one channel for each interface function, but there may be two. We
decide as follows:

e If the interface function has parameter and result types that are both Unit,
there will normally be just one channel, of type Unit.

e If the interface function has a parameter or result type that is Unit and a
result or parameter type that is not Unit, there will normally be just one
channel, of the non-unit type.
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e If the interface function has non-unit parameter and result types, there will
be two channels, one of each type.

e In the cases where there is “normally” just one channel it may still be appro-
priate to have two, by adding a second one of type Unit. We do this when
timing (or relative timing) is important in the system and we want to make
sure that whatever the main function does when it starts acting on a commu-
nication from an interface function is completed before anything else in the
system is allowed to occur. This is typically the case when we are modelling
some hardware function. There is an example of this earlier in this tutorial
when we modelled a lift system. There is one component that opens and closes
doors and another that moves the lift. These components are models of the
hardware involved (door mechanisms and lift motor). Then it is important in
sequences like

close(f) ; move(f')
or

halt(f) ; open(f)
(where f, ' are floors) that we do not move towards another floor before the
doors are closed or open the doors before a halt at a floor is completed.

This is only a problem when more than one main process from different
modules is involved. We shall see that our method ensures that even with
only one channel, interactions with the same main process cannot overlap.

It is also generally necessary, and certainly sensible, to make all the channel names
distinct.

In the queue example we will assume that relative timing is not critical (since
the queue will be software). It is also convenient to put all the channel definitions
into an object so that we can hide them all together.

Defining interface function bodies

For each interface function we define a body which is simply an output of its
argument on the channel corresponding to its parameter type (if any) followed by
an input on the channel corresponding to its result type (if any).

Defining the body of the main function
We can now define the body of main as a while true loop containing an external
choice between expressions, one expression for each interface function.

The most general form of the expression for an interface function gen with im-
perative precondition I.can_gen is

if I.can_gen() then let e = c17 in c2 ! I.gen(e) end else stop end

If there is no precondition, this reduces to the let expression. If the imperative
Lgen has Unit parameter and a non-Unit result, the let expression reduces to the
output expression. If the imperative I.gen has Unit result, the output expression
is replaced by the call of I.gen. There is always at least one input or output and a



136  Tutorial

call of I.gen.
So we have

value
main : Unit — in any out any write any Unit
main() =
while true do
if ~ Lis_full() then
let e = CH.enq? in Leng(e) end
else stop end |]

if ~ Lis_empty() then CH.deq ! I.deq() else stop end |[]

end

The use of stop may seem surprising. The point is that stop is a unit for external
choice, i.e.
expr [| stop = expr
This means that if the queue is currently empty, say, the second choice from main
is just stop and effectively disappears. So an empty queue cannot be dequeued.
Note that the guard of the if expression is evaluated before the input is received,
so that no communication on the input channel can take place if it is false. If
the guard depends on the value being input, this style cannot be used. Consider,

for example, a database with a lookup interface function. Then the definition of
lookup will be something like

lookup(k) = CH.lookup!(k) ; CH.lookup_res?

and the corresponding choice in the main process we might be tempted to write
could be

let k = CH.lookup? in
if Lis_in(k) then CH.lookup_res!I.lookup(k) else stop end
end

We can see that the first communication of the key will always succeed but then
the main process will stop while the interface function lookup is still waiting for an
input, and we will get deadlock. So we must instead make lookup a total function,
by adopting one of the two possibilities:

e identifying a special value value of Data that cannot normally be stored in
the database but can be returned as the result of looking up a key that is not
present

e defining the result type of lookup not as Data but as, say

type Lookup res == not_found | res(data : Data)

The first of these is generally to be avoided since it relies on being able to identify
a special value of Data, which is often a parameter. It also means that other
specifications using the database can be written using lookup and forgetting to
check whether the value returned is the special one; such a mistake will generate a
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type error in the other option.
This gives us C_QUEUETL:

scheme C_QUEUEL(P : ELEM_BOUND) =
hide I, CH, main in
class
object I : . QUEUE1(P)
object CH : class channel enq, deq : P.Elem, is full, is.empty : Bool end
value
/* main %/
main : Unit — in any out any write any Unit
main() =
while true do
if ~ Lis_full() then let e = CH.enq? in Lenq(e) end
else stop end []
if ~ Lis_empty() then CH.deq ! I.deq() else stop end []
CH.is_full ! Lis_full() []
CH.is_empty ! Lis_empty()
end,
/* initial */
empty : Unit — in any out any write any Unit
empty() = Lempty() ; main(),
/* generators */
enq : P.Elem — in any out any Unit
eng(e) = CH.enq ! e,
deq : Unit — in any out any P.Elem
deq() = CH.deq?,
/* observers x/
is_full : Unit — in any out any Bool
is_full() = CH.is_full?,
is_.empty : Unit — in any out any Bool
is_.empty() = CH.is_empty?
end
If we wrote C_.QUEUEQ (described in the optional section 2.8.6.1) and want to
express the relation between C_QUEUE1 and C_QUEUEQ, we need first of all to
make a development of C_QUEUEQ by substituting I QUEUE] for the component
I.QUEUEQ. Call the result of this development C_QUEUEOA. . QUEUEI imple-
ments I QUEUEQ (stated in the development relation I QUEUE(_1) and so, since
implementation is compositional, C_QUEUEQA implements C_QUEUEQ. Then we
can define the development relation C_QUEUEO(_1:

development_relation [C_QUEUEOQ_1 |
class object P : ELEM _BOUND end - C_.QUEUE1(P) < C_.QUEUEOA(P)

If we did not create C_QUEUEOA first and tried to state that C_QUEUEI1 im-
plements C_QUEUEQ directly, we would get a static error in the relation since
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the object I instantiating I QUEUEI in C_QUEUEI is not a static implementa-
tion of the corresponding object in C_QUEUEQ; this is why the relation stated in
I. QUEUEQ-1 involved an extension.

Simplified method

The client—supplier relation between C_QUEUFE1 and I QUEUEI gives a conve-
nient separation between the imperative (state modifying and observing) part in
the latter and the control part in the former. But for modules with very simple
states it is possible to follow a combined method of development giving just one
module. The result is that:

e The variables as well as the channels are defined in the same module.
e The component expressions in the main function will contain assignments to
and reads of the variables.

An example of such a development was that of the lift motor in section 2.7.7.2.

2.8.6.4 Development to composite concurrent

We have two choices for development of a composite concurrent module, one that
is internally sequential and one that is internally concurrent.

Recall that a composite module has one or more supplier modules. If there are
more than one of these suppliers, functions of the composite module will typically
involve calling functions of more than one supplier. So we could call these supplier
functions either sequentially or in parallel. Since in our method the suppliers will
have disjoint state variables and not be able to communicate, these are logically
equivalent, but of course may have quite different efficiency characteristics when
finally implemented.

Internally sequential

The method is precisely as in section 2.8.6.3 except that the object I is an in-
stantiation of the composite sequential module I QUEUE?2 instead of the single
sequential module . QUEUEL.

Internally concurrent

This is obviously only worth doing when there is more than one component module,
whereas for our example we have only an array module as component. But we show
the development and indicate how several components would be dealt with.

We will use the concurrent array module C_ARRAY defined in section A.6.
This is a standard module just like the abstract imperative version . ARRAY .
It has been constructed from . ARRAY in just the same way that C_.QUEUEQ
was constructed from I QUEUEQ. But the details of construction are not of much
interest here: we expect to have a translation of concurrent arrays already available.
Hence we can use the abstract module and develop it no further ourselves.
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We can now develop the concrete concurrent C_QUEUE2 from the concrete
applicative A_QUEUE2 using a method very similar to that by which we developed
the concrete imperative I QUEUE2 from the concrete applicative A_QUEUE2.
The overall method is as follows:

e Use the same module parameter (if any) as in the applicative module.
e Instantiate the concurrent supplier modules.

e Define variables.

o Define channels for each function just as we did in section 2.8.6.3.

e Define the signature of the main process:

value main : Unit — in any out any write any Unit

Define an initial function.

e For each of the interface functions the definitions are precisely the same as in
the single concurrent module C_QUEUE] in section 2.8.6.3.

e Define the body of main.

e Hide the objects, variables, channels and main.

We now consider in more detail instantiating the concurrent supplier modules, and
defining the channels, the initial function and the body of main.

Instantiating the concurrent supplier modules
The type of interest in A_QUEUE?2 is a product:
type Queue = A.Array x Length x A.Index
As in the imperative case, the first component will be supplied by instantiating
an array, for which we use the concurrent array C_ARRAY. So we create the
appropriate object declarations for all such components
objec
X:..
C : C_ARRAY(X)
where the class of X is the same as in . QUEUEZ2.

Defining variables
We define variables for the other components (if any) of the type of interest, just
as we did in section 2.8.5.4 giving
variable
length : {| n: Nat « P.bound > n |} := 0,
front : C.Index := X.min

The only change from I QUEUE2 is that the type of front comes now from the
object C.

Defining an initial function
We need an initial function, either empty if this is not needed as an interface func-
tion or a special init, say. This will be the parallel composition of the initial process
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of the component modules together with initial assignments to the variable(s) of
this module followed by a call of main. In our case we will use empty, giving

value

empty : Unit — in any out any write any Unit

empty() = C.init() || (length := 0 ; main())
As we saw in the imperative case it is sufficient to change length to zero to make
the queue empty; there is no need to change front as well.

If there were several component modules in objects CI1, C2, etc. with initial
functions empty, init, etc., the definition of empty would take the form

value
empty : Unit — in any out any write any Unit
empty() = Cl.empty() || C2.init() || ... || (length := 0 ; main())

Defining the body of the main function

We need to define the body of main. As in the single concurrent module C_QUEUE1
in section 2.8.6.3 this consists of a while true loop containing an external choice
between expressions dealing with each interface function. These expressions are
obtained from the bodies of the corresponding function definitions in I QUEUEI
in section 2.8.5.3 in the obvious manner:

e Preconditions involving only parameters that can be expressed in terms of the
variables of this module normally become expressions of the form

if precondition then ... else stop end
Other preconditions must be dealt with as described in the single concurrent
case in section 2.8.6.3, basically by defining special effects and results for the
cases when the preconditions are false.
e Results become outputs, so that a sequential expression
;e
becomes
... ; CH.chan ! e

To make such an expression more obviously guarded it is common to place
such outputs earlier in the expression (taking care, of course, not to move
the occurrence of e in front of any expressions whose execution will affect its
value).

e Calls of functions from imperative modules become calls of functions from
concurrent modules, and where possible (i.e. where they return Unit results)
these are placed in parallel rather than sequence, so that for example

I1.gen(x) ; 12.gen(y)
becomes
Cl.gen(x) || C2.gen(y)

In RSL terms this is perfectly safe since, when (but not in general otherwise!)
we construct things by the method described in this tutorial, there can be no
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“interference” between the functions of components: they do not share any
variables or channels, i.e. they cannot communicate with each other in any
way. In this case their component actions (communications and assignments)
can be arbitrarily interleaved without affecting the result of their execution,
and we achieve this interleaving by calling the functions in parallel. But we
should only do this when it is not important that the first call terminates
before the second. In some cases, particularly where the RSL components
model hardware components, it may be important that one function is known
to have terminated before the next one starts. There may be an “interference”
in the real world (like doors opening and the lift moving affecting the same
lift) that is not modelled in RSL. See the discussion earlier in section 2.8.6.3 on
how to ensure a component’s actions are completed when its interface function
terminates.

This gives the module C_QUEUE2:

scheme C_QUEUE2(P : ELEM BOUND) =
hide X, C, CH, length, front, main in
class

object
X:
class
type Elem = P.Elem
value min : Nat = 0, max : Nat = P.bound — 1
end,
C : C_ARRAY(X),
CH : class channel enq, deq : P.Elem, is_full, is.empty : Bool end
variable
length : {| n: Nat « P.bound > n |} := 0,
front : C.Index := X.min
value
/* main %/
main : Unit — in any out any write any Unit
main() =
while true do
if length # P.bound then
let e = CH.enq? in
let back = (front + length) \ P.bound in
C.change(back, e) ; length := length + 1
end
end
else stop end []
if length # 0 then
CH.deq ! C.apply(front) ;
let f = (front + 1) \ P.bound in
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length := length — 1 ; front := f'
end

else stop end []

CH.is_full ! length = P.bound |]

CH.is_empty ! length =0

end,
/* initial %/
empty : Unit — in any out any write any Unit
empty() = C.init() || (length := 0 ; main()),
/* generators */
enq : P.Elem — in any out any Unit
eng(e) = CH.enq ! e,
deq : Unit — in any out any P.Elem
deq() = CH.deq?,
/* observers x/
is_full : Unit — in any out any Bool
is_full() = CH.is_full?,
is_empty : Unit — in any out any Bool
is_.empty() = CH.is_empty?
end

Exercise Develop a bounded queue that has an additional selection mechanism
for deq; deq has an extra test parameter of type

P.Elem — Bool

so that deq removes (and returns) the first element e in the queue (if any) for which
test(e) is true.

Also include an observer list_of to give the elements in the queue, in order, and
an observer next that takes a test parameter like deq and returns the element (if
any) that would result from a call of deq with the same parameter.

deq and next should be total functions.

You may find the resulting specification useful for the exercise at the end of
section 2.6.

2.9 Formal relations between applicative, imperative and
concurrent modules

This is a technical section that may be omitted at a first reading.

We have claimed that we can formalize the relation between applicative specifica-
tions and their imperative and concurrent counterparts, and that the development
steps involved could be largely automated. This claim needs supporting.

We shall provide some support here by

e identifying constraints on applicative specifications
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e providing transformations which convert applicative specifications into imper-
ative specifications

e outlining, through an example, how the imperative specifications obtained in
this way can be extended conservatively to specifications that implement the
applicative specifications

A treatment of more general applicative specifications will be indicated in sec-
tion 3.8.4

2.9.1 Linear expressions
2.9.1.1 Informal assumptions

We have made some assumptions about applicative specifications:

e We assumed applicative generators and observers make at most one mention
of the type of interest in their parameter and result types. If this is not the
case there are a number of possibilities:

— Two mentions of a type of interest in a parameter type (such as a concate-
nation function for lists) can often be dealt with by a simpler generator
which deals with one element at a time (like a cons function for lists).

— If there is a collection of values of the type of interest that is either fixed
in number or bounded, the use of multiple component objects of the same
scheme, either with a fixed collection of objects or with an object array,
will often suffice.

— Otherwise (as we noted previously in section 2.8.5.1 for trees, for exam-
ple), we will have instantiated the applicative module in the imperative
one. The imperative functions will be defined in terms of the applicative
ones. Then applicative properties involving functions (like node for the
type Tree) which have no imperative counterpart, will still hold applica-
tively. Other applicative properties will have imperative counterparts as
described in the rest of this section.

For an alternative approach see section 3.8.4.

e We assumed that applicative expressions do not involve more than one value
of the type of interest at once. This is rarely a problem in practice, but
may occur by chance (and often unintentionally). Consider, for example, the
applicative expression

let s’ = genl(x1,s) in let s” = gen2(x2,s) in ... end end
where s, ¢, etc. are of the type of interest. Where gen2(x2,s) occurs there are
two state values in scope: s and §. It should be clear that in the imperative
version s will not normally be available, because we will use one variable and
it will be overwritten by the imperative function genl. Again, if we know how
many such values are being “remembered” in the applicative version, we can
deal with it by special techniques, such as extra variables in the imperative
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version or extra observers in the applicative one that “remember” enough
about an earlier value. Usually, however, it was not intended anyway, i.e. we
meant to write gen2(x2,s).

2.9.1.2 Formal constraints

We need to make precise our ideas about what kinds of expression satisfy the
assumptions we have just described. The intuition is that, if there is only one
mention of a value of the type of interest being used at any one point in the order
of execution of an applicative expression, we can find a corresponding imperative
expression using a variable (or set of variables, or collection of imperative suppliers)
to hold this value. We will call such applicative expressions linear. Then if the
linear expression produces from a value s of the type of interest a new value &
and a result r, the corresponding imperative expression will change an existing
imperative state s to an new imperative state s and return the same value r.
More formally, a linear sequential applicative expression satisfies two conditions:

e There must be no name clashes if all names signifying members of the types
of interest are replaced by identical names.

e There must be no function or operator taking as parameters more than one
member of the type of interest. In particular there must be no equality or
inequality test between members of the type of interest.

In this section we first define the class of applicative expressions we consider lin-
ear. Then in section 2.9.1.3 we show how to obtain the corresponding imperative
expression from a linear one.

An applicative sequential expression is linear if it takes one of the following forms,
where we take the phrase “type of interest” to mean “the type of interest or a type
dependent on it”; the metavariables s, s’ to range over values of the type of interest;
the metavariables x, y to range over other types:

e an expression not mentioning any value of the type of interest
e an if expression of the form
if expr then exprl else expr2 end

where expr, exprl and expr2 are in linear form

e a local expression in which the constituent expressions are in linear form

e a case expression where the constituent expressions are in linear form, the
type of expression being cased over is not of the type of interest, and the
patterns do not involve generators or observers of that type

e an expression of the form

let y = obs(x,s) in expr end
where obs is an observer or derived observer with its definition in linear form
and expr is linear
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e an expression of the form
let s' = gen(x,s) in expr end
where gen is a generator or derived generator with its definition in linear form

and expr is linear and does not mention s
e an expression of the form

let (y,5') = gen(x,s) in expr end
where gen is a generator or derived generator with its definition in linear form

and expr is linear and does not mention s
e an infix expression of the form

exprl infix_op expr2

where exprl and expr2 are linear and either exprl or expr2 is not of the type
of interest.
e a prefix expression of the form

prefix_op expr

where expr is linear
e a boolean expression of one of the forms

exprl infix_connective expr2
~ exprl
where exprl and expr2 are linear
e a post expression of the form
exprl as b post expr2 pre expr3

where exprl, expr2 and expr3 are linear and if exprl is of the type of interest,
expr2 does not mention s.
e an equivalence expression of the form

exprl = expr2 pre expr3
where exprl, expr2 and expr3 are linear, exprl is not of the type of interest,
and either

— neither exprl or expr2 mention any generators, or
— expr2 does not mention s

2.9.1.3 Corresponding imperative expressions

The technique for obtaining the corresponding imperative expression expr’ from a
linear expr is as follows:

e if expr does not mention any value of the type of interest, expr’ is identical to
expr.
e an if expression of the form
if expr then exprl else expr2 end
becomes
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if expr’ then exprl’ else expr2’ end

For, while, until and local expressions are handled in the same way.
e a case expression of the form

case expr of
patternl — exprl,

end
becomes

case expr’ of
patternl — exprl’,

end
e an expression of the form
let y = obs(x,s) in expr end
becomes
let y = obs(x) in expr’ end
e an expression of the form
let s’ = gen(x,s) in expr end
becomes
gen(x) ; expr’
In the following discussion we will assume that this is written as the equivalent
let expression:
let dummy = gen(x) in expr’ end
(where expr’ does not mention dummy) so that we are always dealing with

let expressions.
e an expression of the form

let (y,5') = gen(x,s) in expr end
becomes
let y = gen(x) in expr’ end
e an infix expression of the form
exprl infix_op expr2
becomes
exprl’ infix_op expr2’
e a prefix expression of the form
prefix_op expr
becomes
prefix_op expr’
e a boolean expression of one of the forms
exprl infix_connective expr2



Formal relations between applicative, imperative and concurrent modules 147

~ exprl
becomes one of the forms
exprl’ infix_connective expr2’
~ exprl’
e for a post expression of the form
exprl as b post expr2 pre expr3

we first consider the precondition expr3d. If it mentions no generators then
it just becomes exprd. Otherwise it can be treated like “expr3 = true”; see
equivalence expressions below.

For the post expression, the transformation depends on whether the imper-
ative expression we want is part of a sequential or concurrent specification. In
the sequential case, the post expression becomes (ignoring the precondition)

exprl’ as b’ post expr2’
where b’ is the result of removing from b any binding of the type of interest.

In the concurrent case we need to first rewrite the post expression as an
equivalence expression using the proof rule readonly_post_expansion from ap-
pendix B and then transform the equivalence expression as shown below.

e for an equivalence expression of the form
exprl = expr2 pre expr3
we first deal with the precondition as for post expressions.

For the equivalence, the transformation depends on whether the imperative
expression we want is part of a sequential or concurrent specification. In
the sequential case, if neither expression mentions any generators it becomes
(ignoring the precondition)

exprl’ = expr2’ (1)
In the concurrent case, if neither expression mentions any generators it be-
comes (ignoring the precondition)

V test : T = Unit »

main() {} test(exprl’) = main()  test(expr2’) (2)
where T is the (common) maximal type of exprl’ and expr2’, and main() is a
call of the main process if the module is single, or the concurrent composition
of the main processes from the component modules if the module is composite.
If T is Unit (which will be the case if exprl’s type is the type of interest) (2)
can be simplified to

main() {} exprl’ = main() }} expr2’ (3)
If exprl mentions any generators, exprl’ will take the general form
let ...inlet ... ine end ... end (4)

where e does not mention any generators. From our assumptions, expr2 will
not mention s. expr2' then takes the form

let ... in let ... in expr2 end ... end
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where the let expressions are copied from (4). (We may need to rename some
of the let bindings to avoid capturing any free names in expr2.) The resulting
equivalence takes the form (1) in the sequential case, (2) (possibly simplified
to (3)) in the concurrent case.

2.9.1.4 Examples

Post expressions
Consider the post expression from the axiom deq.ax from A_QUEUEOQ in sec-
tion 2.8.4.1:

deq(q) as (e,q') post e = hd list_of(q) A list_of(q') = tI list_of(q)
pre ~is_empty(q)
This is not linear since deq(q) is of (by being dependent on) the type of interest
Queue. We see that in the postcondition both q and ¢’ are in scope.
But we can rewrite the post expression in the form

let 1 = list_of(q) in
deq(q) as (e,q') post e = hd 1 A list_of(q') = t11 pre ~ is_empty(q)
end
and now it is linear. The corresponding imperative form is
let 1 = list_of() in
deq() as e post e = hd 1 A list_of() = tl | pre ~ is_empty()
end

which is the form of deq_ax in . QUEUEQ in section 2.8.5.1.

Case expressions

Note that we excluded the possibility of the expression being cased over being of the
type of interest. This is because such a case expression would involve (effectively)
comparing values of this type, and it should be apparent that an expression like

s=-¢
cannot be put into linear form. If we have such a case expression we need to rewrite
it in some other way. For example, if we have

case s of
empty — ...
add(x,s') — ...
end
then we can only partially put it in linear form by casing instead over one or more
observers, something like

case is_empty(s) of

true — ...

false — let x = first(s) in let s’ = second(s) in ... end end
end
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Now we have the problem that this expression in the imperative form will change
the state through the call of second. So it depends on how s’ is used. Often a more
dramatic rewrite into separate axioms will suffice. Suppose, for example, the case
expression occurs as part of a definition:

value
length : S — Nat
length(s) =
case s of
empty — 0,
add(x,s") — 1 + length(s’)
end
Then we can rewrite this as

value length : S — Nat
axiom
[length_empty |
length(empty) = 0,
[length_add ]
V x : Elem, s : S+ length(add(x,s)) = 1 + length(s)
and these axioms will rewrite into let expressions in linear form:

axiom

[length_empty |

let s = empty in length(s) = 0 end,

[length_add ]

Vx: Elem,s: S-

let n = length(s), s’ = add(x,s) in length(s’) = 1 + n end
(where in the second we have compressed the nested let expressions using a let
definition list).

Quantified expressions
The definition of safe, a derived observer in A_LIFT?2, is

value
safe : Lift — Bool
safe((ms, ds, bs)) =
(V f: T.Floor »
(DS.door state(ds)(f) = T.open) =
(M.movement(ms) = T.halted A M.floor(ms) = f))

First we consider the intuitive problem. The idea of putting the defining expression
of safe into linear form is that we can then easily transcribe it into a version to use
in formulating theorems about the concurrent lift module C_LIFT2. Then each
application of door_state, movement and floor will communicate with some other
process to give the result. Clearly we will need to have much more information
about the evaluation order than in the applicative case, and the quantification over
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f presents a problem.

More formally, if we consider the rules above for linear forms, we find that
quantified expressions mentioning the type of interest are not amongst those classed
as linear. We need to use let expressions to bring the applications of door_state,
movement and floor outside the quantification. With the last two there is no
problem, but door_state has f as an actual parameter and needs to be inside the
scope of the quantification.

We need to replace the quantification with something else. Since we know there
are only a finite number of floors, and safe corresponds to “every floor is safe”, we
can calculate a predicate for each floor and take their conjunction. One way to do
this is with a loop. So we posit that an equivalent, linear form for the defining
expression of safe is

local variable is_safe : Bool := true in
let movement = M.movement(ms), floor = M.floor(ms) in
for f in ( T.min floor .. T.max floor ) do
let door state = DS.door_state(ds)(f) in
is_safe := is_safe A
(door_state = T.open) = (movement = T.halted A floor = f)
end
end
end ;
is_safe
end

We can now produce the corresponding imperative definition for safe:

value
safe : Unit — in any out any Bool
safe() =
local variable is_safe : Bool := true in
let movement = M.movement(), floor = M.floor() in
for f in ( T.min floor .. T.max floor )} do
let door_state = DS.door state(f) in
is_safe := is_safe A
(door state = T.open) = (movement = T.halted A floor = f)
end
end
end ;
is_safe
end

2.9.2 Linear axioms

We saw in section 2.9.1 that we can form a corresponding imperative expression
from a linear expression. This process is easily extendable to axioms.
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For linear axioms that are post expressions or equivalences we have already seen
how to create the corresponding imperative post expressions or equivalences.

For linear axioms that are not equivalences but boolean expressions we just add
the implicit “= true” and proceed as for equivalences.

Example If we just followed the rules above, the body of the axiom safe_and_useful
in A_LIFTO is the boolean expression
safe(s) =
let (1, s') = check_buttons(s) in
safe(s') A
let s” = next(r, §') in
safe(s”) A
(movement(s") = T.halted =
(T.here(r) V (~ T.after(r) A ~ T.before(r))) A
floor(s) = floor(s")) A
(movement(s") = T.moving =
(T.after(r) v T.before(r)) A
T.is_next_floor(direction(s"), floor(s)) A
floor(s") = T.next_floor(direction(s"), floor(s))) A
(direction(s) # direction(s") = ~ T.after(r))
end
end
We can put this into linear form as
safe(s) =
let
floor = floor(s), direction = direction(s), (r, s') = check_buttons(s)
in
safe(s') A
let s” = next(r, §') in
safe(s”) A
(movement(s”) = T.halted =
(T.here(r) V (~ T.after(r) A ~ T.before(r))) A
floor = floor(s")) A
(movement(s") = T.moving =
(T.after(r) v T.before(r)) A
T.is_next_floor(direction(s"), floor) A
floor(s") = T.next_floor(direction(s"), floor)) A
(direction # direction(s") = ~ T.after(r))
end
end

The easiest way to check this re-formulation is correct is to prove it as a theorem
of the module it came from. This is strictly not the same as proving it equivalent
to the original: what is being proved is that it is a consequence of the original and
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the rest of the definitions and axioms. However, in practice it should be a sufficient
check.

Having a linear expression we can form the corresponding imperative or concur-
rent axiom. In the lift case the development is concurrent and the first concurrent
module is C_LIFT2. We can therefore formulate the following theorem:

C_LIFT2 +
V test : Bool = Unit »
let main =
(A0 -
M.motor() ||
|| { DS.DS|[f].door() | f: T.Floor } ||
|| { BS.LB[f].button() | f: T.Floor } ||
|| { BS.UB|f].button() | f: BS.Lower_floor } ||
|| { BS.DBJ[f].button() | f : BS.Upper_floor }) in
main() {} test(
safe() =
let
floor = floor(), direction = direction(), r = check_buttons()
in
safe() A
let dummy = next(r) in
safe() A
(movement() = T.halted =
(T.here(r) v (~ T.after(r) A ~ T.before(r))) A
floor = floor()) A
(movement() = T.moving =
(T.after(r) vV T.before(r)) A
T.is_next_floor(direction(), floor) A
floor() = T.next_floor(direction(), floor)) A
(direction # direction() = ~ T.after(r))
end
end)

main()  test(
let r = check buttons(), dummy = next(r) in true end)
end

In the right-hand side expression we have removed a number of the let expressions
that correspond to observers like safe and floor. These can always be removed
when the names bound by such let expressions have no occurrences. This can only
be done for observers, not for generators like next, even though dummy has no
occurrences, since only our observers have no effects on any variables.

This is the concurrent counterpart to the applicative safe_and_useful axiom, and
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if we want to gain additional confidence that the concurrent lift system is safe and
useful, this is the theorem we should formulate and justify.

2.9.3 Justification

We have described how linear applicative expressions and axioms can be trans-
formed into imperative sequential or concurrent expressions and axioms. We now
demonstrate, through an example, how the imperative specifications obtained by
these transformations can be extended conservatively to specifications which im-
plement the applicative specifications. (More details can be found elsewhere [20].)
We start with the sequential case, and then indicate the changes necessary to deal
with the concurrent case.
The example we use is that of queues like those in section 2.8.

2.9.3.1 Sequential imperative

We need to construct an extension of the imperative specification. The overall con-
struction using the queues as an example is illustrated in figure 2.16. The extension
of . QUEUEQ, called A_ I QUEUEQ, includes definitions of the applicative entities
from A_QUEUEQ in terms of the imperative ones from I_QUEUEQ. The intention
is to prove the implementation relation between A_QUEUEQ and A_I. QUEUEQ.

AT
| A.QUEUE0(2.8.4.1) | > L.QUEUEO (2.9.3.1) |

|A_I_QUEU‘1'5‘0 (2.9.3.1)|

Figure 2.16: Development of A_I QUEUE(Q

Result of the transformation
Applying the rules (given in sections 2.9.1 and 2.9.2) produces the following speci-
fication.

scheme I QUEUEQ(P : ELEM _BOUND) =
class
type List_of Queue = {|1: P.Elem* « len 1 < P.bound |}
value
/* generators */
empty : Unit — write any Unit,
enq : P.Elem = write any Unit,
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deq : Unit = write any P.Elem,
/* hidden observer */
list_of : Unit — read any List_of_Queue,
/* derived */
is_full : Unit — read any Bool
is_full() = len list_of() = P.bound,
is_empty : Unit — read any Bool
is_empty() = list_of() = ()
axiom

[list_of empty | empty() ; list_of() = empty() ; (),
[list_of_enq ]

Ve : PElem -

let 1 = list_of() in
enq(e) ; list_of() = enq(e) ; 1 ~ (e) pre ~ is_full() end,

[deq-ax]

let 1 = list_of() in

deq() as e post e = hd | A list_of() = tl | pre ~ is_empty()

end,
[enq defined | V e : P.Elem » enq(e) post true pre ~ is_full(),
[initial | initialise post is_empty/()

end
We rewrote the body list_of enq from A_QUEUEQ as

let 1 = list_of(q) in
list_of(enq(e, q)) =1~ (e) pre ~ is_full(q)

end
to make it linear, and we introduced a similar let expression in the applicative
deq_ax.

The resulting I QUEUEQ is almost identical to the . QUEUEO defined in sec-
tion 2.8.5.1. The only differences are that List_of Queue and list_of have not been
hidden (because we need them in the next step) and list_of-enq has a slightly
different (but equivalent) form.

Exercise Prove the equivalence of the axiom list_of_enq in the above version of
I QUEUEQ and that in section 2.8.5.1. (You should defer this exercise until you
have read chapter 4.)

Creation of the extension
If the imperative specification takes the form

class decls end
then the extension (the step marked “E” in the figure) will take the form

hide ¢’ in extend use ¢’ for c in class decls end with class decls’ end
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where ¢ is the name of any constant of the type of interest. (If there are several
they are all renamed and hidden.)

If the original takes the form

hide names in class decls end
then the extension will take the form

hide names, ¢’ in

use ¢’ for c in extend class decls end with class decls’ end
This enables the declarations in decls’ to mention names that were hidden in the
original. decls’ will consist of a number of declarations.

In our case we need the second version because A_QUEUEQ hides List_of_Queue
and list_of and we need to refer to the former and the imperative counterpart of
the latter in the extension.

The declarations in decls’ are:

e a definition of the type of interest, in our case
type
Queue =
{| q : Unit — write any Unit - O q() ; list_of() = q() ; list_of(q) |}

Remember that in the initial applicative module the type of interest Queue
is a sort, and hence open to any development. The normal applicative de-
velopment is to develop the sort into a concrete type like a list. What we
are showing here is that we can instead develop the sort into a function type.
The particular type contains functions with Unit parameter that write to the
state (still abstract) in such a way that calling the function and then evalu-
ating the imperative observer list_of always gives the same result as applying
the applicative observer list_of to the function. Different values of type Queue
correspond to different queue states.

If there were several non-derived observers there would be several equiva-
lences in the subtype definition relating each imperative one to its applicative
counterpart.

Note that this construction depends on being able to pass a function (q of
type Queue) as a parameter.

e a definition of each constant of the type of interest, in our case
value empty : Queue = empty’
Note that empty and empty’ have the same maximal type, which is why we
had to rename the empty exported from I_QUEUEQ.

e for each applicative derived observer and non-constant generator, a value dec-
laration with the same signature as in the applicative module and one of the
following forms:

— for a derived observer or generator, such as is_empty, the same definition
as in the applicative specification:
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value
is_empty : Queue — Bool
is_empty(q) = list_of(q) = ()
— for a non result-returning generator, such as eng:
value
enq : P.Elem x Queue — Queue
enq(e, q) = (A () = q() ; enq(e)) pre ~ is_full(q)
— for a result-returning generator, such as deq:
value
deq : Queue — P.Elem x Queue
deq(q) as (e, q') post (0 q() ; deq() = () ; e)
pre ~ is_empty(q)

e for each applicative non-derived observer a value declaration with the same
signature as in the applicative module but no definition

e for any other auxiliary definitions not already in the imperative module, copies
of the applicative definitions.

This gives us the following scheme A_I QUEUEQ:

scheme A I QUEUEO(P : ELEM BOUND) =
hide List_of_Queue, list_of, empty’ in
extend use empty’ for empty in I QUEUE(Q(P) with
class
type
Queue =
{| ¢ : Unit — write any Unit « O q() ; list_of() = q() ; list_of(q) |}
value
/* generators */
empty : Queue = empty’,
enq : P.Elem x Queue = Queue
enq(e, q) = (A () » q() ; enq(e)) pre ~ is_full(q),
deq : Queue = P.Elem x Queue
deq(a) as (e, ¢') post (O q() ; deq() = d'() ; e)
pre ~ is_empty(q),
/* hidden observer */
list_of : Queue — List_of_Queue,
/* derived */
is_full : Queue — Bool
is_full(q) = len list_of(q) = P.bound,
is_empty : Queue — Bool
is_.empty(q) = list_of(q) = ()
end
It can now be proved that this extension of the imperative module is an imple-
mentation of the initial applicative module. We have completed the construction
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depicted in figure 2.16, in particular that A_ I QUEUEQ implements A_QUEUEQ.
So the extension to the imperative module I QUEUEQ will have as properties any
axioms of the initial applicative module A_QUEUEQ. But, of course, these prop-
erties look like properties of the extension, since they are applicative. In what
sense are they properties of the extended imperative module I QUEUEQ? The
non-derived applicative generators and observers are all defined in terms of their
imperative counterparts, and hence so are the derived ones, so the properties of
the applicative functions must in fact be properties of . QUEUEQ — provided the
extension is conservative. We therefore need to check that the extension is indeed
conservative.

Showing the extension is conservative

Sufficient conditions for such an extension to be conservative are described in sec-
tion 3.9; broadly they are that there are no axioms and that any subtypes involved
can be shown not to place any restrictions on the class being extended.

We have no axioms but we do have the subtype Queue and we claim that the
applicative generators give values in this subtype. So, for example, we have to show
that empty, and hence empty’, is in fact in the subtype Queue without just using
the typing of empty as a justification. Note that the type Queue is quite restrictive.
For example, A() « skip is not a value in Queue since that would require

O skip ; list_of() = skip ; list_of(A() « skip)
i.e.

O list_of() = list_of(A() * skip)
and since list_of can read the state but the right-hand side must be a constant
value this cannot in general be true. We can see that any constant generator c in
Queue must have the property that for some constant I of type List_of Queue

O ¢() ; list_of() = ¢() ; 1
We do indeed have such a property in I QUEUEQ for the constant generator empty;
lis ().

For the generating functions of I QUEUEQ, we can see that they must have
the property that the result of list_of after they are applied must be uniquely
determined only by the result of list_of before they are called and any parameters.
We can see from the axioms in I QUEUEOQ that this is indeed true for enq and deq,
and indeed will be true in general if we define observational applicative axioms as
described in section 2.8.4.1 and transform them to imperative axioms according to
the rules in sections 2.9.1 and 2.9.2.

2.9.3.2 Concurrent imperative

In this section we summarize the concurrent counterpart to section 2.9.3.1.
The concurrent imperative module uses the imperative sequential one as a sup-
plier.
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We then extend the concurrent imperative module with declarations similar to
those for the sequential imperative case. We take the necessary extensions to
C_QUEUEQ from section 2.8.6.1 as our example:

e The type of interest definition takes the form

type
Queue =
{] ¢ : Unit — in any out any write any Unit «
(3 iq : Unit — write any Unit -

q = (A () *iq() ; main()) A

(O iq() ; list_of(q) = 1iq() ; Llist_of()) A
(V test : List_of Queue = Unit »

(O q() 1 test(listof()) = q() f test(list-of(q))))) [}
e Non-derived observers are given the same signatures as in the applicative case,
like
value list_of : Queue — List_of Queue
e Derived generators and observers have the same definitions as in the applica-
tive specification, like
value
is_empty : Queue — Bool
is_empty(q) = list_of(q) = ()

o Constants of the type of interest are defined in terms of the (renamed) con-

stants from the specification being extended, as in

value empty : Queue = empty’
e The other generators take forms like

value
enq : P.Elem x Queue = Queue

eng(e, q) = (A () * q() {f enq(e)) pre ~ is_full(q),

deq : Queue = P.Elem x Queue

deq(q) as (e, q)

post (V test : P.Elem = Unit « O q() 4 test(deq()) = ¢'() # test(e))
pre ~ is_empty(q)

It should be clear that this is closely analogous to the sequential imperative ex-
tension. In the concurrent version we use ‘Y|’ instead of “;” and introduce test
functions where necessary. Similar results to the sequential imperative version for
implementation and conservative extension follow, justifying the overall argument
that the concurrent imperative version is a correct version of the initial applicative
one.
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CHAPTER 3

Development

3.1 Introduction

The main input to the development activity is the initial specification as a collection
of related modules. The second input is the requirements that have yet to be met, as
these have to be taken into account during the development process. Non-functional
requirements will serve to push the development in particular directions, to make
it suitable for a particular target language, or to tackle a foreseen problem, such as
making a large or complex component space- or time-efficient. There will also be
functional requirements not yet met because they are intended to be included at a
particular level of development detail, or because the customer is not yet certain
about them.

We start with some general discussion in this section about kinds of development
step. Most of the rest of the chapter, sections 3.2 to 3.11, is concerned with
techniques for making development steps. For each technique we describe the
purpose of the development step, the method of its application, and what kind
of relation it gives. There are also exercises for each technique.

Finally, in section 3.12 we look in more detail at how we can formulate and verify
development relations, the statements of formal relations between modules.

We do not in this book describe design methods in general, or the attributes
like cohesion and loose coupling that modules should have. Literature on object
oriented design, such as [25], and its relation to formal methods, such as [17], is
generally relevant.

To make a development step for a module we first formulate a new version of it.
We are then interested in two things:

e the relation between the new version and the previous one
e the effect on clients of the module of replacing the previous version by the
new one

These issues are obviously related. In particular, we will see that if the relation
is compositional then the replacement will preserve the properties of clients of the
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module being developed. But we will discuss other kinds of development step, such
as the development step from applicative to imperative, where the replacement
would not even be well-formed.

3.1.1 Kinds of development step

We can categorize development steps by the kinds of relation we can establish
between the new and old versions:

implementation: An implementation is a development step in which the relation
between the old and new modules is the implementation relation, i.e. the orig-
inal theory is only extended — all the properties that were true in the original
remain true, but some possibilities resulting from under-specification may be
removed. Implementation is formally defined in terms of the implementation
relation in appendix B.8.3. Implementation is primarily important because,
if an initial specification meets the requirements and its developments are all
implementations of it, then they all meet the requirements. This is the ideal
situation — the final implementation is guaranteed correct.

conservative extension: Conservative extension is a restriction of implementa-
tion in which the original theory is not extended (in the sense of having new
properties) — all that is done is that new definitions are added. Conservative
extension is important in structuring specifications: clients should only conser-
vatively extend their suppliers. So the bodies of schemes should only conser-
vatively extend their parameters, and class expressions containing embedded
objects or referring to global modules should only conservatively extend the
class expressions of the embedded objects or global modules. The reason for
this is to allow separate development, with replacement of components’ initial
specifications with their developed ones, as described in section 1.6.2.

Conservative extension is also relevant to the establishment of implemen-

tation when entities hidden at one level are omitted in the next. In such a
situation we in general show that a conservative extension of the new module
(the extension defining the previously hidden, now missing, names) imple-
ments the old module. Conservative extension is defined in appendix B.8.4.
Note that conservative extension is a special case of implementation; whenever
we have conservative extension we have implementation.

static implementation: If a module B statically implements module A (and B
does not define any names free in A), a replacement of A by B will be well-
formed. Static implementation is described in the book on RSL [23]. Static
implementation is also the relation that a class expression of an actual scheme
parameter must hold to the class expression of the formal parameter. B stat-
ically implements A if the signature of B includes the signature of A.

In particular, if we retain or only add to the signature of a module, but

change some of its properties, we will have a static implementation.
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static change: If we do not have static implementation, any attempt to replace an
old version of a module with a new one in general causes static errors (scope
errors or type errors). So the relation is a change to the static properties and
in this case to do replacement we have to change supplier and client modules
simultaneously.
The main examples of static change we described in the tutorial were the
development steps from applicative to imperative and from sequential to con-
current.

Implementation (and hence also conservative extension) is shown in appendix B.8.6
to be compositional. This means that, if all our development steps consist of
implementations, the development of the whole system will give an implementation
of the initial specification; all the properties of the original specification will be
maintained. This is the ideal situation. Where we have only static implementation
or static change we have to be careful to note how the properties are being changed.

3.1.2 Planning

The development stage may go through several development steps, and take up a
substantial proportion of the overall time and effort. It therefore needs planning
carefully.

For a system of any size there will be a number of sub-systems that can be
developed separately, i.e. by different people working in parallel. These should be
identified at the beginning of the development stage so that they can be planned and
allocated. If the initial specification has been done well the interfaces between these
sub-systems will be small and well understood. The smoothness of the development
process will depend on these interfaces being stable, or having changes that are
predicted in advance.

In planning the development of a system we therefore:

e identify sub-systems that can be developed separately

e plan in outline the development steps needed for each sub-system to meet
its requirements not met by the initial specification — both functional and
non-functional. Some such developments may result in further division into
sub-sub-systems. Remember here to look for existing library modules that
can be re-used or adapted.

e identify any development steps that will not be compositional, and try to
mitigate or avoid these. Those that seem necessary should be planned as
milestones marking a (one way) dependency between the separate develop-
ments.

Schedules and resources can then be allocated to the developments in the normal
manner.
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3.1.3 Example

Suppose the system has as a component a database. The module defining the
database might well form a contract between the developers of the database itself
and the developers of other component(s) which are the database’s clients. An
abstract specification of an applicative database might be

scheme DB PARM = class type Key, Data end

scheme DB(P : DB_.PARM) =

class
type Db
value
/* generators */
empty : Db,

put : P.Key x P.Data x Db — Db,
/* observers x/
isiin : P.Key x Db — Bool,
get : P.Key x Db = P.Data
axiom
[isin_empty | V k : P.Key - is_in(k, empty) = false,
[is_in_put |
V k, k' : PKey, i: P.Data, db: Db »
is_in(k’, put(k, i, db)) =
k = k' v is_.in(k', db),
[get_put]
Vk, k' : PKey, i: P.Data, db : Db«
get(k', put(k, i, db)) =
if k = k' then i else get(k’, db) end
pre k = k' v is_in(k’, db),
[get_defined | V k : P.Key, db : Db e
get(k, db) post true pre is_in(k, db)
end
If, for example, we used DB instead of AL ARRAY_INIT in A_.HARBOURI1 in the
tutorial in section 2.6.7, we would have had in A_LHARBOURI an object formed
from DB to give the collection of berths

object B : DB(T{Berth for Key, Occupancy for Data})
where T is an object formed from the types module TYPES. A . HARBOUR would
then be a client of DB.

The specification of DB leaves a number of design decisions to be taken. In
particular:

1. the addition of extra functions like remove for removing keys and their asso-
ciated data from the database
2. the behaviour of get for a key that is not in the database
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3. the organization of keys in the database (ordered, unordered, partly ordered
by sub-divisions of the type Key, etc.)

4. a bound on the maximum size of the database (where by “size” we mean some
measure of the quantity of information it can hold)

5. the possible development into an imperative form. If so:

(a) the possible initial value, like empty

(b) the (collection of) variable(s) and/or imperative supplier modules with
variables, that will form the imperative state of the database

(c) a possible further change to allow multiple concurrent access

If later versions may incorporate such design decisions, which decisions will have
an effect on the clients of the database (the modules that use it)? We will only
consider effects where clients are forced to change something, rather than purely
beneficial ones where they can take advantage of a new feature, since what we are
interested in are the additional costs of changes. We consider each in turn:

1. Additional functions like remove can generally be added without difficulty.
Doing so is unlikely to change existing properties and so is a conservative
extension (and therefore an implementation).

2. The definition of get on undefined keys may be handled in two main ways.
One would be to make it return a variant type, one variant for success and
one for failure. An alternative is to justify that modules using the database
never look up undefined items. This is sometimes possible if it is a property of
their algorithms. For example, a two-pass compiler might generate a symbol
table on a first pass and read it on a second. The second pass can never try to
look up a name not put in the symbol table by the first pass because it gets
the identifiers from the same original input. Such a property is also possible
to justify for a sequential database if all calls of get are guarded by calls of
is_in.

In the first case we would have a static change because of the change in the
result type of get; in the second case (leaving get partial but checking that
all its applications satisfy its precondition) there is no change to the database
module.

3. Organizing the keys will require some development of the scheme DB_PARM,
to define either an ordering relation or some division of the keys into kinds
of key. This development will almost certainly be an implementation of DB_-
PARM. The development of DB_PARM can be used as the body of the formal
parameter of a new version of DB. Such a development will provide implemen-
tation for an object like B above, the collection of berths, that is an instance of
DB in a client. Hence from the client’s point of view we will get implementa-
tion. The types module is typically the place where the necessary development
would be made of the type (here Berth) used to supply the Key type so that
the types module is a suitable implementation of the new DB_.PARM.

4. There are two ways we could put a bound on the maximum “size” of the
database. The first is to restrict the type Key to some finite type, so that
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there is a known finite set of possible keys. This restriction is just like the
other developments to Key discussed in point 3.

The alternative involves some changes to the module DB. Unfortunately
such changes are not simple extensions to the properties of DB, because it
is not possible to say “one can always add items to the database” (which is
implied by the total arrow in the definition of put) and at the same time “there
are circumstances when one cannot add items to the database” (e.g. when it
is full) because the two statements are contradictory. So this change not only
changes the detail of DB but will also involve changes to the clients of DB;
they will have to check that they cannot cause the database to overflow or,
more likely, include guards on all calls of put using an extra function is_full (to
be defined in the bounded version of DB). This development will be a static
implementation since the (maximal) type of put will not be changed; it will
not be a compositional change since the properties of DB will change.!

5. The change from an applicative to an imperative style will be a static change
since the signatures of the functions will change. Hence this step involves
the clients changing simultaneously. As we saw in the tutorial, however, it
is possible to make this change in a regular and predictable manner so that
the changes are foreseeable in their form and their impact. In fact there is a
precise sense in which the behaviour of the imperative version is “the same
as” the behaviour of the applicative one. As for the related decisions:

(a) The specification of an initial value for the database will not have any
effects on its clients because there is no concept of an initial value in
the applicative version. The decision can safely be made during the
applicative to imperative design step.

(b) The design of the state variables of the database, either within it or
within supplier modules, should not have any effect on clients, because
clients need not (and should not) have any sight of any such variables.
They will refer to them in access clauses only in the form B.any (where
B is the name of an object which is an instance of the database).

(c) The decision on whether to allow concurrent access to the database is
one that should be made at the same time as the development step
from applicative to imperative. Although this is a static change, it is
still possible to relate the properties of the applicative sequential and
imperative concurrent versions.

So we can see that there is a range of possible kinds of development of DB that
affect its clients in various ways. The important division is between those that
are compositional (implementation and conservative extension) and those that are
not. The ones that are not compositional will involve changes to clients and are
best avoided if possible (by making the change to the initial specification). The
exception to this is the change from applicative to imperative, either sequential or

LA more general version of DB could have made put partial, and included an underspecified
can_put to use as a precondition. But we wanted an example of a non-compositional change.
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concurrent. As we saw in the tutorial, the effects of this change can be predicted
and hence allowed for.

Note that in all cases the clients’ developers can choose when they use a new
version of DB instead of the old one, since dependence between modules in RSL is
always to a particular version of a module. There is no notion of dependence on
an arbitrary version.

3.2 Removing under-specification

An early specification differs from a later one developed from it primarily in leaving
out detail. We leave out detail so that we can concentrate on what is important at
each stage in development, deferring what is less important. Under-specification is
leaving out detail in such a way that it can be filled in later, and so removing under-
specification is a natural part of development. (Since specifications, especially in
the early stages, should be as general as possible and leave out everything except
the absolutely necessary, under-specification is generally a virtue in spite of its
name. It is its opposite, over-specification, that should be avoided.)

3.2.1 Replacing abstract types by more concrete ones

Purpose Abstract types are not generally translatable directly into target lan-
guages. We need at some point to decide how we are going to represent them in
terms of the types our chosen target language allows us. We may do this in one
step, deciding perhaps a type is to be Int or Char, or we may take the decision in
stages, deciding first perhaps that it is to be a record of several other types, some
of which are as yet still abstract.

Method An abstract type is one that has been given no type definition beyond
its name; its definition takes the form

type id
It may be be developed into a concrete type by giving it a direct definition as some
type expression, i.e.

type id = type_expr
It may also be developed as a variant type, union type or record type, so that it
takes one of the following forms:

type id == variant—choice
type id = type_name—choice2

type id :: component_kind—string

Relation All the developments in this section are implementations.
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Exercise According to this section

class type T valuex: T end (1)
is implemented by

class type T={|n: Nat*n < 0|} valuex: T end (2)

But (2) is contradictory; the type T is empty but a value x is declared to be in T.
Does (2) implement (1)?

3.2.2 Replacing variant types by concrete ones

Purpose Variant types are a shorthand for abstract types plus various associ-
ated values (constructors, destructors, reconstructors), subtype names, and axioms
relating these. They often do not need to be developed as they can be translated
directly into a programming language. It may also be that we have created imple-
mentations of them previously in a library. But sometimes we will need to develop
them to make them more concrete and amenable to translation into our chosen
target language.

Method A variant type may be developed into a concrete type if all the construc-
tors, destructors, reconstructors and subtype names are also defined in terms of the
concrete type, together with their definitions and axioms, and if the disjointness
and induction axioms are either already true for the concrete type or are provided
explicitly in the development. The method is to expand the variant type definition
into its constituent type, value and axiom definitions (using the rules described in
the RSL book [23]) and then to consider developments of each of these components
in turn.

Relation The development from variant to concrete type will be an implemen-
tation if the developments of the component type, value and axiom definitions are
all implementations.

Example Suppose we have a variant definition of the type Queue, where the
type El is defined elsewhere:
type Queue == empty | enq(El, Queue)
then if we expand this definition we see it is equivalent to
type Queue
value
empty : Queue,
enq : El x Queue — Queue
axiom
[empty_enq]
Vel : El q: Queue » empty # enqg(el, q),
[ Queue_induction |
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V p : Queue — Bool ¢
(p(empty) A (V e : ElL q: Queue » p(q) = p(enq(e, q)))) =
(¥ q: Queue - p(q))
and so we can develop it with, for example, the type Queue made concrete by being
set equal to lists of elements, provided we also supply definitions for empty and
enq plus either justification or statement of the disjointness axiom empty_enq and
the induction axiom Queue_induction:

type Queue = EI*
value
empty : Queue = (),
enq : El x Queue — Queue

enq(e, q) = q~(e)

Exercise

1. Define a depth function for the variant type Queue and for the concrete ver-
sion. (The depth of an empty queue is zero; each enq increases it by one.)

2. Check that the concrete version of the queue implements the abstract one.
For Queue_induction you will need to assume an induction rule for RSL lists
that a predicate p holds for any list if:

 p(()) holds
e p(el ~ (e)) holds if p(el) does for any list el and element e.

This is the “right” rule corresponding to all_list_left_induction defined in ap-
pendix B.6.

3.2.3 Replacing union and record definitions by concrete ones

Purpose Union and record type definitions are another way of writing variant
definitions. So the purpose of developing them is the same as in section 3.2.2.

Method Union and record definitions may be rewritten as variant definitions
using the rules in the RSL book [23]. They may then be developed as concrete
type definitions using the rules in the previous section.

3.2.4 Extending variant types containing wildcards

Purpose Wildcards are included as a means of allowing for variant types to be
extended later, either by the addition of more variants or by the addition of more
components within a variant.
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Method There are two ways in which a variant type may contain a wildcard: as
the whole variant or merely as its constructor name.
If the wildcard is a whole variant it may be developed in either of two ways:

1. It may be replaced by one or more variants.
2. It may be removed.

So if we have a variant type declaration

type id == variant—choicel | _

this may be developed by either

type id == variant—choicel | variant—choice2
(where variant—choice2 may include “_") or
type id == variant—choicel

If the wildcard appears as the constructor name, i.e. there are some components
with it, it may be developed in three ways (or in any combination of the three):
1. Other variants may be added. So
_ (component kind list)
may be developed into
_ (component _kind list) | variant_choice
2. Further components may be added. So
_ (component _kind list1)
may be developed into
_ (component_kind list1 , component_kind list2)
3. The wildcard may be replaced by constructor name. So
_ (component kind list)
may be developed into
id_or_op(component_kind _list)

Remember that for the wildcard as a constructor the options may be used in
combination. (Or simply note that after the first the second and third are still
available, and after the second the first and third are.)

Relation All these developments, for wildcards as whole variants or constructors,
are implementations. They are conservative extensions only if the development
retains a variant with a wildcard. (The presence of a wildcard prevents the inclusion
of an induction axiom in the equivalent expansion in terms of types, value signatures
and axioms.)

Exercise Show that
type Colour == red | green | _ (1)
is implemented by
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type Colour == red | green | blue (2)

by expanding each into its equivalent sort, value and axiom definitions.
Would we have implementation if the wildcard were omitted from (1)?

3.2.5 Introducing destructors and reconstructors

Purpose Destructors and reconstructors may be omitted at first if we are not
sure whether or not we will need them. We can include them if we discover them to
be useful, either for obtaining components (destructors) or replacing components
(reconstructors).

Method The destructors and reconstructors for component kinds in variants and
short records are optional. Component kinds may be developed by their introduc-
tion. So if we have a component kind consisting only of a type expression, either
a destructor or a reconstructor may be included. If it only has a destructor a
reconstructor may be added; if it only has a reconstructor a destructor may be
added.

It is not immediately apparent, and worth noting, that adding destructors can
change the properties of the values of a type, and in particular can make case
expressions deterministic when they were previously non-deterministic. Consider
the variant type definitions

type Collection == empty | insert(Elem, Collection) (1)
and
type Collection == empty | insert(first : Elem, rest : Collection) (2)

The difference between these definitions is that for (2) the names first and rest are
defined, together with the implicit axioms
axiom

[first_insert |

Ve : Elem, s : Collection « first(insert(e, s)) = e,

[rest_insert |

Ve : Elem, s : Collection » rest(insert(e, s)) = s

The extra axioms have two effects.

e First, these axioms would contradict an axiom

axiom
[insert_commutes |
V el, e2 : Elem, s : Collection *
insert(el, insert(e2, s)) = insert(e2, insert(el, s))
since we could then use first_insert to prove that
Vel,e2: Elem ¢ el = e2

(by applying first to each side) which is in general not true. So we can only
consistently add an axiom like insert_commutes to the type definition (1) that
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does not include the destructor first. This means that (2) defines a type that
is more like “list” than “set”, with first and rest corresponding to hd and tl
respectively.
e Secondly, consider a case expression over an expression exp of type Collection:
case exp of
empty — ...,
insert(e, s) — e
end
For the definition (2) the value returned in the second case branch must be
the same as first(exp) and hence must be a unique value, as we can see from
the implied axiom first_insert. But for the definition (1) the result returned
in the second case branch may be non-deterministic. For example, if exp was
insert(el, insert(e2, empty)) and we also had the axiom insert_commutes, the
result of the case expression would be el [] e2.

So we can see that adding destructors not only adds new functions with the ap-
propriate properties: it also affects the properties of values of the type.

Relation Introducing destructors and reconstructors always gives an implemen-
tation.

Exercise Show that the development from (1) to (2) is not a conservative exten-
sion, by finding a property that does not mention first or rest and is true for (2)
but may not be true for (1).

3.2.6 Extending signature definitions

Purpose The least amount of information we can initially give about a value
is its signature (its name and type). We do this so that we can later give more
information about its value — either partial information in an implicit definition,
or complete information in an explicit definition.

Method If a value has only been given a signature, it may be developed by giving
it an implicit or explicit definition. So

value single_typing
may be developed into

value single_typing ¢ pure_logical value_expr
or
value single_typing = value_expr

If the signature is not a single_typing, it must be split into separate definitions to
be given definitions. For example

value x, y : Int
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may be developed into

value
x : Int = 0,
y:Intey >0

A single typing whose binding is an identifier and whose type expression involves
a function arrow may be developed into an implicit or explicit function definition.
So
value id : function_type_expr
may be developed into
value
id : function_type_expr
id formal function_parameter—string = value_expr opt—pre_condition
or
value
id : function_type_expr
id formal function_parameter—string post_condition opt—pre_condition

Relation All the developments in this section are implementations.

Exercise Which of the following developments are implementations?

Original Development
value x : Nat value x : Nat » x < 2
value x : Nat value x : Int » x < 2
value x : Nat value x : Int =1
value f : Nat — Nat value f : Nat — Nat

flx) =x+1
value f : Nat — Nat value f : Nat — Nat

f(x) as r post r > x

3.2.7 Replacing implicit value definitions by more explicit ones

Purpose If we have given only an implicit definition for a value we must, at
some point before we can hope to translate it into a target language, develop it
into an explicit definition. We may choose to do this in one step, or we may choose
to gradually restrict it towards a precise definition by strengthening its defining
condition.
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Method An implicit value or function definition may be replaced by either a less
implicit definition or by an explicit one, provided the new definition has the same
signature as the old and its definition is sufficient to imply the theory of the old
one.

Less implicit definitions We see from appendix B.8.2 that the theory of an
implicit value declaration is given by
properties(value id : T » peb) ~ (3id': T «id' = id) A (p_eb = true)
We have to show that these properties hold in the scope of the new definition. For
example
value x : Int + x > 0
is implemented by
value x : Int e x > 0 A x < 10
since in the scope of the new definition
(3b:Int+b=x)A (x> 0= true)
holds.
Note that the existential conjunct will always hold immediately if the new def-
inition has a type which is equal to or a subtype of the old, since we will use the

value as a “witness”.
For implicit function definitions the theory is given by
properties(value id : T = a T1 id(b) as b’ post ro_eb’ pre ro_eb) ~
(Fid': T = aTl+id =id) A
(OVb: T eid(express(b)) as b’ post ro_eb’ pre ro_eb)
(where the partial function arrows may be replaced by total function arrows).
Again the existential conjunct is generally satisfied by the same type being used
in the new definition, so the condition reduces to proving the postcondition. If the
new definition is implicit, i.e. involves a postcondition, this amounts to showing
that

e The old precondition implies the new (with missing preconditions being taken
to be true).
e The new postcondition always implies the old when the old precondition (if
any) holds.
For example the implicit function definition
f: Nat — Nat
f(x) as r post r > x
is implemented by

f: Nat — Nat
f(x) as r post r > 2xx

since
Vx:NateVr: Nater>2xx=r1 > X
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Explicit definitions For example
valuex : Int » x > 0
is implemented by
valuex : Int =1
since in the context of the new definition
(Fb:Inteb=x)Ax>0
becomes
(db:Intsb=1)A1>0
which is clearly true. An explicit value or applicative function definition may be

trivially rewritten as an implicit one and the rule above (that the new condition
must imply the old) used to show implementation. For example,

f: Nat — Nat
f(x) as r post r>x

is implemented by
f: Nat — Nat
f(x) = 2#x + 1
since this is equivalent to
f: Nat — Nat
f(x) as r post r = (2%x + 1)
and
Vx:NateVr: Nater=(2%xx+1) =r >x

For an imperative function this method may not work — the implicit form can have
references to values of the variables before and after the execution of the function,
while the explicit one will contain assignments. We proceed as in the following
example.

Example Suppose we have a variable representing a stack as a list of elements
variable stack : Elem*
and implicitly specified push and pop functions

value
push: Elem — write stack Unit
push(e) post stack = (e)“stack,

pop: Unit = write stack Elem
pop() as r post stack = (r)“stack pre stack # ()

Now suppose we develop explicit definitions for push and pop:

value
push: Elem — write stack Unit
push(e) = stack := (e)“stack,
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pop: Unit = write stack Elem
pop() = let r = hd stack in stack := tl stack ; r end
pre stack # ()

We need to justify the properties of the old definitions in the context of these new
ones. The theory of an implicit function definition (see appendix B.8.2) is given
by
properties(value id : T = a T1 id(b) as b’ post ro_eb’ pre ro_eb) ~

(Fid': T 3 aTl+id =id) A

(OVb: T e id(express(b)) as b’ post ro_eb’ pre ro_eb)
(where the partial function arrows may be replaced by total function arrows).

The first conjunct will be satisfied immediately if the new definition, as here, has
the same type. So we need to justify the second conjunct. For push we have to
justify

OV e: Elem - push(e) post stack = (e) “stack (1)
A post expression may be turned into an expression not involving post provided
a convergence condition is satisfied. We use the proof rule

[ post_expansion |
e as b post ro_eb’ pre ro_eb ~
(let v_hook; = vy, ..., v_hook, = vy,
b = e in ro_eb’[v_hook;/v;'| end

let b = e in true end) pre ro_eb
when e post true pre ro_eb

where ro_eb'[v_hook; /v; | means substitute v_hook; for all free occurrences of v;" in
roeb' (1 < i < n). The names v_hook; must be chosen so they do not occur in e
or ro_eb'.

The “when” condition is the convergence condition.

The expression on the right-hand side of the proof rule effectively says that the
postcondition is true after executing the expression e. e is executed on both sides
of the equivalence so that its effects are allowed for. For a function like push which
returns a Unit value, when the result naming is missing, the rule reduces to

e post ro_eb’ pre ro_eb ~
(let v_hook; = vy, ..., v_hook, = v, in
e ; ro_eb’[ v_hook; /v;' | end

e ; true) pre ro_eb
when e post true pre ro_eb

We can apply post_expansion to (1). The applicability condition is immediately
satisfied since push is defined to be a total function by its signature. We obtain
(ignoring quantification, which commutes with O)
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O (let stack_hook = stack in push(e) ; stack = (e) stack_hook end

push(e) ; true)
To justify this we first use the rule always_applicationl to introduce an arbitrary
initial assignment to the variable stack. This gives

Vs : Elem* « O
stack := s ; let stack_hook = stack in push(e) ; stack = (e) “stack_hook end

stack := s ; push(e) ; true
We are in the scope of the new definition, so (since there is no precondition) we
can unfold the applications of push, propagate the initial assignments using the
rule assignment_sequence_propagation and absorb the let expression to obtain

Vs : Elem* « O
stack := s ; stack := (e)”s ; stack = (e)”s

stack := s ; stack := (e)”s ; true
which is immediate after propagating the second assignment on the left-hand side
of the equivalence.
For pop we need to justify

O pop() as r post stack’ = (r) “stack pre stack # () (2)
When we apply the rule post_expansion to (2) we will obtain

O let stack_hook = stack, r = pop() in stack_hook = (r)~stack end

pop() ; true pre stack # () (3)
plus a side condition

pop() post true pre stack # () (4)

Informally, we can see that the side condition (4) is true as the precondition allows
the call of pop to be unfolded. The only possibly non-convergent expressions in
the definition of pop are “hd stack” and “tl stack” and these converge given the
precondition. The main condition (3) can be tackled in the same way as we justified
the condition (1) for push.

Note that the unfolds of pop will always go through if the old precondition
implies the new. So we can summarize with the following checks to show that an
explicit definition implements an originally implicit, now axiomatic, one:

e that the type of the new signature is a subtype of the type of the old signature

e that any precondition of the new is implied by a precondition of the old

e that the postcondition of the old is provable from the axiom or definition of
the new

A slightly more complicated example of turning a post expression into an expression
not involving post may be found in section 3.2.14.
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Relation Making value definitions more explicit gives implementation as long as
the principles in this section are followed.

Exercise Find explicit definitions implementing the following implicit ones:
value

f: Int — Int
f(x)asrpostr >0A (r=xVr=0-—x),

g : Int* = Int

g(x) as r post
r € elems x A
(Vi:Int-i€indsx = x(i) <r)

pre x # ()

3.2.8 Replacing explicit value definitions with other explicit ones

Purpose This may seem a waste of time but is commonly done to obtain a more
efficient algorithm.

Method An example which also involves introducing local definitions into a new
explicit function may be found in section 3.2.9.

Relation The theory of the old, explicit definition is given by
properties(value id : T =pe) ~ (Fid' : T «id' =id) A (id = p-e)
for a value and
properties(value id : T = a T1 id(b) = e pre ro_eb) ~

(Fid: TS5aTleid =id) A (OVDb: T +id(express(b)) = e pre ro_eb)
for a function (where the partial function arrows may be replaced by total function
arrows). If the new value or function has the same type as the old, the existential
conjunct is part of the new theory. Hence we will then have implementation if
the new explicit definition satisfies the second conjunct, i.e. if the new definition
implies the old definition regarded as an axiom.

Exercise Show that

value
factorial : Nat — Nat
factorial(x) = if x = 0 then 1 else x * factorial(x—1) end
is implemented by
value
factorial : Nat — Nat
factorial(x) = if x < 2 then 1 else x * (x—1) * factorial(x—2) end
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3.2.9 Introducing local definitions

Purpose Local definitions are typically used to allow more efficient algorithms.
The local definitions may introduce useful functions, variables, channels, or objects.
They are made local for several reasons:

e They will not be exported from the module.

e They are textually close to the point at which they are used.

e Local variables and channels allow, respectively, imperative bodies for applica-
tive functions, and concurrent bodies for sequential ones.

Method Local definitions are introduced into the body of a value definition and
the value defined in terms of them.

Example A function for reversing a list of elements might be defined

value
rev : Elem* — Elem*
rev(l) =
case | of
(=0,
(h)~t — rev(t)~(h)
end
It is well known that this function is not as efficient as it might be as the basis for
a programming language implementation because it is not tail recursive. We can
introduce a local function revl that is a more efficient form of rev and define rev
in terms of it:

value
rev : Elem* — Elem*
rev(l) =
local
value
revl : Elem* x Elem* — Elem*
revl(to_do, done) =
case to_do of
() — done,
(h)~t — revl(t, (h)~done)
end
in revl(l, {)) end
Note that this is a case where revl has a different interface from rev (it takes a
pair of parameters) and so cannot be used directly to implement rev.
Another version of this example, where variables are used with the same purpose
as the parameters of revl, is
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value
rev : Elem* — Elem*
rev(l) =
local
variable
to_do : Elem* :=1,
done : Elem* := {
in
while to_do # () do
done := (hd to_do)~done ;
to_do := tl to_do
end ;
done
end

(The development of this version is described in section 3.3.3.) Note here that
while the body of rev is imperative (using variables) the accesses to the variables
do not appear in its signature as they are local to it. So this is an example of an
imperative body for an applicative function.

For a third version of the same example, using an embedded object, suppose
we have defined a scheme with a number of list processing functions, including a
reverse function rev. We can provide a local instantiation of such a scheme to gain
access to the reverse function. Such a scheme will presumably be parameterized,
so we will need to provide it with a parameter of the appropriate kind. Suppose
it is called LIST_FUNS and has a parameter EL : class type El end. Then our
reverse function could be written

value
rev : Elem* — Elem*
rev(l) =
local
object
E : class type El = Elem end,
L : LIST_FUNS(E)
in L.rev(l) end

Uniqueness of local declarations It is important that the declarations in a
local expression provide a unique meaning for each name they define to avoid non-
determinacy. In particular:

e for value declarations, it must be possible to prove that there exists a unique
value (within its type) for each name defined

e for variable declarations, there must be a unique initial value (within the
variable’s type).
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There is a special function removable used in the proof rule local_absorption that
is true only if the the local declarations define values and the initial values of
variables uniquely and also if they only extend their surrounding class expression
conservatively. The notion of conservative extension is added so that introducing
or removing the local expression does not change the properties of the surrounding
class expression.

removable will be satisfied if

1. local declarations only define type abbreviations, channel definitions, ini-
tialised variable definitions, explicit value definitions and object definitions
with the same restrictions in their defining classes.

2. local declarations are consistent with subtypes as described in section 3.12.2.1.

Relation Introducing local definitions will give an implementation if the new
definition implements the old (plus any relevant axioms). The principles for show-
ing implementation are in section 3.2.13, 3.2.14 or 3.2.15 if the old definition was
in signature axiom form and was, respectively, applicative sequential, imperative
sequential or concurrent; in section 3.2.7 if the old definition was implicit; in sec-
tion 3.2.8 if the old definition was explicit.

Exercise Define an implementation of the following function, using one or more
local variables and a while loop:

value
sum : Int* — Int
sum(x) = if x = () then 0 else hd x + sum(tl x) end

3.2.10 Applicative decomposition of functions

Purpose At a particular level of detail we will probably specify that a particular
action is carried out by a single function, which we might specify by signature and
possibly some axioms, or implicitly, or explicitly. As we introduce more detail we
often want to break such actions down into component actions, perhaps introducing
some new functions to perform particular parts, and then define the original action
as some composition of the components. Such compositions may be functional,
sequential or concurrent. The technique of defining component functions and then
formulating the original action as some composition of these components is called
functional decomposition.

Method Sections 3.2.6, 3.2.7 and 3.2.8 describe how to create explicit functions
to implement less explicit ones, so this section (and the two following ones) are
purely about how to create and reason about the properties of compositions of
functions.

Such compositions take one of three forms:
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1. functional composition in which applying g to the result of applying f to x is
written g(f(x)) or (equivalently) as (gof)(x)

2. sequential composition in which applying g to the result of applying f to x is
written f(x) ; g(). In this case the result of f is recorded in some state change
which is read (and perhaps further changed) by g

3. concurrent composition in which f and g are executed in parallel, typically
with some communication between them, written using the parallel combina-
tor as, for example, f(x) || g()

In this section we discuss functional decomposition. Sequential decomposition is
discussed in section 3.2.11 and concurrent decomposition in section 3.2.12.

Relation Decompositions will be implementations if the composed functions to-
gether implement the original. So the implementation principles in sections 3.2.6,
3.2.7 and 3.2.8 are relevant here.

Example Suppose we are concerned with a spelling checker. We might consider
two phases — the first to separate out words and the second to check words against
a dictionary, creating a list of mis-spelled words.

We might start with the following specification. We assume definition of a func-
tion last that returns the last element of a non-empty list. We also assume defini-
tions of the predicates is_word_char and is_in_dict.
type

Word = {| w : Text -

w # "™ A (Vc: Char « ¢ € elems w = is_word_char(c)) |}
value

is_sub_word : Word x Text — Bool

is_sub_word(w, t) =

(I p, q: Text »
t=p W qgA
(p ="V ~is_word char(last(p))) A
(q =""V ~is_word_char(hd q))),

|

check : Text — Word*
check(t) as | post
(Vw: Word » (w € elems 1) = (is_sub_word(w, t) A ~is_in_dict(w)))

A Word is a non-empty sequence of characters each of which satisfies is_.word_char.
A sub-word of a text is a word that is part of the text and that has on each side a
text that is either empty or has a non-word character adjacent to the sub-word. A
word is in the output sequence produced by check if and only if it is a sub-word of
the text and is not in the dictionary.

This might be considered too loose a specification in that the mis-spelled words
are allowed to appear in any order and might be duplicated, or it might be con-
sidered a good specification in that these unimportant matters are left for the
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implementor. Conversely, one could also argue that the use of a list for the result
was poor setting of requirements — they ought to say “set”.

We now consider the decomposition of this problem into two phases. The first
will produce a sequence of words from the text. The second will check each word
in the sequence against the dictionary. A functional decomposition might then
produce for check

value
check : Text — Word*
check(t) =
local
value words : Text —+ Word*
axiom
words("") = (),
Vt: Text »
words(t) = words(tl t) pre t # " A ~is_word_char(hd t),
Vw: Word, r, t : Text «
words(t) = (w) words(r)
pre t = wr A is_sub_word(w, t)
value
check_words : Word* — Word*
check words(l) =
case | of
0 =0
(h)~t —
if is_in_dict(h)
then check_words(t)
else (h)~check_words(t)
end
end
in check words(words(t)) end

Exercise A stream of events is to be filtered, producing an output stream of
events that satisfy three tests. Representing the streams as lists we have a specifi-
cation

value
testl, test2, test3 : Event — Bool,
filter : Event* — Event*
filter(el) =
case el of

() =0
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(h)~t —
if test1(h) A test2(h) A test3(h) then (h) ~filter(t)
else filter(t) end
end

The implementation of the test functions means that testl is much faster in ex-
ecution than test2, and test2 much faster than test3, and processing speed is
important. Define a functional decomposition of filter. If separate, specialized
hardware is to be used for some of the tests, would a sequential or a concurrent
decomposition be more appropriate?

3.2.11 Sequential decomposition of functions

Purpose The same as the applicative case in section 3.2.10.

Method We illustrate the method starting from the same example of the spelling
checker from section 3.2.10.

For a sequential decomposition we create a variable to hold the output of words
and the input of check_words, so our formulation of check is

value
check : Text — Word*
check(t) =
local
variable wl : Word* := ()
value words : Text — write wl Unit
axiom
words("") = skip,
Vt: Text o
words(t) = words(tl t) pre t # "' A ~is_word_char(hd t),
Vw: Word, r, t : Text ¢
words(t) = (wl := wl™(w) ; words(r))
pre t = wr A is_sub_word(w, t)
value
check_words : Unit — write wl Word*
check words() =
case wl of
(=0,
(h)~t —
if is_in dict(h)
then wl :=t ; check_words()
else wl := t ; (h)~check_words()
end
end
in words(t) ; check_words() end
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Relation Decompositions will be implementations if the composed functions to-
gether implement the original. So the implementation principles in sections 3.2.6,
3.2.7 and 3.2.8 are relevant here.

Exercise The definition of the local imperative function words breaks the rules
for uniqueness and conservativeness of local definitions from section 3.2.9; it uses
axioms rather than an explicit definition. Develop it into an explicit form.

3.2.12 Concurrent decomposition of functions

Purpose The same as the applicative case in section 3.2.10.

Method The method is very similar to the applicative and sequential cases. We
define processes and use channels to pass the values between them.

Since concurrent processes can only be of Unit type any results generated will
need to be output on a channel or stored in a variable.

Relation Decompositions will be implementations if the composed functions to-
gether implement the original. So the implementation principles in sections 3.2.6,
3.2.7 and 3.2.8 are relevant here.

Exercise Define a concurrent decomposition of the check function from sec-
tion 3.2.10. words should output each word as it finds it. This means that words
will also need to signal the end of its output so that check_words can terminate.

3.2.13 Replacing applicative axioms by definitions

Purpose One way of describing the process of development is as a process of
moving from a description of desired properties to a description of values with
those properties. So the notion of replacing properties (typically expressed as
axioms) by value definitions is a central one. In this section we deal with the
applicative sequential case and in the following ones with the imperative sequential
and concurrent versions. The uniform manner in which RSL treats these different
aspects means that these three sections are very similar.

Method To replace an old description in which values have only signatures and
are described by axioms by a new description based on definitions, we need to
ensure that the old properties are preserved. The theory of the signature (see
appendix B.8.2) is given by

properties(value id : T) ~ Jid': T «id' =id
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which is just the existence of a value of the appropriate type, and will be preserved
if the the signature of the new definition has a type which is a subtype of the type
of the signature of the old definition.

The theory of an axiom is given by
properties(axiom [id ] ro_eb) ~ O ro_eb = true
So we also need to ensure that the old axioms are always true for the new values,
i.e. we show that the axioms always follow as a consequence of our definitions.
There is an immediate question of whether the definitions are explicit or implicit
(i.e. involve postconditions). We will deal first with the explicit case.

Explicit definitions If the definitions are explicit we can simply unfold instances
of the value in the axioms and try to reduce them to true. For a typical axiom of
the form el = e2 this presents no methodological problems.

Example The stack axiom for top might be
axiom

Vs : Stack, e : Elem

top(push(e, s)) = e

If we have a definition for top in which we have implemented the type Stack as
lists of elements we might have the following definitions for push and top:
value

push : Elem x Stack — Stack

push(e, s) = (e)7s,

top : Stack — Elem

top(s) = hd s

pre s # ()
We ignore quantification, and note that ro_eb = true reduces to ro_eb when ro_eb
is convergent, and that O ro_eb reduces to ro_eb when ro_eb is pure. Thus the
condition to be justified is

top(push(e, s)) = e
To justify this we simply unfold the instances of push and top (ensuring that the
arguments are defined and that any preconditions are satisfied). This gives

hd (e)"s=e
which is immediate.

But how do we interpret axioms that involve post expressions? There are rules
for rewriting post expressions as expressions not involving post. An expression

e as b post ro_eb’ pre ro_eb

in which e is read-only and in which ro_eb’ contains no pre-names is equivalent
(using the rule readonly_post_expansion) to

let b = e in ro_eb’ end = true pre ro_eb
provided that
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e post true pre ro_eb

i.e. that the precondition ensures that e converges. We will use such a rule to
rewrite the condition obtained from the axiom and then try to justify it using our
explicit definition.

Example Suppose we specify axiomatically a function to remove the smallest
item from a list of integers:

value remove_min : Int* = Int x Int*
axiom
V1:Int*e
remove min(l) as (i, 11)
post (Vj: Inte+j€elemsll =i<j)A
(312,13 : Int* - 127°()"13 =1 A 12713 = 11)
pre 17 () (1)
An explicit definition to implement remove_min might be
value
remove_min : Int* = Int x Int*
remove min(l) =
local
value
split : Int* x Int* X Int* — Int x Int*
split(left, right, to_do) =
case to_do of
() — (hd right, left~(tl right)),
(h)~t —
if h < hd right
then split(leftright, (h), t)
else split(left, right~(h), t)
end
end
pre right # ()
in split({), (hd 1), t11) end
pre 1 # ()
The intuition behind split is that at any point to_do is the list of integers not yet
examined, hd right is the smallest found so far, left is the list of those to the left
of the smallest so far and tl right is the list of those to its right.

To justify that our definition implements the original specification of remove_min,
we first note that the signature is unchanged. We then need to show original axiom
(1) holds.

We use the rule readonly_post_expansion (which is applicable as all the expres-

sions involved are pure, and so definitely read-only) to rewrite the condition from
(1) as
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V1:Int*e
let (i, 11) = remove_min(l) in
(Vj:Int-jcelemsll =i<j)A
(312,13 : Int* -« 127(1)"13 =1 A 12713 = 11)
end

true

pre | # ()

which generates the side condition
remove min(l) post true pre 1 # ()
The outline of the justification is now

e If ] is empty the condition and side condition are vacuously true. If I is
not empty we have a constructive algorithm for remove_min in terms of split
(whose precondition we note is true) for which we can easily check that the
recursion is well founded. (The third argument to split is initially finite,
decreases in length by one on each recursive call, and split terminates when
it is empty.) The only partial operators involved are occurrences of hd and
tl protected by preconditions. So termination is guaranteed. In addition,
all constructs are deterministic, so we have convergence, satisfying the side
condition.

e For each recursive call of split the concatenation of its three arguments is
constant, since

left~right~((h)~t) = (left"right)~(h)~t = left~(right~(h))"t
On the first call they concatenate to I, and so on termination (since to_do is
then empty) we must have

left"right =1
We also note that right is always non-empty (on each call it has at least one
element) and so we can construct 12 and I3 as left and tl right respectively.

e All that remains to be shown is that i is a minimal element of 11. We can see

from the recursive calls of split that it is always true that

1. hd right is no larger than any number in tl right
2. hd right is no larger than any number in left

so hd right is no larger than any number in left or tl right, and hence in
left™tl right. On termination left~tl right is equal to I1.

Implicit definitions If the new function definition is implicit we cannot adopt
the approach of unfolding applications of the function. We have to justify the old
axiom using the postcondition for the function. We can do this by noting that the
theory of the new function (see appendix B.8.2) is given by
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properties(value id : T = a T1 id(b) as b’ post ro_eb’ pre ro_eb) ~

(Fid': T S aTleid =id) A

(OVb: T-id(express(b)) as b’ post ro_eb’ pre ro_eb)
(where the partial function arrows may be replaced by total function arrows).

The second conjunct gives us a theorem (in the form of a post expression) we can
use in the justification of the old axiom. So we can use the readonly_post_expansion
rule quoted earlier in this section to turn a post expression into an expression not
involving post. The original axiom can then be justified to be a consequence
of this new property (plus the properties of any other relevant new axioms and
definitions.) However, it should be noted that having to show implementation of
axioms by an implicit definition is not likely to be a common situation. There
seems little point in replacing axioms by definitions until we are ready to write
down explicit definitions.

Relation If the principles given in this section are followed, the replacement of
axioms by definitions will be an implementation.

Exercise Provide an explicit definition for the applicative version of the function
words from section 3.2.10.

3.2.14 Replacing sequential axioms by definitions

Purpose This is the counterpart to section 3.2.13 when the functions involved
are sequential imperative, i.e. they typically involve the sequential composition

w.n

operator “;” and use variables.

Method Asin section 3.2.13 the first check is that the type of the signature of the
new value definition is a subtype of the type of the signature of the old definition.
We consider two cases, when the new definitions are explicit and implicit.

Explicit definitions As with applicative functions, the theory of the old axiom
is simply that the axiom is always true, and this gives the condition to be justified.
The technique is basically to unfold applications of the functions in the condition.

Example An axiom for an abstract imperative stack relating the generator push
with the (hidden) observer list_of might be

axiom
Ve : Elem »
push(e) ; list_of() = let st = list_of() in push(e) ; (e)"st end
If we implement the Stack type as a list of elements we might give the following
explicit definitions for push and list_of:
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variable stack : Stack

value
push : Elem — write stack Unit
push(e) = stack := (e) stack,
list_of : Unit — read any Stack
list_of() = stack

The condition to be justified is (ignoring quantification, which commutes with O,
and noting that ro_eb = true reduces to ro_eb when ro_eb is convergent)

O push(e) ; list_of() = let st = list_of() in push(e) ; (e) st end
This can be justified by unfolding push and list_of and then using the techniques
described in section 4.4.2.4.

But how do we interpret axioms that involve post expression? There is a rule
post_expansion for turning a post expression into an expression not involving post
that is presented in section 3.2.7. An expression

e as b post ro_eb’ pre ro_eb

in which ro_eb’ mentions pre-names v;' (1 < i < n) may be rewritten by the proof
rule

[ post_expansion |
e as b post ro_eb’ pre ro_eb ~
(let v_hook; = vy, ..., v_hook, = vy,
b = e in ro_eb’[v_hook;/v;'| end

let b = e in true end)
pre ro_eb
when e post true pre ro_eb

where ro_eb'[ v_hook; /v;' | means substitute v_hook; for all free occurrences of v; in
ro_eb’ (1 < i< n). The names v_hook; must be chosen so that they do not occur
in e or ro_eb.

Example We give a sequential imperative version of the specification used in
section 3.2.13 for removing the smallest number from a list of numbers. We will
hold the list of numbers in a variable and return the smallest as a result of the
function remove_min. The axiomatic specification is

variable | : Int*
value remove_min : Unit = write | Int
axiom
remove_min() as i
post (Vj:Int+jecelems]l=1<j) A
(312,13 : Int* - 12°(i)"13 = I A 12713 = 1)
prel # ()

An explicit definition to implement remove_min might be
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variable | : Int*
value
remove_min : Unit — write | Int
remove_min() =
local
variable
left : Int* := (),
right : Int* := (hd 1),
to_do : Int* :=tl1
value
split : Unit — write any Int
split() =
while to_do # () do
let h = hd to_do in
if h < hd right
then left := left~right ; right := (h)
else right := right~(h)
end
end ;
to_do := tl to_do
end ;
1 := left~(tl right) ; hd right
pre right # ()
in split() end
pre 1l # ()
To justify that our definition implements the original specification of remove_min
we first note that the signature is unchanged. We then use the post_expansion
rule quoted earlier to rewrite the condition obtained from the theory of the axiom
involving post. The rewritten condition is

O let 1.hook =1, i = remove_min() in
(Vij:Intejecelemsl=1<j A
(312,13 : Int* » 12~(i)~13 = Lhook A 12713 = 1)
end

let i = remove min() in true end
prel# ()
plus a side condition
remove min() post true pre 1 # ()

Implicit definitions If the new function definition is implicit we cannot adopt
the approach of unfolding applications of the function. We have to justify the old
axiom using the postcondition for the function. We can do this by noting that the
theory of the new function (see appendix B.8.2) is given by
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properties(value id : T = a T1 id(b) as b’ post ro_eb’ pre ro_eb) ~

(Fid': T S aTleid =id) A

(OVb: T-id(express(b)) as b’ post ro_eb’ pre ro_eb)
(where the partial function arrows may be replaced by total function arrows).

The second component gives us a post expression as a theorem we can use in the
justification of the old axiom. So we can use the post_expansion rule quoted earlier
in this section to turn the a post expression into an expression not involving post.
The original axiom can then be justified to be a consequence of this new theory (plus
the theory of any other relevant new axioms and definitions.) However, it should
be noted that having to show implementation of axioms by an implicit definition is
not likely to be a common situation. There seems little point in replacing axioms
by definitions until we are ready to write down explicit definitions.

Relation If the principles given in this section are followed, the replacement of
axioms by definitions will be an implementation.

Exercise Show that the explicit definition of remove_min in this section imple-
ments its specification. (The argument is similar to that for the applicative version
in section 3.2.13.)

3.2.15 Replacing concurrent axioms by definitions

Purpose This is the counterpart to sections 3.2.13 and 3.2.14 when the functions
involved are concurrent, i.e. they involve communication on channels.

Method As in sections 3.2.13 and 3.2.14 the first check is that the new value
definitions have the same signatures as the old.

This time there is no need to consider implicit definitions — there is no way
to describe a non-terminating concurrent function by RSL postconditions. So we
consider implementing axioms involving communication with explicit definitions.

The explicit form of an axiomatic description is easy to construct in outline from
the axioms. The structure of the main process is a while loop containing an external
choice over expressions that start with each possible initial input or output. These
will usually comprise all the channels in the signature, but there may be some that
only occur following a previous communication. So we have the form

main() = while true doe; [| e2 [] ... [] en end
Each expression ¢; then generally takes the form
communication ; ...

(where communication is an input or an output expression) but there are often
cases when the communication is only possible under some conditions, in which
case the usual form is

if p() then communication ; ... else stop end
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The technique for showing implementation is then basically as before — we unfold
the function applications in the axioms and try to show them to be always true.

Example In the tutorial in chapter 2 we had an abstract concurrent queue
C_QUEUEQ defined in section 2.8.6.1 in part by

object I : L. QUEUEO(P)
value
main : Unit — in any out any write any Unit,
is_empty : Unit — in any out any Bool
axiom
[is_empty_ax |
V test : Bool = Unit e
main() {} test(is_empty()) =
let b = Lis_empty() in main() {} test(b) end

We also had an implementation C_.QUEUE] defined in section 2.8.6.3 in part by

object I : L. QUEUEL(P)
object CH : class channel is_empty : Bool, ... end
value
main : Unit — in any out any write any Unit,
main() =
while true do
[
CH.is_empty ! Lis_empty/()
end,
is_empty : Unit — in any out any Bool
is_empty() = CH.is_empty?

To show this is an implementation, we show that each axiom of the abstract speci-
fication is true in the intended implementation, by unfolding the function applica-
tions and simplifying. In the case of main we will also need to “unroll” the while
loop once. So we have

main() {f test(is_empty())

main() {} let b = is_empty() in test(b) end

main() } let b = is_empty_c? in test(b) end

((... [] is_empty_c! Lis_empty()) ; main()) # let b = is_empty_c? in test(b) end

let b = Lis_empty() in main() {} test(b) end

as required.
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Relation If the principles given in this section are followed, the replacement of
axioms by definitions will be an implementation.

Exercise Check that the other axioms from C_QUEUEQ hold in C_QUEUE].

3.3 Changing between applicative and imperative

Purpose There is a general choice of style between applicative, where all val-
ues passed between functions are passed as parameters, and imperative, where
some values may be held in variables. The most common change is probably from
applicative to imperative. This was discussed at some length in the tutorial in
chapter 2. The main reasons for this change are that applicative specifications
are easiest to reason about while imperative ones are often more efficient as the
basis for programming language implementations. In this section we deal with the
change to sequential imperative; that to concurrent imperative is dealt with in
section 3.4.

Method It is one of the aims of the design of RSL that applicative and imperative
constructs are as similar as possible. This means that it is comparatively easy to
change a specification from one style to the other. The method is described in the
tutorial in chapter 2 and is only summarized here.

We need first to identify the type T of the variable(s), the “type of interest”.
(There may be more than one variable when this type is a product.) Suppose we
have other types U and V not dependent on T and applicative functions f and g
with signatures

value
f:UxT—T,
g: T—>V

Then f is a generator of T and g is an observer of T If in the imperative case we
create the variable(s) of type T, the imperative version of f will write to them and
g will read them. So the imperative counterpart is

variable ...

value
f: U — write any Unit
g : Unit — read any V

Note that any gaps in the types after we incorporate references to T in variable
accesses are filled with Unit.

Each applicative generator and observer will have a corresponding imperative
function. We can tabulate the types of the imperative functions corresponding to

applicative constants of type T and applicative functions with types dependent on
T:
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Applicative Imperative
T Unit — write any Unit
T—T Unit — write any Unit
(UxT)—=T U — write any Unit
T—U Unit — read any U
(UxT)—(VxT) U — write any V

Now we consider what happens to applications of f and g in expressions. Describing
this process abstractly, as we do in the remainder of this section, makes it sound
more difficult than it is in practice. Readers may find it helpful to look first at the
examples in sections 3.3.1, 3.3.2 and 3.3.3.

The applicative f will have calls of the form f(e, s) which will become in the
imperative form f(e). Similarly the applications of g will be g(s) in the applicative
version and g() in the imperative. But we have ignored the problem that in the ap-
plicative version f has result type T' and in the imperative version f has result type
Unit. For example, we might have applicative expressions of the form g(f(e, s)).

The problem is not difficult to solve. Any expression € in which f occurs only
in the form f(e, s) can be written (assuming v is not free in €', that f is purely
applicative and that f{e, s) is convergent)

let v = f(e, s) in €'[v/f(e, s) ] end
where the notation e[x/y] means the expression formed by substituting x for every
free occurrence of y in e. It is now clear that in the imperative version the v
becomes a variable which is accessed directly, and so the imperative counterpart of
¢ will be

fle) ; €’
where € is a rewrite of €'[v/f(e, s)] in which occurrences of v are typically replaced
by “()” when they appear as arguments of functions with read access to the variable

v. So in particular, g(f(e, s)) will become in the imperative formulation f(e) ; g()
while, for example, f(e, s) + f(e, s) would become f(e) ; v + v.

3.3.1 Changing between function parameters and global variables

Purpose The overall purpose is that described in section 3.3. In this particular
case we also wish to make the change apply to the interfaces of the functions
involved.

Relation If the change between applicative and imperative increases the variable
accesses in the types of one or more of the functions declared at the top level of
the module, the change cannot be an implementation because it cannot be a static
implementation. So the relation is then a static change.
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Method This is shown in the examples in the tutorial, such as the development
of the imperative  QUEUE]1 from the applicative A QUEUEI in section 2.8.5.3.

Exercise Suppose we define an applicative one place buffer:

scheme A_OPB(E : ELEM) =
hide empty, opb, val in
class
type Opb == empty | opb(val : E.Elem)
value
/* generators */
put : E.Elem x Opb = Opb
put(e, b) = opb(e) pre is_empty(b),
get : Opb = E.Elem x Opb
get(b) = (val(b),empty) pre ~is_empty(b),
/* observer x/
is_empty : Opb — Bool
is_empty(b) = b = empty
end
Develop the concrete sequential imperative version I_OPB.

3.3.2 Introducing or removing local variables

Purpose The overall purpose is that described in section 3.3. In this particular
case we do not wish to make the change apply to the types of the functions involved,
and so any variables must be local.

Method We introduce or remove variables, generally exchanging them for func-
tion parameters. In the extreme case we can have an imperative body for an
applicative function, or vice versa. An example is given in section 3.3.3, where an
applicative function for reversing a list is developed using two local variables and
an imperative body.

Relation If the variables introduced or removed are local to a function there is
no change to the function type and so the change will be an implementation if the
new function body implements the old. For the relevant principles see section 3.2.6
if variables are being introduced into a value previously only given a signature, sec-
tion 3.2.7 if variables are being introduced into a value previously defined implicitly,
and section 3.2.8 if the old and new versions are both explicit definitions.

Exercise The function can_be_true is specified as follows:
value
can_be_true : Int x Int x (Int — Bool) — Bool
can_be true(i, j,p) = (Fk: Int - i <k A k <j A p(k))
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can_be_true(i, j, p) is true if there is at least one value in the range i to j for which
the boolean function p returns true.

Develop an implementation of can_be_true using a local expression with a variable
and a for loop.

Specify and develop a similar function always_true.

There is an example similar to can_be_true in the tutorial chapter in section 2.6.9.
The development there uses two variables and a while loop. Is this preferable to
one using one variable and a for loop?

3.3.3 Changing between recursion and iteration

Purpose There are two possible purposes in changing between recursion and
iteration — efficiency of execution and justification of properties.

Iteration in an implementation is generally more efficient than recursion, though
the difference may be slight or non-existent if the recursion is tail recursion (which
is the only kind that can always be conveniently changed to iteration) or if the
recursion is not too deep, i.e. there are not likely to be many nested recursive calls.
But if the recursion is deep, the difference can be very substantial. Iterative forms
also often allow further efficiency improvements to be made.

Justifications in RSL are commonly based on equivalences between terms. In
this they differ from some other logics for analysing sequential programs which
decorate points in programs with assertions. For this reason it is generally easier
in RSL to justify properties of recursive expressions than it is to justify properties
of iterative expressions. Hence it is often worth formulating functions recursively
at first, when we are more interested in showing they have various properties,
and rewriting them later as iterative forms. This rewrite can be automatic for
tail recursive functions. For others it is typically possible to justify inductively
that an iterative form satisfies a recursive equation and so implements a recursive
definition.

Method The body of an applicative tail recursive definition typically takes the
form

f(x) = if p(x) then g(x) else f(h(x)) end (1)
where p is the termination condition, g calculates the final result, and h modifies
the parameter value on each recursive call. (If there are several parameters we can
regard x as a product value.)

A natural imperative counterpart to this is

f() = if p() then g() else h() ; f() end (2)
where we have variable(s) replacing the parameter(s), read by p, written by h and

read and perhaps written by g.
The imperative definition (2) can clearly be replaced by

f() = while ~p() do h() end ; g()
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and this is the iterative version.

In order to keep the original applicative signature for f in the iterative version we
can introduce a local expression within which the variable(s) are defined, initialised
to the value(s) of the formal parameter(s). So the general form for the iterative
counterpart to (1) is

f(x) =
local variable v : T := x in
while ~p() do h() end ; g()
end

Example The body of the list reversing function using a local tail recursive
function is

rev(l) =
local
value
revl : Elem* x Elem* — Elem*
revl(to_do, done) =
if to_.do = () then done
else revl(tl to_do, (hd to_do)~done) end
in revl(l, ()) end

The recursion is already within a local function revl, so we can place our variables
within the local expression. revl has two parameters and so we need to introduce
two variables. Our general scheme gives

rev(l) =
local
variable
to_do : Elem* :=1,
done : Elem* := (
in

while to_do # () do
done := (hd to_do)~done ;
to_do := tl to_do
end ;
done
end

The only point of difficulty here is that we must be careful about the order of
updating of the variables in the body of the loop. A natural order might have
followed the applicative evaluation order:

to_do := tl to_do ; done := (hd to_do)~done
but we can see that the expression “hd to_do” would give the wrong result; the

previous assignment has already discarded the head. There is a general technique
for making sure such problems do not occur. Suppose we have actual parameters
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in the recursive call el, e2, etc. and we introduce variables v1, v2, etc. Then the
general form of the loop body is

let (x1, x2, ...) = (el, €2, ...) in
vl:=x1;v2:=x2; ..

end
But in general, judicious ordering of the assignments avoids the need for a let
expression.

We can also see this problem in terms of the notion of linearity of expressions that
we introduced in section 2.9.1. For lists, tl is a generator and hd is an observer.
Hence the expression

(t1 to_do, (hd to_do)~done) (1)

is not linear for to_do; evaluation of product expressions is left-to-right, so (1) is
equivalent to

let to_do’ = tl to_do in (to_do', (hd to_do)~done) end

and to_do occurs in the scope of to_do'.
We can make (1) linear by introducing a let expression

let h = hd to_do in (tl to_do, (h)~done) end
but we can also see that the reversal of (1)
((hd to_do)~done, tl to_do)

would be linear, and the order of assignments we chose in the imperative version
corresponds to this reversal.

We could instead have used a single variable for the pair of values, giving a single
assignment, but this tends to be very unwieldy as we have to introduce several let
expressions to separate the component values. In our case we would have something
like
rev(l) =

local
variable z : Elem* x Elem* := (1, ())
in
while let (to_do, done) = z in to_do # () end do
let (to_do, done) = z in
z := (tl to_do, (hd to_do)~done)
end
end;
let (to_do, done) = z in done end
end

Relation Provided we follow the method presented in this section, or if we prove
that the iterative form obeys the recursive equation, we will have an implementation
going from the recursive to the iterative form.
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Exercise Use the techniques of this section to develop the recursive split function
defined in section 3.2.13 into an iterative form.

3.4 Changing between sequential and concurrent

Purpose There is a clear choice between systems composed of passive compo-
nents and those composed of active components. While both may be given a
function call interface and both may be imperative, the activities of passive sys-
tems are sequential. Active systems have main processes that are always executing
or waiting for communications, and their execution may be concurrent.

The main methodological reason for being able to change from sequential to
concurrent specifications is that (applicative) sequential specifications are generally
much easier to reason about than concurrent ones. This was discussed at some
length in the tutorial in chapter 2. It is also the case, conversely, that some systems
are conveniently and naturally specified in terms of active components although
the final implementation may be sequential.

Method It is one of the aims of the design of RSL that sequential and concurrent
constructs are as similar as possible. This means that it is comparatively easy to
change a specification from one style to the other. The method is described in the
tutorial in chapter 2 and is only summarized here.

We can distinguish two styles of concurrent formulation: the applicative and the
imperative. As noted in the tutorial, the applicative concurrent style involves recur-
sion which is generally inappropriate as an implementation technique for functions
that are not intended to terminate, so we will present the imperative concurrent
style (abbreviated to “concurrent”). We will assume that we are developing from
imperative sequential to imperative concurrent; the reverse is also possible but not
likely to be common, and would depend on the concurrent module having the kind
of structure we shall develop here. We will also assume the sequential module is
“single”, i.e. that it has no imperative suppliers. (If it has, see section 2.8.6.4 in
the tutorial.)

We first define an object I, say, that is an instance of the sequential module.

We define a single, non-terminating “main” function with type

Unit — in any out any write any Unit
We also define an initial function, init say:

value
init : Unit — in any out any write any Unit
init() = Linit() ; main()
where Linit is some suitable generator from the imperative sequential module.
Each sequential generator and observer will have a corresponding concurrent
interface function that will be able to communicate with the main function. If the
type of the sequential function is

U — write any V
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(where either or both of U and V may be Unit, the function arrow may be partial,
and write may be read), then the corresponding concurrent interface function will
have type

U — in any out any V
where the function arrow is always total.

So far we have examined the relationship between the signatures of the sequential
and concurrent case. What about axioms or definitions for them?

The most general sequential function is a result returning generator, gen say,
which has signature

gen : U = write any V
and an associated function can_gen used to express its precondition, with signature
can_gen : U — read any Bool

There will then be a corresponding concurrent interface function gen. The axiom
for gen in the concurrent module is then

axiom
[gen_ax |
Vu: U, test: V= Unit »
main() {} test(gen(u)) = let v = I.gen(u) in main() {} test(v) end
pre I.can_gen(u)
If the type V is Unit, such axioms can be simplified by omitting the test function.

Example An example should make this clearer. We will take the simple but
common instance of a database. It has as generators an empty to make the database
empty, an update function to insert new values (or overwrite old ones). It has as
observers an is_in function and a look_up function. The axioms simply record the
properties:

e is_in returns true if a value with the right key has been inserted by update
and false otherwise.

e If you look_up a value with a key that is_in, you obtain the correct value,
namely the one inserted by the most recent update to that key.

The imperative sequential specification is

scheme I DB(X : class type Key, Data end) =
class
value
/* generators */
empty : Unit — write any Unit,
update : X.Key x X.Data — write any Unit,
/* observers */
is_in : X.Key — read any Bool,
look_up : X.Key — read any X.Data



202  Development

axiom
[isin_empty |
V k : X.Key « empty() ; is-in(k) = empty() ; false,
[is.in_update ]
V k1, k2 : X.Key, v : X.Data *
update(k2, v) ; isin(kl) =
if k1 = k2 then update(k2, v) ; true
else let x = is_in(k1l) in update(k2, v) ; x end
end,
[look_up_update |
V k1, k2 : X.Key, v : X.Data -
update(k2, v) ; look_up(kl) =
if k1 = k2 then update(k2, v) ; v
else let x = look_up(kl) in update(k2, v) ; x end
end
pre k1 = k2 V is_in(k1)
end
We can now define the concurrent imperative version using the sequential impera-
tive version:

scheme C_DB(X : class type Key, Data end) =
hide I, main in
class
object I : I. DB(X)
value
/* main */
main : Unit — in any out any write any Unit,
/* initial %/
init : Unit — in any out any write any Unit
init() = Lempty() ; main(),
/* generators */
empty : Unit — in any out any Unit,
update : X.Key x X.Data — in any out any Unit,
/* observers x/
is(in : X.Key — in any out any Bool,
look_up : X.Key — in any out any X.Data
axiom
[empty_ax |
main() {f empty() = Lempty() ; main(),
[update_ax |
Vk: XKey v: X.Data ¢
main() #} update(k, v) = Lupdate(k,v) ; main(),
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[is.in_ax ]
V k : X.Key, test : Bool = Unit »
main() #} test(is_in(k)) =
let b = Lis_in(k) in main() {} test(b) end,
[look_up_ax |
V k : X.Key, test : X.Data — Unit »
main()  test(look up(k)) =
let r = Llook_up(k) in main() {} test(r) end
pre Lis_in(k)
end

Relation Changing from sequential to concurrent will change the interface at
some level. It can only be an implementation if the interface changes are contained
by local declarations, as we see in the following section. It will otherwise be a
static change.

Exercise Develop the sequential imperative one place buffer I. OPB from the
exercise in section 3.3.1 to a concrete, concurrent version C_OPB.

3.4.1 Changing between sequential and concurrent decomposition

Purpose It is sometimes convenient to change the body of a sequential function
from a sequential to a concurrent style in order to employ an improved algorithm.
We can keep the function itself sequential, and hence localize the effects of the
change, if the channels involved are local.

Method A sequential composition typically takes the form g(f(x, s)) in the ap-
plicative case, and f(x) ; g() in the imperative case. In the first case f creates a
value which g takes as a parameter. In the second f will write its result in a vari-
able which may be read by g. In either case the execution of f is complete before g
starts. The equivalent concurrent composition will take the form (f(x) || g()) ; res
where a variable res is used to hold the result. (This is necessary as the expressions
combined by “||” must be of Unit type.) The parameter to f and the variable res
can be replaced by an input and an output channel respectively if the context in
which this parallel combination is placed is also concurrent.

It is possible to exactly mimic the sequential case in the concurrent by making
f complete its calculation, pass the result to g on some channel and then skip.
g will only start its execution when it receives the input. But this is taking very
little advantage of concurrency. If we want f and g to execute simultaneously (or
pseudo-simultaneously on a single processor), we need to adapt the algorithm so
that f sends its results to g piece by piece — a technique commonly known as
“pipelining”. It will then be found that f will terminate when it comes to the end
of its input data (which we are assuming is passed in one piece). There is no way
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to make g recognize when f has terminated without a special communication. This

can be on a separate channel or by means of a special piece of data on the main

channel. (The former is probably preferable as it distinguishes data from control.)
An exercise producing such a decomposition may be found in section 3.2.12.

Relation If the channels introduced or removed are local, there is no change
to the external interface and so the change will be an implementation if the new
function body implements the old. For the relevant principles see section 3.2.6 if
channels are being introduced into a value previously only given a signature, sec-
tion 3.2.7 if channels are being introduced into a value previously defined implicitly,
and section 3.2.8 if the old and new versions are both explicit definitions.

Exercise Define a concurrent decomposition of the filter function from the exer-
cise in section 3.2.10.

3.5 Changing types
3.5.1 Making types finite

Purpose Abstract types are commonly unbounded when we first define them,
as they are then least constrained. However, we may need to bound them, to take
account of memory sizes or word sizes during final implementation.

Method We need to define:

1. a means of calculating a measure of the “size” of a value of a type. (This
may be simple in the case of Int but require some extra value definition(s) for
abstract or more complicated types.)

2. the effect on the functions generating values of the type, since they will typi-
cally need extra preconditions

There is another fundamental decision that needs to be taken. Finite types are
usually types of values in which we store information (lists, stacks, queues, buffers,
etc.) Hence the problem of size occurs in the functions that add to them. So
there is a question of whether the precondition that will be used to check for the
possibility to extend takes account of the current size of the value of the type only,
or also takes account of the size of the item being added. The first of these options
is the easiest to specify, and the latter should only be used when the items being
added may vary considerably in size. Note in particular that if the precondition
depends only on the current size of the value it can be neatly incorporated in a
subtype definition of the form

type Extendable T = {| t : T « size(t) < bound |}

It was stated above that we need both to define a measure for the type and also to
consider adding preconditions to functions generating values of the type (or writing
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to variables of the type). Limiting the type without considering these functions
may lead to contradictions, as demonstrated by the example below.

Example If we have a queue definition and decide to add axioms to make the
queue bounded in size, we might be tempted to simply add the following definition
of a depth function and axiom restricting the depth of any queue:

value

bound : Nat,

depth : Queue — Nat
axiom

depth(empty) = 0,

V q : Queue, el : Elem - depth(eng(el, q)) = depth(q)+1,

V q : Queue * depth(q) < bound
Unfortunately, adding these extra definitions and axioms to a definition of an un-
bounded queue will create an inconsistent specification.?

The contradiction arises because we will have for the unbounded queue a function
enq with signature

enq : Elem x Queue — Queue

If we consider a queue q, say, of maximum depth and some element e, this signature
says that enq(e, q) is a value of type Queue, and the definition of depth says that
its depth will be bound+1. But the last axiom says that the depth of all queues is
at most bound. So we can conclude that for some natural number bound

bound+1 < bound
ie.

1<0
which is clearly a contradiction. So in this case we clearly not only have to intro-
duce the axioms for boundedness but also change the signature of enq. A better
definition of an applicative bounded queue is A_QUEUEQ, defined in the tutorial
in section 2.8.4.1.

Relation Making types finite is not in general an implementation. We have
already noted that simply trying to add the axioms stating that the type must be
bounded leads to a contradiction. To avoid this contradiction we have to change
other properties. In particular, unbounded types have a property of the form “it
is always possible to add another item” — this is what we mean by “unbounded”.
Bounded types do not have this property. Hence we are not extending the theory
of such a type and so do not have implementation. The relation will be a static
implementation since maximally the types will be unchanged.

2Since the theory of an inconsistent specification entails false, any assertion is provable in it,
including the assertion that it implements another specification. So an inconsistent specification
is always an implementation. It is just not a very useful one!
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Exercise Create an abstract specification of sets of a bounded size by adapting
the standard specification A_SET of unbounded sets in appendix A.2.

3.5.2 Changing concrete types

Purpose The general advice on defining types is to make them abstract initially
and to only make them concrete (i.e. give them a definition in terms of some
combination of other types) when we are sure what representation is needed. But
sometimes we will find we need to change from one concrete type to another — the
development process is full of changed decisions! This section is concerned with
what we do in this situation.

It is worth noting at the outset that in changing from one concrete type to
another we do not in general obtain implementation. For example, if we have in
one specification
type T = Int-set
and in another
type T = Int*
the second specification cannot be an implementation of the first (or vice versa)
because the theory of lists is not an extension of that of sets — they are different.
(Even more immediately, the second cannot implement the first because it is not

a possible replacement for it. Attempting such a replacement would cause a type
error in any expressions that assumed T to be the same as Int-set.)

Method We first deal with the situation where the types appear to be different
but are in fact the same. This can arise with the use of type abbreviations, so that

type
T =1,
U=V

and

type
T=V,
U=V

are clearly equivalent, and so no change is in fact involved.
Similarly, an apparent change in concrete types can arise with different expres-
sions of subtypes. For example

type T = {|i: Int - i>0 A i<7 |}

is clearly equivalent to

type T = {| n: Nat » n<7 |}

For subtypes of a common supertype we can use the rule that if we have for example

type
Tl ={|x:T-plx) [}, (1)
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T2 ={[x: T-p2(x) [} (2)
the condition that T'1 and T2 are equivalent reduces to

Vx:Tepl(x) =p2(x)
We can also of course change the definitions of subtypes involving further subtypes

to make them (ultimately) subtypes of maximal types. For instance, if we have in
addition to the definitions (1) and (2) above

type T3 = {| x: T1+p3(x) |}
then this can be rewritten to the equivalent definition

type T3 = {| x: T « pl(x) A p3(x) |}
In this manner it can be checked whether subtypes of any common maximal type
are equivalent.

In the rest of this section we are concerned with the problem of changing from
one concrete type definition to another non-equivalent one. There are two possible
situations:

1. We have just developed the concrete type from an abstract one.

2. We did not develop the concrete one from an abstract one, or we do have an
abstraction but it was some development levels back and we have added a lot
of detail since then.

In the first situation there is no problem — we re-develop from the abstract type
as described in section 3.2.1. This will not overcome the problem noted above that
the second concrete formulation will not implement the first, but they may both
be implementations of the common abstraction, which is typically what we want.

In the second situation what we need is a simple way of obtaining an abstract type
from a concrete one. We can then develop the abstract type into the new desired
concrete one. This technique is important because it is a common and very useful
development technique to start with a very concrete description of the problem
using concrete types. This is generally easier to formulate than a more abstract
version, and helps with the initial problems of understanding the requirements and
looking for omissions and inconsistencies.

There is in fact a very easy and effective way of abstracting from a concrete type
definition. The method is as follows. The techniques follow closely those presented
in the tutorial section 2.8.4.1.

e First replace the type definition
type T = type_expr
with
type T
value obs : T — type_expr

Now we have an abstract type T and an observer obs.

e Replace any other mentions of type_expr by T.

e Classify the other constants and functions with types dependent on T as
observers and generators in the standard way.
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e The observers will be definable directly in terms of obs, so they become derived
functions with definitions.

e Some generators may be definable in terms of others, in which case they also
become derived functions.

e For each of the other generators, define an obs_generator axiom if it does not
return a result and an axiom using a post expression if it does.

e For any partial non-derived and non-result-returning generators add defined-
ness axioms.

e Hide obs.

To complete the process of developing T to a different concrete type from the one
we started with, we now have to implement our abstract version with the new
concrete type, as described in section 3.2.1.

Example 1 Consider A_QUEUEQ in section 2.8.4.1 as derived from the concrete
version A_QUEUE]I in section 2.8.4.6. In this case

e The observer obs is called list_of.

e The other observers is_full and is_empty are derived.

e The generators empty and enq are not result-returning and have axioms
list_of empty and list_of_enq.

e The generator deq is result-returning and has an axiom deq_ax involving a
post expression.

e enq is the only partial generator that does not return a result, so the axiom
enq_defined is added.

We can gain confidence in this abstraction in a very simple way: we check that the
original concrete version implements the abstraction if we extend the concrete one
with a definition of obs as the identity function on T.

As an example of the final step to a different concrete type we can take the
development of A QUEUE2 from A_QUEUEQ in section 2.8.4.7.

Example 2 Suppose we have a concrete specification of a set type:

CONC_SET(E : ELEM) =
class
type Set = E.Elem-set
value
empty : Set = {},
add : E.Elem x Set — Set
add(e, s) = {e} Us,
remove : E.Elem x Set — Set
remove(e, s) = s \ {e},
is(in : E.Elem x Set — Bool
is_in(e,s) = e € s
end



Changing types 209

We want to create a new specification in which sets are modelled as lists, i.e. with
a type definition

type Set = E.Elem*

We will call our observer set_of. Following the method for creating an abstraction
we formulate ABS_SET:

ABS SET(E : ELEM) =
hide set_of in

class
type Set
value
/* generators */
empty : Set,

add : E.Elem x Set — Set,
remove : E.Elem x Set — Set,
/* observer x/
set_of : Set — E.Elem-set,
/* derived */
is_in : E.Elem X Set — Bool
is_in(e, s) = e € set_of(s)
axiom
[set_of empty | set_of(empty) = {},
[set_of add |
Ve : E.Elem, s : Set  set_of(add(e, s)) = {e} U set_of(s),
[ set_of remove |
Ve : E.Elem, s : Set  set_of(remove(e, s)) = set_of(s) \ {e}
end

We note that is_in is an observer and has been defined in terms of set_of.

None of the generators empty, add and remove return results, so their axioms
take the form shown. None are partial so no definedness axioms are needed.

We can if we wish now show that CONC_SET extended by a definition of set_of
as the identity function on Set implements ABS_SET. This is fairly obvious simply
by inspection, since it amounts to replacing set_of(e) by e throughout ABS_SET
and seeing if we get the definitions of CONC_SET.

We are now ready to define LIST SET as a development of ABS_SET:

scheme LIST SET(E : ELEM) =
class
type Set = E.Elem*
value
empty : Set = (),
add : E.Elem x Set — Set
add(e, s) = (e)~s,
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remove : E.Elem x Set — Set
remove(e, s) =
case s of
(=0,
(h)~t —
if h = e then remove(e, t) else (h) “remove(e, t) end
end,
is_in : E.Elem x Set — Bool
is_in(e, s) =
case s of
() — false,
(h)>t - e =h Visin(e, t)
end
end

It is straightforward to show that LIST SET implements ABS_SET, by showing
that a conservative extension of LIST_SET defining set_of as elems implements
ABS_SET.

Relation We have seen in this section that changing from one concrete type to
another is not an implementation unless the concrete types happen to be equivalent.
The relation will in general be a static change.

When the types are different we can obtain something like implementation by
creating an abstraction of our old concrete type and then showing the new one to
be an implementation of this abstraction.

We know that the abstraction will not be an implementation of the original
concrete version. Can it be used instead of it? The answer is generally yes, provided
two conditions are met:

e The new use type checks.

e Any equalities between values of the type of interest (expressed using “="
or “=”) are replaced by calls of an abstract equality defined as described in
section 3.5.3.

The first check ensures that users are not applying operators or functions particular
to the concrete type when they should be using the functions of the abstraction.
Type checking will expose such applications, allowing them to be replaced by the
appropriate functions (which might entail adding new functions).

The second condition cannot, unfortunately, be checked by type checking. It is
not necessarily a problem, but such equalities will eventually be implemented as
the built-in equalities on the implementing concrete type, and will generally be too
strict. See section 3.5.3 for more details.

The relation to “retrieve” functions Readers familiar with VDM [14] will
recognize that the implementation of the observer function set_of (by elems in
this example) is the “retrieve” function used by VDM. They may then ask why
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there is no requirement in the method described here to show that this function
is surjective (“onto”). The reason is that it is not necessary. All we ever have to
show is that the properties of the abstract specification hold in the more concrete
one. If the implementation is not “adequate” in the VDM sense, i.e. the concrete
type does not have sufficient values, this will become apparent in the justification
of the RSL implementation relation.

Exercise 1 The definitions in LIST_SET allow duplicates in the lists representing
sets (which is why remove does not merely remove the first occurrence). Define a
different version by

1. defining the type Set as equal to a subtype of lists not containing duplicates
2. defining add so that it only adds the item if it is not already present
3. defining remove to remove at most one item

Show that this new version also implements ABS_SET.

Exercise 2 Suppose we had modelled (unbounded) applicative bags concretely
as

scheme LIST_BAG(E : ELEM) =
class
type Bag = E.Elem*
value
empty : Bag = (),
add : E.Elem x Bag — Bag
add(e, b) = (e)~Db,
remove : E.Elem x Bag — Bag
remove(e, b) = if e = hd b then tl b else (hd b) “remove(e, tl b) end
pre count(e, b) > 0,
count : E.Elem x Bag — Nat
count(e, b) =
if b= () then 0
else if hd b = e then count(e, t1 b) + 1 else count(e, t1 b) end
end
end

and we wish instead to use the type definitions
type

Natl = {|n: Nat *n > 0 |},

Bag = E.Elem i Natl

That is, we will model bags as finite maps from elements to their counts.
1. Formulate an abstract specification ABS_BAG of unbounded applicative bags.

(A bounded version may be found in appendix A.3.)
2. Show that LIST_BAG is an implementation of ABS_BAG.
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3. Complete the version based on maps and show that it implements ABS_BAG.

3.5.3 Adding abstract equalities

Purpose Abstract types already have equalities (=) defined for them. If users
use these equalities then, when the abstract type is implemented as a concrete
type, the equality will be the equality on the concrete type. This equality is often
inappropriate because it distinguishes values that abstractly should be considered
the same. For example, considering the sets modelled as lists from section 3.5.2,
the list values (1,2), (2,1) and (1,1,2) all abstractly represent the same set {1,2}
but are unequal as lists. So when users want to compare values of the type of
interest, it is better to define an equality function to be used instead of the built-in
equality symbol. We call such a function an abstract equality.

Note that, although presented here as a development technique, such an equality
function would normally be included in the original formulation.

Method The abstract equality is defined in terms of the non-derived observers.
Values are abstractly equal if these observers cannot distinguish them. In other
words, the abstract equality models the observational equivalence induced by the
observers. The general abstract definition for a type of interest T is

value

eql : T x T — Bool

eql(tl, t2) = obsl(tl) = obs1(t2) A obs2(t1) = obs2(t2) A ...

Note that, if obsl, say, returns a value which is the type of interest of another
abstract module, the equality between its results should be replaced by a call of
that type’s abstract equality function.

Note that we only need to use the non-derived observers in this definition; the
derived observers will also necessarily agree on abstractly equal values since they
are defined in terms of the non-derived ones.

All this is quite straightforward. But there is another detail that we need to be
concerned with. Users will expect the abstract equality to be a congruence. That
is, it must be an equivalence (reflexive, symmetric and transitive) relation and
it must also be the case that, for all functions, (abstractly) equal arguments give
(abstractly) equal results. We need to check whether this is true for the non-derived
generators in the specification.?

Example Consider the specification ABS_SET from section 3.5.2. There is only
one non-derived observer, set_of, so we would define the “equality”

value
eql : Set x Set — Bool

3This is not quite the same as a congruence in the normal sense, for which we might need to
add an induction axiom, and which would permit substitution of equals by equals.
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eql(sl, s2) = set_of(sl) = set_of(s2)
Now we need to check that (abstractly) equal arguments give (abstractly) equal
results for all the functions in ABS_SET.

It should be clear that, for any e of type E.Elem,

eql(sl,s2) = is_in(e, s1) = is_in(e,s2)
ie.

set_of(sl) = set_of(s2) = e € set_of(sl) = e € set_of(s2)
and similarly for derived observers in general. So in practice we only need to
consider the non-constant generators. For add we have

eql(sl,s2) = eql(add(e,sl), add(e,s2))
ie.

set_of(s1) = set_of(s2) = set_of(add(e,sl)) = set_of(add(e,s2))
ie.

set_of(s1) = set_of(s2) = {e} U set_of(sl) = {e} U set_of(s2)
which is immediate. The check for remove is very similar. So in the case of
ABS_SET we know that eql is an abstract congruence for the functions defined
there. In fact, the manner of defining axioms for abstract applicative modules
proposed in the tutorial in section 2.8.4.1 is sufficient to ensure this.

The danger comes if any generators or observers are defined more weakly. Sup-
pose, for example, we had included in ABS_SET a function choose:

value

choose : Set = E.Elem

choose(s) as r post r € set_of(s) pre ~is_empty(s)
choose looks at first like a derived observer, but is only defined implicitly. (We
could only give an explicit definition by having some more information about the
parameter type Elem.) The question is whether this definition is sufficient to ensure
congruence, i.e. whether

eql(sl,s2) A ~is_empty(sl) A ~is_empty(s2) = choose(sl) = choose(s2)
This cannot be proved. So we add an axiom stating it:
axiom

[ choose_congruent |

V 51,52 : E.Elem » eql(s1,s2) A ~is_empty(sl) = choose(sl) = choose(s2)
We have omitted the second, unnecessary call of is_empty.

When we come to implement ABS_SET as LIST_SET, there are two possible
courses of action we can take over choose:

e We can try to give an explicit definition, such as
value
choose : Set — E.Elem
choose(s) = hd s pre ~is_empty(s)
This will satisfy the postcondition for choose from ABS SET, but it will not
satisfy the axiom choose_congruent. We can demonstrate a counter-example:



214  Dewvelopment

(1,2) and (2,1) are abstractly equal but give different results for choose (1 and
2 respectively). Hence such an explicit definition is not an implementation.
To put it another way, inclusion of the axiom choose_congruent prevented
us implementing choose in a manner inconsistent with our expectation that
abstractly equal sets behave like equal sets.

e We can retain the implicit specification of choose and the axiom choose._-
congruent. This will give us implementation, but means that we cannot make
choose more explicit until we can make some assumptions about the type
E.Elem and then define choose in terms of selecting the “most suitable” in
terms of some total order. One could see this as a problem; conversely one
could argue that choose is a difficult function to define for sets and we should
have been very cautious about including it in the first place. It was only
included here to demonstrate possible problems, not to suggest they are com-
mon.

Relation Addition of an abstract equality to a module only adds definitions and
is always an implementation. It is a conservative extension if no congruence axioms

are added.

Exercise Define an abstract equality function for bags as specified in A_BAG in
appendix A.3.
If this definition were added to A_BAG would any congruence axioms be needed?

3.5.4 Changing value signatures

Purpose In all the principles for implementing values it has been stated that the
type of the signature of new, implementing definition must be a subtype of the
type of the signature of the old definition. But it is sometimes the case that the
reverse can be true and still give implementation. This section shows how to deal
with such a situation.

Method To take an example, can we show that

value x : Nat « x<10

is implemented by

value x : Int =1

The rule is that, if the types in the signature are different, either there is no possi-
bility of implementation because the maximal types are different, or the maximal
types are the same. If the maximal types are the same, we have to justify the
theory of the old definition in the context of the new. For example, the theory of
value x : Nat « x<10

is (see appendix B.8.2)

(3b: Nat »x =b) A (x<10 = true)
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and in the new context x is defined to be 1, which allows us easily to prove the
theory.

For functions we need to be careful both about changes to parameter and result
types but also about total and partial arrows. For example, suppose we ask if

value f : Nat — Nat

is implemented by

value
f: Int = Int
fx) =x+1prex>0
The maximal type of both the old and new functions f is

Int = Int

so we pass the static check.
The theory of the original typing is (see appendix B.8.2)

db: Nat - Nat+b =f

so we have to justify this using the new f as a witness. Intuitively, we have to show
for the new definition that, given a Nat as an argument, f will converge with a
Nat result. This can indeed be proven from the new definition of f, where we can
use the information in its definition, and so we have implementation.

Relation Arbitrary changes of value signature will give static change. If the
maximal types are the same, it will be static implementation. Changing signatures
into supertypes can give implementation when there is sufficient other information
in the new definition or in axioms to show that the original subtype restriction is
true. However, it is rare in practice to change the types in value signatures when
doing development.

Exercise Is

value
f: Int = Nat

implemented by

value
f: Int — Int
f(x) as r post r > abs x

If so, would it still be the case if the second definition was only a signature, i.e. did
not have the postcondition?

Hint: intuitively, the way to interpret the first type of f is that, applied an integer
argument, it may or may not terminate. If it does terminate the result must be a
Nat.
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3.6 Adding new definitions

Purpose It is in general always possible to add definitions of new entities —
objects, types, values, variables, channels or axioms — to any class expression and
obtain an implementation of that class expression. Indeed, this is often a very
natural means of developing specifications.

Method There are two ways of adding new definitions:

e If the old class expression is a basic class expression (i.e. it consists of a string
of declarations) we may formulate the new one by copying the old and inserting
the new definitions.

e We may use the extend facility of RSL. This allows us to say more clearly
what we are adding without having to copy all of the old.

The choice between these two depends on whether we wish to preserve the original
for use elsewhere. If so, extend saves copying the original in the new, makes it
much clearer what is being added (as well as giving a shorter formulation) and
avoids maintenance problems in having two copies of something. Otherwise we
just edit the original (rather than copying it) to include the extra definitions.

Relation An extension of a class expression is always an implementation, i.e.
extend class_exprl with class_expr2

implements class_exprl. If class_expr2 contains either no axioms or axioms of a
specific form, the result is often a conservative extension. For further information
see the relation information in sections 3.6.1 and 3.6.2.

If the result is not a conservative extension, extend should be preferred to
putting the new definitions into a class expression with the old either as a para-
meter to it or as an object definition inside it. Parameters and object definitions are
intended to allow for “replacement” of the component and hence should only con-
servatively extend such a component (to reduce the chance of inconsistency). The
extend construct is specifically intended to allow for non-conservative extension
without replacement.

3.6.1 Adding non-axiom definitions

Purpose As noted above, adding definitions is a convenient way of constructing
specifications by formulating the basic entities first and adding extra ones later.

Method The extend construct is usually the best way of achieving this as it
makes it clear what is being added and what is being left unchanged. It should
not be used, however, when there is a clear difference of hierarchical level between
the old and new. If this notion of hierarchy is followed, the most common kinds
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of definition to be added with extend will be definitions of values and type ab-
breviations rather than of objects, abstract types, and variables (though all these
are possible). The introduction of channels also suggests a change of level if there
were no channels before, but adding an extra channel to a set already defined is
not uncommon.

It is worth noting that, in practice, adding extra channels can only be done with
extend if the signatures of processes use any rather than naming the channels
individually and if the processes are defined axiomatically using “}” rather than
concretely in terms of “[]”.

Extending with axioms is discussed in section 3.6.2.

Relation Adding new non-axiom definitions always gives an implementation. It
is usually a conservative extension, as adding only non-axiom definitions can in
general not add information to things already defined. There are some possible
exceptions to the conservativeness of the extension, but these are mostly of more
theoretical than practical interest.

One possible exception concerns the possible emptiness of types. Suppose we
define an abstract type T

type T
and then define a value v:
valuev: T

The second definition now extends the first non-conservatively in that it asserts
that there is at least one value v in the type T, i.e. that T is non-empty.

This may seem an unimportant problem since we are unlikely to define types
without defining some values for them. It is a more realistic problem, however,
when we consider subtypes. In the tutorial in chapter 2 there is an example of a
bounded queue where the bound on the queue is in a parameter:

scheme ELEM _BOUND =
extend ELEM with class value bound : Nat « bound > 0 end

while in, for example, the applicative module A_.QUEUEQ there is a type List_of -
Queue defined by the subtype expression

{|1: P.Elem* - len 1 < P.bound |}

where P is the formal parameter with class expression ELEM_BOUND.

Suppose we had omitted any restriction on bound and even allowed it to be
negative by writing in ELEM_BOUND

value bound : Int

with no axiom. Then List_of queue would be potentially an empty type. But the
function list_of, defined by

value list_of : Queue — List_of_ Queue

is total over the (abstract) type Queue. So if there were no values in List_of Queue
there could be none in Queue. But we have a constant empty of type Queue,
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so we know there is at least one value in Queue. Hence there would be a possible
contradiction in the specification. This demonstrates that, without “bound > 0” in
ELEM_BOUND, A_QUEUEOQ would extend it non-conservatively. With the bound
being a Nat there is no possibility of contradiction (though all queues could be
empty, in which case neither enq nor deq would ever have their preconditions
satisfied). With our additional constraint that bound is strictly positive a queue
must be able to hold at least one element.

Note that this example demonstrates a way of discovering non-conservative ex-
tension. If we can generate a contradiction in the extension (in this case the body
of A QUEUEQ) by implementing the component being extended (the parameter
P) in a particular way (taking bound to be negative), the extension is not con-
servative (except in the degenerate case where the class being extended is already
contradictory). The solution may then be either to weaken the extension or, as we
did in this case, to strengthen the theory of the class being extended.

Exercise Add an isin_range function to A_MAP from appendix A.5, by complet-
ing

value
isin_range : R.Elem x Map — Bool
isin_range(r, m) = ...

3.6.2 Adding axioms

Purpose There are two possible purposes in adding axioms:

e reducing under-specification by adding more constraints

e adding properties that can be deduced from existing properties and making
them available for future use. This corresponds to the practice of proving and
recording lemmas in theorem proving.*

Method The method here is either to include the extra axiom(s), or to use the
extend construct. Putting only axiom(s) in a new class expression, with the old as
a parameter or as an internal object definition, is not generally appropriate. The ax-
ioms will be vacuous or else will extend the parameter or object non-conservatively.

It is important to check that the new axioms are not inconsistent with the old.
For example, there is a description in section 3.5.1 of how adding axioms to make
an unbounded type bounded can result in an inconsistent specification.

Relation Adding axioms always gives implementation.

4Tt is preferable, however, to keep such derived properties separate as theorems since this is
their purpose; it can be misleading to combine definitional axioms with derived properties. This
also provides a reminder to justify that they are derivable, as any theorem should be justified.
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Exercise In the exercise in section 3.6.1 we added a concrete definition of isin_-
range to A_MAP.

1. Show that isin_range could have been defined by means of a signature and
three axioms (relating it to the generators empty, add and remove) by defining
these axioms.

2. Which style of adding isin_range is preferable, the one now completed in this
exercise (where it is an observer) or the one in the exercise in section 3.6.1
(where it is a derived observer)?

3. Show that the three axioms formulated in this exercise are consequences of
the definition from the exercise in section 3.6.1.

4. The converse, i.e. that the body of the definition from the previous exercise
(regarded as an axiom) follows from the three axioms, does not hold because
there is no induction axiom in A_MAP. Add a suitable axiom so that the
converse does hold.

3.7 Hiding

Purpose In section 3.6 we were concerned with adding entities. The hide con-
struct is more like a means of removing them. It does not actually remove them,
but it makes them unavailable outside the hiding class expression. It has three
main purposes:

e In making it impossible for clients to mention the names of the hidden entities,
hiding controls the way in which such entities may be used. This is partic-
ularly important in the case of variables, when hiding the variables enforces
a discipline that outside the hiding class expression the variable may only be
accessed (read from or written to) via the functions that are provided for that
purpose. This prevents unconstrained access and can be used, for example, to
maintain certain invariant conditions. Thus we might wish to assert that the
type of a variable is a particular subtype, or to assert that between calls of
functions accessing some collection of variables that a certain relation holds
between the values in the variables. If the variable(s) are hidden then, once we
have justified that all the available functions maintain such conditions (and
that initialisation establishes them), we can be sure that they will always hold
between calls of the functions.

Channels are usually hidden for the same reason — to ensure that the only
access to the “main”, server process is via the interface functions.

e Hiding names of entities also makes the names available for something else.

e Hidden entities need not be implemented as part of implementation (see sec-
tion 3.9). It is sometimes the case that an entity found useful in a specifi-
cation at one level is not needed at a later one and so should be hidden to
save having to implement it. For example, we might initially specify a sorting
algorithm implicitly using functions is_permutation and is_sorted. Once we
have provided an explicit algorithm for the sort, such functions are unnec-
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essary. Sometimes we can ensure that we do not need to implement them
by enclosing them in a local construct, but sometimes we need to formulate
them at the top level of a class expression and to then hide them.

Method The method is no more than using the hide construct for the names
we wish to be unavailable externally.

Relation Hiding names in a class expression will not give an implementation of
that class expression because names previously visible are no longer so. In fact the
reverse is true. If we have

scheme
A = hide defined_item list in B

then B will be an implementation and a conservative extension of A.

Exercise At the start of appendix A it is stated that some of the standard spec-
ifications could have been defined from others by extension, hiding and renaming.
Demonstrate this by redefining A STACK (from that appendix) in terms of A_LIST
(also from that appendix).

Does this give a better specification of A_STACK than the current one?

3.8 Using object arrays

Purpose When we have a collection of entities of a type that is to be the type
of interest of a module, we can use an object array. If there is a fixed but small
number of such entities, we might alternatively introduce a fixed collection of object
declarations:

object
O1: S,
02: S,
On: S

But this is more conveniently expressed as an object array:

type Index = {|i: Int i € {1..n} |}

object O[i: Index|: S

This is particularly so if n is large or if we ever want to calculate the index for a
call of a function of S. In the latter case it is clumsy to have to write

case e of
1 — O1.1(...),
n — On.f(...)

end
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when with the array we can write Ofe].f(...). We also need the array in the common
cases where n is unknown or Index is an abstract type.

Method The collection of entities usually exhibits itself when our type of interest
either is or includes a function or map type from the index type to the entity type.
For example, in the lift example in the tutorial, in section 2.7.6.2, we have in the
module A_DOORS]1 the type definition

type Doors = T.Floor — T.Door_state

where T.Floor is a type ranging over the integers representing the floor numbers.
We are developing a system that is generic with respect to what the floor numbers
are, so we don’t know how many floors there are. The actual doors are pieces of
hardware that, in the final system, we want to send messages to, so we want a
decomposition with an object for each door and an object array is a natural choice.
The method in this simple case was described in the tutorial in section 2.7.7.3. We
will deal in the next four sections with more complicated cases.

3.8.1 Born-and-die objects

The first complication arises when the entities we want to model with the objects
in the array are not always available. This may be because, for example, we
need to model some hardware entities as “not always in service”. Or it may be
because we think of such entities as having existence which we dynamically start
and finish, sometimes called “born-and-die” objects. This is normally exhibited by
our function type being a map instead of a total function. Index values that are in
the domain of the map in a particular state typically represent those objects that
are “live”. So in an applicative specification we will have something like

type Map = Index & T
value
allindices : Index-set = { i |i: Index},
is_alive : Index x Map — Bool
is_alive(i,m) =i € dom m,
new : Map = Index x Map
new(m) as (i,m’) post i ¢ dom m A m' = m U [i — T_init ]
pre dom m C all_indices,
delete : Index x Map — Map
delete(i,m) = m\{i} pre is_alive(i,m),
function : Index x Data x Map — Result x Map
function(i,d,m) =
let (r,t) = T_function(d,m(i)) in (r, m { [i — t]) end
pre is_alive(i,m)

all_indices and is_alive are just useful abbreviations. The generators are



222 Dewvelopment

e new, which adds an index to the map with some suitable initial T value,
T_init, as its value, and returns this new “live” index

e delete, which removes an index from the map and so makes it cease to be
“alive”

e a function (intended to be generic), which, provided the index is “live”, calls
the corresponding function for the type T, which in general will return a new
T value and a result. The T value is used to update the map and the result
is returned

Clients of this module are then able (provided all indices are not already live)
to get a new index, call the functions of the corresponding map component and
eventually, perhaps, delete the index again. We will refer to this module as the
“manager” of the map (or object array when developed).

To develop such a module into one that includes an object array we note first
that object arrays in RSL do not have dynamic parameter types. So we have to
create an object array with parameter type Index. RSL objects can not start and
stop existing, but they can instead start and stop being available or “live”. We
have a choice as to how we model the fact that in any particular state only a subset
of them will be live:

e Have each object store its status as part of its state and return it on request.
Then the set of live objects can be calculated by enquiring of each in turn.

e Store the set of “live” indices (or, equivalently, the “dead” ones) as part of
the state of the manager.

The second is the more common implementation technique, and the one we shall
follow here. We will store the free (i.e. dead, not in use) ones as a set using the
standard I_.SET module from appendix A.2.

So in our case we model as if our type, instead of being a map from Index to T,
had been

Index-set x (Index — T)

which suggests the decomposition with a variable or module for the first component
and a variable or module for the second. The first we could model concretely (in
terms of RSL sets) as indicated, or more abstractly (using a standard SET module).
The second is a function, and so an object array is indicated.

It is possible to do this development at the applicative level and then develop
from applicative to imperative or concurrent, but, as with the lift example, it is
quite straightforward to do both in one step.

We shall first need to extend I.SET with a function to select (and add) an
arbitrary element not already present, and it is convenient also to add a can_select
function:



Using object arrays 223

scheme I.SET_SELECT(E : ELEM) =
extend I SET(E) with
class
value
can_select : Unit — read any Bool
can_select() = (3 e : E.Elem » ~is_in(e)),
select : Unit = write any E.Elem
axiom
[select_ax |
Ve: EElem °
let b = is.in(e) in
select() as €' post is_in(e') A (b = e # €') pre can select()
end
end

This gives the following sequential imperative definitions in the manager module
corresponding to the applicative ones above:

object
E : class type Elem = Index end,
I:1SET_SELECT(E),
O[i: Index]: I.T
value
init : Unit — write any Unit = Lis_empty,
is_alive : Index — read any Bool = l.is_in,
new : Unit = write any Index
new() = let i = ILselect() in O[i].T.init() ; i end
pre Lcan select(),
delete : Index — write any Unit
delete(i) = L.remove(i) pre is_alive(i),
function : Index x Data — write any Result
function(i,d) = O[i].T_function(d)
pre is_alive(i)

If the objects in the array are to run concurrently, we will need to use the concurrent
rather than applicative version of SET_SELECT (making an object C, say). The
concurrent version of init will need to initiate all the initial processes of the object
array and the set process:

init : Unit — in any out any write any Unit
init() = ||{ O[i].init() | i : Index } || C.init()

Note that Ofi].init() is a call of the initial process for index i, while O[i].T_init() is a
call of an interface function to set the state of the (running) process with index i to
its initial value. We have to start all the processes initially and then (re-)initialise
them when new is called.
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3.8.2 Self conscious objects

It is sometimes necessary that the index of an object in the array is available in the
object. In this case we need to instantiate each object in the array with its index.

We assume for simplicity that the Index type is available from a global types
module and that the scheme, A, say, that is to form the objects of the array is not
parameterized. (The extension to the parameterized case is simple.) There are two
ways of instantiating each instance of A with a different value of Index:

e The first way is the apparently natural one of parameterization. We change
A so that it is parameterized:
scheme A (P : class value self : Index end) = ...
and then we define the array by
object O[i:Index] :
hide X in
extend
class object X : class value self : Index = i end end
with A(X)
We have to include the definition of the actual parameter X in the class
expression for the array, as each X must be different. Note that we use the
fact that the value of the array index i is available in the class expression for
the array.
e The parameterization method turns out to be very awkward. An alternative
is to define self within the scheme A, but leave its value underspecified:

scheme A = class value self : Index ... end
Then we define the array by
object O[i:Index | : extend A with class axiom self = i end

Another possibility would be to define a variable in A and set it to the index value
as part of the initialisation of the object array. The two suggestions above seem
preferable to using a variable in that they show clearly that for each instance of A,
self is a constant value.

3.8.3 Communicating objects

It is a feature of the method described in the tutorial in chapter 2 that suppliers of
a client cannot invoke each others’ methods. This enforces a hierarchical design in
which at each level the client controls any interactions between its suppliers. This
in turn means that the system is comparatively easy to reason about in terms of
the behaviour of its components. But it is a design restriction that can be too
restrictive. In particular, we sometimes need to create arrays of objects that can
communicate with each other.

A solution is to use collections of buffers as parameters to the schemes forming
the array. There will be a buffer for each type of data the schemes need to input,
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and a buffer for each type of data the schemes need to output. Buffers may be
simple one place buffers (just a channel) or may be more elaborate. For instance,
suppose we need to create a “chain” of objects, so that each can communicate with
those on either side of it. We can construct this as follows:

e Each object will need a collection of buffers on each side, one to connect with
its predecessor and one with its successor. We define a scheme BUFFS to
define this collection of buffers.

e The scheme A, say, to define the object array is then parameterized so it has
a set of buffers on its “left” (L) and on its “right” (R):

scheme A(L : BUFFS, R : BUFFS) = ...

e For finite chains we will need to consider the “end” element. Assume this has
nothing to its “right”. A natural way to deal with this is to define a special
scheme A_END with only one BUFFS parameter:

scheme A _END(L : BUFFS) = ...

e To form the chain, the type Index must be a total order, so it is either some
subtype of the integers or can be bijectively mapped into them. For simplicity
we take it to be a subtype of the integers:

type Index = {|i: Int «i € {min .. max} |}

e We will need an array of BUFFS that is one larger than the array of A, so we
define
type Indexl = {|i: Int » i € {min .. max+1} |}
e We can now define the arrays we need:
object
B[i: Index1|: BUFFS,
Ol[i: Index]: A(B[i], B[i+1]),
E : A END(B[max+1])
Now the manager can communicate with O[ min|] on the buffers in B[ min]|,
and each O[i] communicates with its predecessor on the buffers in B[i] and
with its successor on the buffers in B[i+1].

Other examples may be found in chapter 32 of the RSL book [23].

3.8.3.1 Sharing

In the immediately preceding discussion on communicating objects, the parameters
L and R to the scheme A were not really to make A generic in the usual sense of
allowing it to be instantiated with different types, different bounds, etc. In fact
these are the first parameters we have used in this book that are not applicative;
buffers will typically have some internal state. This use of imperative (sequential
or concurrent) parameters we call sharing. We see that O[i] and O[i+1] will share
buffer B[i+1] (for i of type Index). We allow this use of parameterization because
there are some systems that are very difficult to specify without it. (It is possible to
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do without it for this example, but only if A is not defined as a scheme and instead
its class expression is included in the definition of the array O.) However, such
sharing needs to be done with great care. It means that objects defined within the
same class (such as the elements of the arrays B and O) can communicate directly.
This gives the possibility of interference, of the state of one object being changed
by the functions of another, other than via the client—supplier relation. A function
of the class in which the objects are defined will communicate only with O] min | via
the buffer B[ min|, but such communications will have effects that ripple through
the chain. Such systems need careful structuring so that the possible patterns of
communication (and hence interference) are clear. We also need to be very careful
about making concurrent communications with the chain, because this will often
lead to non-deterministic behaviour.

Such problems are not peculiar to RAISE, of course. For example, a distributed
database can be seen as a number of parallel processes that share common data.
There are well-known problems in designing such a system, in particular maintain-
ing consistency when changes are being made simultaneously.

We restrict this special use of the term “sharing” to imperative modules. There
is obviously a sense in which, for example, the object T formed from the types
module in the harbour example in the tutorial is shared between the waiting ships
object and the berths object because it is a global object mentioned in both. Such
applicative sharing is essential: types in particular need to be shared. It does not,
however, produce the problems of interference and non-determinism that impera-
tive sharing can.

3.8.4 Modelling heap storage

We stated in the tutorial chapter in section 2.8.5.1 that the main method presented
there for developing imperative sequential modules would need to retain the ap-
plicative module if there were more than one mention of the type of interest in the
domain of a generator, such as node for the Tree type:

type Tree == empty | node(left : Tree, val : E.Elem, right : Tree) (1)
There is a technique for creating an imperative module in this situation that can
handle the problem of allowing multiple values of the type of interest. The tech-

nique effectively models “heap storage” as an object array. We will illustrate it
with two examples.

Example 1 The first example is an imperative version of trees:

scheme I. TREE(E : ELEM) =
hide next, S, no_cycles in
class
type Tree = Nat
variable next : Nat := 0
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object

S[x: {|iNat+i>1]}]:
class variable left : Tree, val : E.Elem, right : Tree end

value

end

empty : Tree = 0,
node : Tree x E.Elem x Tree — write any Tree
node(l, e, r) =

next := next + 1 ;

let t = next in

S[t].left :=1; S[t].val := e; S[t].right := 1 ; ¢

end

pre is_tree(l) A is_tree(r),
left : Tree — read any Tree
left(t) = S[t].left pre ~ is_empty(t) A is_tree(t),
right : Tree = read any Tree
right(t) = S[t].right pre ~ is_empty(t) A is_tree(t),
val : Tree — read any E.Elem
val(t) = S[t].val pre ~ is_.empty(t) A is_tree(t),
is_empty : Tree — Bool
is_empty(t) =t = 0,
is_tree : Tree — read any Bool
is_tree(t) =

t=0V

(t < next A no_cycles(t) A is_tree(S[t].left) A is_tree(S[t].right)),

no_cycles : Tree — read any Bool
no_cycles(t) = ...
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Trees are represented by natural numbers, which are either zero (for the empty
tree) or indices into an array of tree elements consisting of three variables. The
variable next is 1 less than the next unused object in the array. This provides a
simple free storage method when storage is never freed. The definition of no_cycles
is left as an exercise; it is the condition that it is not possible to follow the pointers
in a tree in a circle.

It is possible with this approach for an arbitrary number of Tree values to exist.
Hence it is also possible to extend I_ TREFE with an abstract equality function eql,
say, that compares trees without regard to the particular storage allocation.

We can relate this version closely to the applicative version (1). In (1) we will
have axioms like

axiom

[left node ]
V Lr: Tree, e : E.Elem « left(node(l,e,r)) =1
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The corresponding axiom for I. TREE can be written

axiom
[left node ]
V 1Lr: Tree, e : E.Elem
let ' = node(l,e,r) in eql(left(l'),]) end = node(l,e,r) ; true (2)

Example 2 The tree example has an unbounded amount of storage and also
never deallocates storage. Our second example puts a bound on the size of the
object array being used and also allocates and deallocates storage in a similar
manner to the example in section 3.8.1.

The example . QUEUE below is another version of the bounded queue. It has
components in the queue elements (the object array S) that point both forwards
and backwards, and a complete queue is represented by a pair of indices for the
front and back of the queue. This allows both enq and deq operations to take place
in constant time. Figure 3.1 illustrates such a queue containing the elements A, B
and C.

Figure 3.1: Queue

scheme I_.QUEUE(E : ELEM_BOUND) =
hide Index, X, F, S, connected, no_cycles in
class
type
Queue :: front : Index back : Index,
Index = {|i: Nat « i < E.bound |}
object
X : class type Elem = Index end,
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F : . SET_SELECT(X),
S[x: {|i: Index+i>1]|}]:
class variable front : Index, val : E.Elem, back : Index end
value
empty : Queue = mk_Queue(0, 0),
enq : E.Elem x Queue = write any Queue
enq(e, q) =
let f = front(q), b = back(q) in
let b’ = F.select(), f = if f = 0 then b’ else f end in
S[b'].front := b ;
S[b'].val := e ;
S[b'].back := 0 ;
if b # 0 then S[b|.back := b’ end ; mk_Queue(f, b’)
end
end
pre F.can select() A is_queue(q),
deq : Queue = write any E.Elem x Queue
deq(q) = ...,
is_empty : Queue — read any Bool
is_empty(q) = q = mk_Queue(0, 0),
is_.queue : Queue — read any Bool
is_queue(q) =
let f = front(q), b = back(q) in
is_empty(q) V (no_cycles(f, b) A connected(f, b)) end,
no_cycles : Index x Index — read any Bool
no_cycles(f, b) = ...,
connected : Index x Index — read any Bool
connected(f, b) ...

end

Relation The introduction of object arrays is usually part of a development step
from applicative to imperative, and so we will not expect to obtain implementa-
tion. We can often obtain the standard relation between applicative modules and
imperative (sequential or concurrent) modules developed from them described in
the tutorial in section 2.9.

Exercise 1 A system consists of an indexed collection of machines and a con-
troller.

1. Specify (part of) such a system applicatively, including a function reset_all

that can be used to reset all the machines to some value.

2. Develop the system into an imperative one using an object array. Assume each

machine has a function reset that can be used to set its state to a particular
value.
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3. In the imperative version, does it matter whether the individual resets execute
sequentially or in parallel? If not, what assumptions are you making?

4. Adapt your specifications so that reset returns a status value indicating “ok
— done” or “busy — not done” and reset_all returns a list of indices for which
the reset was not done. Is it necessary for the machines to be “self conscious”
for this adaptation?

Exercise 2 In I. TREE:

1. Complete the definition of no_cycles from I. TREE. Hint: Note from the defi-
nition of node that the indices of the left and right branches must be strictly
less than that of their parent.

2. Define the equality function eql.

3. Show that node always constructs a tree satisfying is_tree if its tree parameters
satisfy it.

4. Justify the axiom (2).

Exercise 3 In I QUEUE, complete the definitions of the functions deq, no_cycles
and connected.

Exercise 4 In I QUEUE, the use of a separate object F for the free storage is
likely to be wasteful. Show how the free storage can be handled by the replacement
of the objects X and F by a single variable pointing to a chain of free elements of
the array S.

3.9 Removing hidden entities

Purpose Sometimes we can remove all references to hidden entities (values, ob-
jects, etc.) So we would like, for example, to develop

hide A in class object A : class_expr decls end
where decls does not mention A, to
class decls end

In practice we will often do in one step the development from the first of these
where decls does mention A to

class decls’ end

where decls’ is the result of unfolding definitions from A, simplifying, etc. and does
not mention A.

This often arises in the method, as illustrated in the tutorial in chapter 2, when
we base imperative modules on applicative ones and then manage to unfold all
the applicative entities. We would like to remove the applicative object before we
translate.



Removing hidden entities 231

Method The method is simply to formulate as indicated above, removing the
hidden entities and the hide clause.

Since we have removed hidden entities, to show implementation we show two
things:

1. that extending the new class with the deleted definitions gives an implemen-
tation of the old class. For the example above we need to show

extend class decls’ end with class object A : class_expr end <
hide A in class object A : class_expr decls end

2. that the extension (the extending class expression to the left of the implemen-
tation relation above) is conservative

The first check is an implementation relation that we can justify. The second is,
unfortunately, not in general provable since it amounts to showing that there are
no assertions that can be proven about the extension that cannot be proven about
decls’. There are, however, some rules that are sufficient to show that a particular
kind of extension is conservative. See section 3.12.2.

Sometimes we have the problem that we cannot form the extension we wish
because we want to hide something in the new class that needs to be visible in the
declarations we want to remove. There was an example in section 2.8.5.3 when
one of the hidden declarations to be removed mentioned the variable queue that
needed to be retained, hidden, in I QUEUE]1. If we try to form an extension

extend I QUEUE1 with class value f ... queue ... end
then it is ill formed because the occurrence of queue in the definition of f is not in

the scope of the definition of queue hidden in I QUEUE1. What we need to do is
redefine I QUEUE] (ignoring parameterization) as

scheme [_.QUEUEL = hide queue in I QUEUE1_BODY

where I QUEUE1_BODY is just the original intended definition of I QUEUEI1 but
without the hide clause. Now queue is visible outside I QUEUE1 BODY (but
not outside I QUEUE1) and we can define the implementation relation we want,
namely

extend I QUEUE1_BODY with class value f ... queue ... end < . QUEUEOQ

and justify this to show that . QUEUE1 implements I_QUEUEQ.

It is also worth considering this example in terms of the rules for conservative
extension described in section 3.12.2. The extending class expression in this case
is

class
type List_of Queue = {|1: P.Elem* « len | < P.bound |}
value
list_of : Unit — read any List_of_Queue
list_of() = queue
end

We need to check that:
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e there are only explicit definitions, and
e the extension is consistent with subtypes, i.e. any use of subtypes is consistent
with the definitions.

We can see immediately that there are only explicit definitions. The type abbre-
viation is in itself harmless (even if the subtype were empty). But we have used
subtypes in the type of list_of: its result is a subtype and it is total (the total func-
tions being a subtype of the partial ones). We can see from the definition of list_of
that its application just returns the value of the variable queue. An occurrence of
a variable name is convergent, so list_of is total. The type of the variable (which is
defined in . QUEUE2_BODY) is in fact the same as the defining type expression
for List_of Queue, and we conclude that the definition of list_of is consistent with
subtypes, and that the extension is conservative.

Why is no check on the non-emptiness of List_of Queue needed, since it is the
result type of list_of ? In this case, although list_of would be an inconsistent defi-
nition, we know that I QUEUE2_BODY would then also be inconsistent because
the type of the variable queue would be empty. Any extension of an inconsistent
specification is conservative. (This does not mean it might not be useful to check
in the module defining the variable that its type is not empty.)

Relation Removing hidden entities will give an implementation if it can be shown
that a conservative extension of the new module implements the old module.

Exercise Complete the following scheme definition:

scheme SORTO(E: LINEAR_ORDER) =
hide is_permutation, is_ordered in
class
value
sort : E.Elem* — E.Elem*
sort(el) as el’ post is_permutation(el, el') A is_ordered(el’),

end

Define SORT1 with an explicit definition for the function sort. You may choose any
sorting algorithm, or you might like to base it on remove_min from section 3.2.13.
If you decide to introduce any new functions, remember to make them local or hide
them. Omit is_permutation and is_ordered.

Define an implementation relation to show that SORT1 implements SORTO.
Check that the extension you use to define this relation is conservative. Check
that the implementation relation holds.

Suppose is_permutation and is_ordered had been defined in an auxiliary module
LIST _FUNS:

scheme LIST FUNS(E : LINEAR _ORDER) = ...
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Reformulate SORTO to use an embedded object instantiating LIST_FUNS. Such
an object may not be needed in SORT1. Show that the implementation relation
between SORT1 and SORTO0 can still be expressed using a conservative extension.

3.10 Extending generality

Purpose When we first formulate a module, or a function inside a module, we
tend to concentrate on the particular requirements we have been given. It is stan-
dard practice in programming to look for things that can be defined as separate
functions and to separate them out into definitions, passing the values they need
as parameters. Even if such a function is used only once and is not recursive (so
that its call could be replaced with in-line code with advantage in program size as
well as speed of execution) use of such functions may still be worthwhile because
of the improvement in readability and maintainability of programs. There is then
a possible generalization step in which an attempt is made to make such functions
more generally useful so that they can be used in more than one context. To take
a simple example, a function that is created to compare two values and return the
largest might be generalized to one that takes a (non-empty) set or list of values
and returns the largest. A further generalization, possible in a language that ac-
cepts functions as parameters, would be to formulate a function that returned the
“largest” from a set or list of values when the measure of “larger” was defined by
a function also passed as a parameter.

In specification we are concerned with similar generalizations for functions. But
we are also concerned with generalizations at the module level. This is also a com-
mon concern in object oriented programming languages. So we would for example
always parameterize a stack module so that we can easily instantiate it to any type
we like (including stacks of stacks if we wish). The reason is partly the same as
the programming one — we will get better structured specifications and we will
only write things once rather than several times with minor differences. There is
also a second reason: specifications should be re-usable — and in general more
re-usable than programs because they are more abstract. For example, an implicit
specification of what it means to sort a list may well refer only to the properties
of the result — it is a permutation of the input and is sorted. It is usable as a
specification of many implementations that use various sorting techniques (bubble
sort, quicksort, etc.) and various ways of representing lists (chained with pointers,
in arrays, etc.)

Method The overall method here is:

e Formulate (a module, function or axiom).
e Find a generalization, and formulate it.
e Replace the original as an instance of the generalization.

Various techniques for formulating generalizations are described in the following
subsections.
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Relation Generalization typically involves changing the parameters to schemes
or functions and so will typically be a static change.

3.10.1 Adding scheme parameters

Purpose Adding parameters to schemes is a way of generalizing from particular
modules that make assumptions about particular entities they use. Examples are:

types: We frequently create a type — a set, a list, a stack, a queue, a collection,
etc. — of “something”. “something” should always be made a parameter.

values: Systems tend to have many special constant values — the maximum depth
of a stack, the set of indices of an array, etc. It is common advice in program-
ming to give such a constant a name which is defined once and used every-
where else instead of repeating the value. This makes it easier to change, and
avoids confusion with other constants. Making such a value a parameter is
an improvement on this practice that is not usually available in programming
languages (though the use of separate “header” files in some programming
languages gives similar facilities).

Method The method is the general one of re-formulation with a parameter and
instantiation of the generalization to create the required instance. A number of
examples of generalized schemes with parameters are presented in appendix A.

Relation Adding parameters to schemes will generally give a static change since
we are changing the scheme interface and so cannot expect replacement of a scheme
with more parameters for one with less. We can, however, achieve implementation
in terms of instantiations of such schemes. We simply have to provide extra ob-
ject(s) to be used as the extra scheme arguments. For example, suppose we had
a class expression with an instantiation of a scheme INT_SET providing sets of
integers. The instantiation might look like

object S : INT_SET

If we then decided to generalize INT_SET to the parameterized one described in
appendix A.2, we might instantiate it by

object

I: class type Elem = Int end,

S : ASET(I)
If the remainder of the class expression that contained the original object definition
is not changed, the new formulation will implement the old. (The identifier I must
not already be the name of an entity in the class expression, but we can always
choose some identifier that is not already in use as the name of an entity.)

Exercise The concurrent schemes C_DOORI1 and C_BUTTONI in the tutorial
(sections 2.7.7.3 and 2.7.7.4) both describe similar classes. They have two states
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and functions to change and observe the states. Would it be possible to provide a
single parameterized scheme that could be instantiated to provide both of these?
If so, define a suitable scheme and define them both in terms of it.

3.10.2 Adding function parameters

Purpose The aim is very similar to section 3.10.1: to produce a function that
is more generally useful. We avoid duplication of code and ease the maintenance
problem. Justifications typically become shorter.

Method The method is again to formulate the generalization and then define
the original function in terms of it.

Examples In the lift example in section 2.7 it would have been possible to define
move_up and move_down functions. The addition of an extra “direction” parameter
allowed these to be replaced by just one move function.

For a second example, suppose we have a function min to find the smallest item
in a (non-empty) sequence. It is clear that the corresponding max function would
look very similar. We can abstract from the particular comparison function used in
min, “less than”, to define a function that applies an arbitrary comparison, which
might be instantiated by “less than” (to give min), “greater than” (to give max),
“nearer to zero” (to give smallest_absolute), etc.

value
best : (Int x Int — Bool) — Int* = Int
best(comp)(seq) =
if tl seq = () then hd seq
else
let i = best(comp)(tl seq) in
if comp(hd seq, i) then hd seq else i end
end
end

pre seq # (),

min : Int* = Int =
let 1t = A(x:Int, y:Int) » x < y in best(It) end
Note that RSL does not support parametric polymorphism, so if we want a function
that applies an arbitrary comparator to a sequence of arbitrary type, we need to
use scheme parameters, as we saw in section 3.10.1.

Relation The new function will not have the same signature as the old and so
cannot implement it directly. But, as when adding scheme parameters, we can
still obtain implementation of the surrounding class expression. For example, we
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supplied a function equivalent to the original min in terms of best in the example
above.

Exercise Define a filter function for lists of an element type T by completing the
following definition:

value
filter : (T — Bool) — T* — T*
filter(p)(seq) = ...

filter(p)(seq) produces a new sequence containing only those elements of seq which
give true when p is applied (and maintaining relative order of elements). You might
like to reconsider the solution to the exercise in section 3.2.10 using filter.

filter can also be used to specify other functions. For example

value

isin : T x T* — Bool

is_in(e, seq) = let eq = (A x : T » x = e) in filter(eq)(seq) # () end
Use filter to define

1. a function to remove all occurrences of an element from a sequence
2. a function to remove all duplicated elements from a sequence

3.10.3 Extending function parameter types

Purpose A function with a parameter type that is not a maximal type is only
partially useful because it cannot be applied to any value. If we can extend its
parameter type it will be more useful.

Method The method is first to change the type of the parameter.

Sometimes the parameter type extension causes no difficulties. For example,
a function defined on natural numbers may sometimes be changed to a function
defined on all integers without any change to the body of its definition. Others are
not so easy to generalize in this way. For instance, suppose we define the factorial
function by

value
factorial : Nat — Nat
factorial(n) = if n=0 then 1 else nxfactorial(n—1) end

If we now change its type to Int — Nat, we need to change the body of the
definition as well, to handle negative arguments. Sometimes we can give a default
result for the extra parameter values. For example, we might decide to let the
factorial of a negative number be zero. To take another example, we could let the
pop of an empty stack be the empty stack. But there is no such convenient default
for top.

Sometimes we will need to define some different “error handling” behaviour in
order to extend function parameter types. This is discussed in section 3.10.5.
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Note that weakening an explicit function’s precondition is the same as extending
its parameter type, and so the discussion here also applies to weakening precondi-
tions.

Relation The new function will implement the old provided it agrees with the

old on all the values in the original parameter type for which the precondition
holds.

Exercise Define a factorial function that returns zero for negative arguments.

3.10.4 'Weakening constraints

Purpose Another way of making things more general, and hence more generally
useful, is to consider whether we have imposed constraints that are too strong.
There are two typical ways in which this can occur:

e Postconditions of functions may be too strong.
e Axioms may be too strong or even unnecessary.

As an example of a postcondition of a function being too strong, consider two
possible postconditions of a function to remove an element from a list:

value
strong_remove : Elem x Elem* = Elem*
strong_remove(e, seq) as res post
(3L r: Elem* « 1°r = res A I7(e)"r = seq)
pre e € elems seq,
weak_remove : Elem x Elem* = Elem*
weak_remove(e, seq) as res post elems res = elems seq \ {e}
pre e € elems seq

weak_remove allows the order of the elements of the list to be changed, while
strong_remove forces them to be unchanged. If the order is unimportant (i.e. we
are using list as sets) this may be useful to the implementor. We have to be careful
about altering other properties, of course — weak_remove will remove all copies
of e and strong remove just one. weak remove may also change the number of
occurrences of other elements.

The problem of axioms being too strong is just like that of functions. There is
also the possibility of axioms being unnecessary. For example, we might define a
type Collection abstractly by

type Collection == empty | add(Elem, Collection)
We now consider some possible additional axioms.

axiom
[not_list |
Vel, e2 : Elem, s : Collection » add(el, add(e2, s)) = add(e2, add(el, s))
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The axiom not_list is certainly true of mathematical sets, but it may well not
be necessary here. Even if we want to use collections just for noting what is
in them and what is not, which is what mathematical sets essentially allow, the
ordering of the elements should be a design decision we can take later. A common
implementation technique for types like Collection is to use lists, and the axiom
not_list would make this difficult. So the axiom not_list should probably not be
included — it would be an example of over-specification.

This issue is also discussed in the tutorial chapter in section 2.8.4.1 where we
advise against generator-relating axioms.

Another possible additional axiom would disallow duplicates:

axiom
[not_bag |
V e : Elem, s : Collection - is_in(e, s) = add(e, s) = s
(Bags are sets with possibly duplicated elements.) It should come as no surprise
that not_bag, like not_list, is in general unnecessary and makes implementation
more difficult.

We can generalize our notion of avoiding generator relating axioms to avoiding
axioms which use equality or equivalence between terms of the type of interest.
The advice then covers axioms like not_list and not_bag. (We could formulate an
abstract equality as described in section 3.5.3 and use the equality in such axioms
instead of = or =, but in general the axioms will turn out to be consequences of
the definition of the abstract equality and hence unnecessary.)

Finally we might add a signature for a function choose and add

axiom
[choose_ax |
V e : Elem, s : Collection « choose(add(e, s)) = e

(choose_ax, together with the signature of choose, is equivalent to making choose
a destructor.)

choose_ax is another example of an axiom that is too strong. It would force us
to always choose the last element added. In fact, if both not_list and choose_ax
were added we would have a contradictory specification. Even without not_list, the
axiom choose_ax will be hard to implement. Suppose, for example, we implement
the collections as lists and decide to keep them ordered to facilitate searching. Then
to implement choose as constrained by this axiom we would have to keep track of
the last element added, not just, say, take the head of the list. So we should find
a weaker axiom for choose, say

axiom

[choose_ax |

V s : Collection « s # empty = is_in(choose(s), s)
where we have also defined is_in.

Note that there is a connection between the ways in which the axioms not_list,
not_bag and choose_ax are too strong. If we are (abstractly) interested in sets as
opposed to lists, then certainly we want our functions (especially “query” functions
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like choose) not to distinguish the order in which elements have been added. It
turns out that such properties should be made properties of those functions, rather
than enforced by axioms equating values of the abstract type, because this gives
most freedom to implementors. They can retain extra information in the imple-
mentation of the type (like the ordering information in a list) while implementing
the functions so that this extra information is immaterial. Thus the axiom for
choose is wrong because it does not have this property — it depends on the order
in which elements were added. Similarly, if we want sets rather than bags, a remove
function should remove all instances, not just one, as otherwise remove depends on
a not_bag property.

Method The method here is to reformulate with the constraints changed or
removed.

Relation Weakening constraints will not give implementation precisely because
some of the previously true properties will no longer hold. We may well obtain
implementation in the reverse direction but this is unlikely to be of much interest
here. We will obtain static implementation since signatures are not changed.

Exercise Specify the filter function from the exercise in section 3.10.2 by means
of a postcondition. Then weaken the condition to allow implementations where the
relative order of elements may be changed.

3.10.5 Adding error handling

Purpose Functions that are truly partial, that are undefined for some arguments,
are always a problem. Whenever we have a call of such a function we have either to
justify that the precondition holds or provide some suitable alternative behaviour
(i.e. alternative to calling the function) for when the precondition does not hold.
Such behaviour we will term “error handling”. Sometimes we can safely extend
the parameter type of the function to avoid the problem, and this is discussed in
section 3.10.3. This section is concerned with the situation when no such extension
is possible, or when we want to take definite distinctive action (like reporting the
error, invoking special safety features, etc.)

Method There are many ways of handling errors, and some programming lan-
guages provide special features like exception raising and handling that are not
provided in RSL, so the advice in this section has to be of a fairly general nature.

We suggest that for most applications the question of how to handle errors can
often be ignored in the initial specification. This may seem dangerous, but we have
already stated that sometimes the initial specification should not attempt to cover
all the requirements. It is more concerned with the main decomposition of the
system into components and establishing as abstractly as possible the behaviour
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of those components. The system requirements may take one of two approaches
to errors. They might require very definite action to be taken for error cases they
foresee. On the other hand, they might offer only very general requirements like the
logging of abnormal situations and a requirement that somehow the system should
keep going if at all possible. Those errors for which the system requirements give
some degree of latitude need not be considered in detail until enough development
work has been done to help decide on the best course of action. Typically many
other error possibilities are not foreseen in requirements and only arise during
development — indeed their occurrence may be due to a particular design.

None of this should be interpreted as saying that we don’t need to worry at all
about errors until late in the development process. It is well known that some
designs are much harder to make robust in their handling of errors than others.
We are merely advocating the general advice that some concerns should be dealt
with before others. A bad choice of where to start and a failure to keep the other
concerns in the back of one’s mind is always likely to cause problems.

One aim of doing formal development is to discover error cases not foreseen in
the requirements. Hence the method needs to make such discovery likely.

When we define a function implicitly or axiomatically we should check that such
a function exists. This is known as an implementability condition. Usually the
only proof of such a condition is to perform the implementation, i.e. to find an
explicit definition and check that it terminates (if it is supposed to) and satisfies
the postcondition or axioms. Hence the initial check generally needs to be mental.
Performing this mental check may suggest parameter or state values for which
no satisfactory implementation exists, or which require special actions. Parameter
values that require special actions may be handled within the function or elsewhere.
We may want to clearly distinguish between “normal” and “abnormal” parameters
and states. For instance we might define axioms in the style

axiom

err_condl = ...,

err_cond2 = ...,

~(err_condl V err_cond?2 ...) = ...
A useful check on such axioms is that the conditions are mutually exclusive. We
might later implement the function with a conditional expression to deal with the
various cases:

value
f(x) =

if err_condl then ...
elsif err_cond?2 then ...

else ...
end
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From now on we will assume the error handling is to take place at or above the
level of the call of our function, which will have a precondition or be defined on a
parameter type involving subtypes. So we will at some stage be able to formulate
the precise predicate establishing the conditions under which the function is known
to be usable. So for each call of the function we must either establish that the
predicate is already true, or else include some “guard” so that the function is not
called when the predicate is not true. If we need such a guard, calls of the function
will take the form

if p(x) then f(x) else handle error end (1)

There are now two problems that we will deal with in turn. First there is the
question of discovery propagation, which deals with trying to check the condition
p during execution of f instead of, as in (1), before f is called. Secondly there is
the question of recovery propagation which deals with the question of handling the
error at the appropriate level.

Discovery propagation There are good reasons for propagating the condition
inwards. Consider, for example, the case where f is a look-up function on a database
and p is the check that a key x is in the database. Then the expression (1) typically
produces (in an implementation) two searches of the database — one to check the
presence of the key and (if found) one to actually do the look-up. This is clearly
very inefficient, and we would prefer to check the presence of the key during the
look-up.® If the database has multiple concurrent readers the form (1) will also
be inappropriate, since there is no guarantee that the result of p will still hold
when f is executed. Including the check within f typically means changing the
result type of f to indicate success or failure. This leads us to the issue of recovery
propagation.

Recovery propagation Handling an error usually means two things: calling a
function that can handle it effectively — report to the user, try a different method,
wait and try again, etc. — and also providing sufficient information for that function
to take appropriate action. There are three main ways of doing this:

1. We can use some variable in which an appropriate error indication is de-
posited. Any expression calling a function which may set such a variable will
need to check for the presence of a non-normal value in the variable following
the function call and react accordingly. Such a variable may be fairly local,
in which case there may be other such variables to further propagate the re-
covery outwards, or may be wider in scope to save actually passing the error
indication on from one to another.

5 Another possibility is to introduce a caching mechanism that stores separately the value
corresponding to the key whose presence was last checked successfully. This still involves two
interactions with the database but makes the second one very rapid.



242  Dewvelopment

2. We can define a new type for the result of functions within which errors may
arise. Instead of a type T, say, it might be
type Result == fail | ok(res : T)

Expressions containing calls of such functions will need to be modified to
analyse the value returned.

3. We can provide an extra channel on which errors may be reported. Such
channels may be fairly local, in which case there may be other such channels
to further propagate the recovery outwards, or may be wider in scope to bypass
inner processes.

Option 1 looks attractive at first because we seem to have to make only minor
changes — we just include write access to such variables in the signatures of
functions that may produce them. Calls of such functions will typically take the
form

v := f(x) ; if error_var = ok then ... else ... end

There are two dangers with this approach. First, there is the temptation to make
such variables wide in scope to save the effort of mechanically passing the error on.
This breaks the normal rules of good structuring, and makes it difficult to reason
about system specifications. Secondly, there is the danger that, if the check after
the call of f is ignored, i.e. no check for an error condition is made, the omission
will not be noticed. This should be contrasted with adding the error condition to
the value returned by f. Since its type is now different, expressions calling it will
need to be changed or they will not type check.

In option 2 a call of f will typically take the form

case f(x) of
fail — ...,
ok(t) — ...
end

This has the advantage over option 1 of forcing the error to be handled at each
level and of making it hard to ignore the error component of the returned value of
f; taking f(x) to be of type T instead of Result will generate a type error.

Option 2 does not work with processes because processes running in parallel may
only return the Unit value. There is also the problem of restarting non-terminating
processes, which will be necessary if we want the system to do anything other than
terminate after the error is discovered. So for processes we have to either add the
error value to an output that is to be produced or provide an extra channel. The
first of these is analogous to option 2 in the sequential case and is generally to
be preferred for the same reason — we might forget to do an input on an extra
channel in writing other parts of the system. On the other hand, there may be
no convenient output event which is about to occur when the error is detected, in
which case the extra channel is needed. We may also think it better structuring to
add a new channel for a new kind of information.
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If the extra channel solution, option 3, is adopted, we should still note our
normal structuring constraints and make it local in scope even if we have to have
other channels for propagating the recovery further. Passing the message out in
a structured manner is often also necessary for intermediate processes to be reset
appropriately.

Relation Discovery propagation tends to involve just enlarging parameter types
and is therefore implementation, provided the behaviour on the original parameter
type is unchanged. Recovery propagation tends to change interfaces and is therefore
not implementation, but static change. If the error can be effectively handled at
some level, levels outside it are not affected by recovery propagation and so may
still be implementations, but there are usually at least some errors whose effects
propagate to the outer interfaces of systems.

Exercise Use the techniques described in the tutorial in section 2.8.4.3 to define
a robust version of A MAP from appendix A.5 (i.e. one in which all functions are
total). Extend the ideas to produce robust versions of I MAP and C_MAP from
the same appendix.

3.11 Development in the large

Purpose This section is about ways in which we can generate new specifications
by replacing one component with another. This may seem to be much like other
sections, where we have described replacing a value or type definition with another,
but here we are speaking of components involving class expressions, so we are more
involved with the structuring of our specifications.

The major issue is compositionality. That is, if we know the relation between
two components (e.g. one implements the other), and we have a context in which
one occurs, can we

e replace the occurring component with the other, and then
e deduce the relation between the new context and the old?

A method is in general regarded as compositional if it has general and reasonable
rules for allowing the replacement and deducing the resulting relation. For RSL
we are interested in the implementation relation between class expressions. In
appendix B.8 we show the following for the implementation relation:

e Replacement is possible if the signature of the new includes the signature of
the old, and if the replacement causes no capture of previously free names.

e The new context has the same relation to the original context as the replacing
class expression to the class expression it replaces.

The second result about contexts is summarized as the implementation relation
being compositional, defined in appendix B.8.6.
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Method The basic method is to replace a class expression by one that implements
it. In the following sections we describe where class expressions may be replaced
by others, and how we maintain implementation when we have implementations of
the components.

Relation As we noted above, replacing one class expression component with
another that implements the original will give implementation of class expressions
containing the component.

3.11.1 Building configurations

Purpose We eventually need to assemble the developed components of a system
so that we can translate them into the chosen target language. To do so we create
a configuration by identifying the actual components to be used. A configuration
will usually contain a number of RSL objects; it may also contain schemes if our
target language allows schemes to be translated (as in Ada, for example, using
generic packages).

Method If we follow the development method proposed in the tutorial in chap-
ter 2, our final specification will consist of

e one or more type modules instantiated as global objects

e a number of schemes used as parameters

e a “main” scheme containing a number of object declarations, each of which
is an instantiation of a scheme defining a component. These schemes may in
turn contain object declarations for sub-components also defined as schemes

Developing a global module causes no problems; it is discussed in section 3.11.3.

Schemes used as parameters are a special case because they rarely need to be
developed. We discuss what happens when they are developed in section 3.11.2.

Apart from these we have a number of schemes, all but the main one instantiated
as objects either globally or in others. (If our target language only allows objects
to be translated, the main scheme will also be instantiated as an object.) Each
of these instantiated schemes will have been subject to development, so in general
there will be a version which is the finally developed one, and an earlier version
which is instantiated (or perhaps versions if there is more than one instantiation).
These earlier version(s) are the current “contracts” between the developments of
the components.

The method is simply to replace all mentions of earlier versions with the final
ones. This will be possible in the sense of giving a well-formed result if all the
replacing versions statically implement the versions they replace. In general, when
replacing class expressions by others, we need to be concerned about capture of
free names, but all we are considering here is the replacement of one scheme name
by another, and this problem cannot arise. If all the replacements are implemen-
tations, the new system will implement the old.
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3.11.2 Changing the formal parameters of scheme definitions

Purpose Sometimes we need to develop scheme parameters because we need to
make more assumptions about what the parameter will provide.

Method We saw in section 3.11.1 that, if we follow the proposed method, the
parameterized schemes in our system are either the main one or are instantiated
as objects in others. Changing the main scheme’s parameter has no effects on the
rest of the system. So the schemes for which changes in parameters have effects
elsewhere always also have instantiations as well as definitions. It is sufficient to
show that we obtain implementations of these instantiations. We illustrate by
means of an example.

Example Suppose we have a scheme defining a collection, parameterized with
the standard scheme ELEM:

scheme COLLECTION(E : ELEM) = ...

and suppose we have an instantiation of this COLLECTION scheme as an object,
where the type Elem is instantiated as a type U, say. For this we will need an
actual parameter. This might take the case of a specially defined object, so that
we have

object
E : class type Elem = U end,
T : COLLECTION(E)

Or we may have U defined as a type name in some object, like a global type module
G, say, so that we did not need to define the object E, since we could write

object T : COLLECTION(G{U for Elem})

Now suppose we have a development of COLLECTION into ORDERED_COL-
LECTION, which uses LINEAR _ORDER as its parameter (defined in appendix
A.1). LINEAR _ORDER has the type Elem plus a total ordering leq and an equal-
ity eql on it. We want to instantiate ORDERED_COLLECTION instead of COL-
LECTION to form the replacement object.

We will need first to define a total order on our type U. Suppose this is a function
lequ. Then in the first case, where we have a special object E, we will now define

object
E:
class
type Elem = U
value
leq : Elem x Elem — Bool = lequ,
eql : Elem x Elem — Bool
eql(x, y) = leq(x ,y) A leq(y, x)
end,
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T : ORDERED_COLLECTION(E)

In the second case, where we are using the global types module G as the actual
parameter, it may be that lequ and eqlu are already defined in G, and we can
simply write
object

T : ORDERED COLLECTION(G{U for Elem, lequ for leq, eqlu for eql})
or it may be that we need to define lequ and/or eqlu. In this case we develop the
global types module to G2, say, and use this instead of G.
In either of these cases, the development consists of

e developing E by adding definitions of the functions leq and eql, or developing
G if necessary by adding definitions of the functions lequ and eqlu, and

e developing the definition of T from COLLECTION(O) to ORDERED_COL-
LECTION(O') where O and O’ are respectively

— the original object E and a development of it respectively, or
— G and G2 (perhaps with a fitting), or
— both the global object G (perhaps with a fitting)

The development of the definition of the object E by adding the definitions of
leq and eql, or the development of G to G2 by a similar addition, always gives
implementation. And any object implements itself. So in each case the object O
is implemented by the object O'.

The development of the definition of the object T will give implementation pro-
vided

ORDERED_COLLECTION(Q') < COLLECTION(O)

but we know O’ implements O, and so by compositionality of implementation
COLLECTION(Q') < COLLECTION(O)

Hence by transitivity of implementation it is sufficient to show
ORDERED_COLLECTION(Q') < COLLECTION(O)

In summary: we will obtain implementation of the scheme instantiations if the class
expression of the the new actual parameter (O') implements the class expression
of the old actual parameter (O), and if the instantiation of the new scheme with
O' implements an instantiation of the old scheme with O'.

3.11.3 Developing a global type module

Purpose The method described in chapter 2 suggests defining a global type mod-
ule with all the types we want to use generally but are not interested in developing,
together with useful functions defined on these types. What happens when we need
to add to this module a new type, or a new function? This can be dealt with easily.

Method We have a global object:
object G : class_exprl
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We simply add the things we need, either by extension of class_exprl:

object G2 : extend class_exprl with ... (1)
or by redefinition:
object G2 : class_expr2 (2)

We then change mentions of G in all other modules to mentions of G2. We can,
if we do not wish to keep the original G as part of the history of the development,
simply edit the definition of G itself. This will automatically change all references
from the old G to the new one (though it will involve re-doing the type checking
of all modules; tools will typically do this automatically).

Relation We will obtain implementation if the class expression for G2 imple-
ments that for G. For (1) this is immediate; for (2) we need to justify

class_expr2 =< class_exprl

3.12 Verification of relations

In this section we see how the various kinds of relation that we identified at the
start of this chapter can be verified, i.e. shown to be true.

implementation: If we are simply replacing in a client a mention of a module
with a mention of another that implements it, there is nothing more to show
since implementation is compositional.
Otherwise we are making more general changes to definitions and need to
show implementation.
If the replacement module does not define some entities defined and hidden
in the module being replaced, as we saw in section 3.9, we

e define an extension of the replacement module that defines the hidden
items,

e show this extension is conservative, and

e show the extension implements the original module

Showing conservativeness of extension is described in section 3.12.2; showing
implementation is described in section 3.12.1.

conservative extension: How to show an extension is conservative is described
in section 3.12.2.

static implementation: Static implementation is decidable and therefore can be
checked by tools.

If we have static implementation, it is commonly the case that the rela-
tion can be described as a partial implementation. Partial implementation is
described in section 3.12.3.

static change In general it is difficult to relate modules with different signatures.
However we saw in the tutorial chapter how it is possible to go from applica-
tive to imperative (either sequential or concurrent) in a way that makes it
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possible to relate the properties of the applicative and imperative modules.
The method for doing this suggests doing the development in a particular way
so that in practice the relation can be assumed rather than stated, but it can
be stated (and justified) if required. The relation, as we saw in section 2.9,
involves showing that a conservative extension of the imperative module im-
plements the applicative one.

Many other static changes are such that it is possible to describe them in
terms of partial implementations; see section 3.12.3.

3.12.1 Showing implementation

The notion of implementation is basic to correct development in RSL because it is
compositional, i.e. allows us to develop components separately.

In this section we consider in general how to decide if a development of a module
is an implementation of that module.

Before proceeding, it is worth noting that we sometimes have a choice as to
which implementation relation to establish. Suppose we start with a module A0.
We then develop it into A1 and establish that A1 implements AQ. We then perform
a further development to A2. We could try to establish that A2 implements Al.
Since implementation is a transitive relation this would also establish that A2
implements AQ. This is likely to be the relation we are really interested in if AQ
is the initial specification of this module. So would it be any better to show A2
implements AQ directly? In general this would be more difficult. A2 will be more
similar to A1 than it is to A0 and this may outweigh any other considerations.
Effectively the justifications that A2 implements A1 and that Al implements A0
are a means of decomposing the justification that A2 implements A0. It may also
be that Al captures more requirements than A0, and we would not be checking
that A2 also captured them if we only show that A2 implements AQ.

Sometimes, however, A2 is not an implementation of A1 and yet is an implemen-
tation of A0. Working out the details of development often causes us to change
direction slightly, so that, even if we see the ideas of A2 being a development of
the ideas of A1, we may have changed the way we implement some of the original
entities of AQ. In this case we can obviously only justify the relation between A2
and AO0.

In describing how to justify that one module implements another we will draw
heavily on the definition of the properties of a declaration or class expression as
defined in appendix B.8.2.

Technically we can only talk about one class expression implementing another.
We then extend this to the idea of one object definition implementing another
by saying that we will have an implementation relation between them if the class
expressions defining the objects are in the implementation relation.

Similarly for scheme definitions: we will have an implementation relation between
them if the class expressions defining the schemes are in the implementation relation



Verification of relations 249

and if there are the same formal parameters for each scheme. This is precisely what
we normally need for separate development, but we can also develop and even add
to scheme parameters and still obtain implementation of instantiations, as we saw
in section 3.11.2.

So how do we show implementation between class expressions? A basic class
expression consists of a string of declarations, each of which is a sequence of defi-
nitions. Each definition is of a particular kind — object, type, value, variable,
channel or axiom. (Remember we are excluding scheme definitions from class ex-
pressions.) Apart from axioms, each kind of definition generally introduces a name
for an entity of that kind, and one or more properties. There are some excep-
tions to this general rule — variant type definitions, union type definitions, short
record definitions and multiple variable, channel and value declarations — but all
these have expansions (described in the RSL book [23]) into strings of declarations
containing definitions that do conform to the rule.

The general procedure in checking that a new class expression implements the
old is as follows:

e For each non-axiom definition in the old class expression there must be a
definition in the new class expression of the same kind and introducing the
same name with the same maximal type or class.

e The properties of each definition in the old class expression must reduce to
true in the new.

The first condition is static implementation and is defined in the RSL book [23].
We only deal here with the second, which is stated in appendix B.8.3 as a meta-rule
allowing us to justify the implementation relation:
[implementation_introduction_ inf]

cel - properties(ce0)

cel < cel
when no_new_capture(cel, ce0, properties(ce0)) A
no_hiding(ce0) A no_scheme_defs(ce0) (1)

The first applicability condition is a check that the implementing class expression
cel does not capture any names that are free in ce0. This is necessary as such
capture would in general change their properties.

The second applicability condition is a restriction reflecting the fact that the
theory of a class expression can in general only be finitely presented by the prop-
erties function when there is no hiding involved. no_hiding(ce0) is true provided
there are no names hidden in ce0. If the no_hiding restriction does not hold we
can extend the implementing class expression conservatively with definitions of the
missing names; see section 3.9 for details.

The third applicability condition is the restriction that we do not include scheme
definitions (embedded schemes) in class expressions.

To use this meta-rule we need the definition of the properties function from
appendix B.8.2. There are first a set of definitions explaining the properties of
the various non-basic class expressions.
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Apart from hiding class expressions, there are definitions for all the non-basic
class expressions in terms of the properties of their components, so that the theory
of any class expression satisfying the no_hiding and no_scheme_defs restrictions
can ultimately be expanded into an expression involving the properties of a basic
class expression, which is defined to be the conjunction of the properties of its
definitions. There are then a series of definitions of the properties of each kind of
definition. So, under some weak restrictions, the theory of an RSL class expression
can be given in terms of a finite conjunction of assertions. For each class expression
ce0 the meta-rule (1) above is then really a shorthand for

cel - assertion; A ... A assertion,

cel < cel
when no_new_capture(cel, ce0, assertion; A ... A assertion,) A
no_hiding(ce0) A no_scheme_defs(ce0)

where each assertion; is an assertion arising from a definition in ce0, and this can
be rewritten

cel - assertiony,

ey

cel F assertion,

cel < cel

when no_new_capture(cel, ce0, assertion; A ... A assertion,) A
no_hiding(ce0) A no_scheme_defs(ce0)

With the exception of axioms, cel will necessarily contain a definition correspond-
ing to the one we are seeking to implement, because of the requirement of static
implementation. But note that we are not restricted to the properties of the new
definition alone in proving assertion;: we have all of cel in the context and can
use all of its properties. This is particularly relevant for axioms, as it is typical
that axioms in early specifications are implemented by means of definitions in later
ones.

In the following discussion we consider each kind of definition in an “old” class
expression and discuss what needs to be justified to show implementation of the
definition by a “new” class expression. The typical sequent to be justified will be
of the form

C' - assertion
where C' is the new, implementing class expression.

3.12.1.1 Implementation of type definitions

A type definition establishes the name of the type. Type abbreviation definitions
additionally establish equality between the type name and a type expression.

The theory of a sort definition is true, which gives nothing to justify.

The theory of an abbreviation definition is given by

properties(type Tid = T) ~ {id | id : Tid} = {id | id : T}
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so if in a new class expression C' we have an abbreviation definition
type Tid = T'
we can see that our condition to justify will be
C'k{id |id : Tid} = {id | id : T}
ie.
C'H{id|id: T'} ={id | id : T}
So we have to show that the set of values in the new type is equal to the set of
values in the old.

For union and short record definitions we can expand them into their equivalent
variant definitions. For variant definitions, we can expand them into their equiva-
lent sort, value and axiom definitions. These expansions are described in the RSL
book [23].

It is not always necessary to expand the old and new definitions if they are
both variant type definitions. Section 3.2.4 describes how variant types containing
wildcards may be implemented by adding extra variants and constructors, and sec-
tion 3.2.5 explains how variant type definitions may be implemented by definitions
containing extra destructors and reconstructors.

3.12.1.2 Implementation of value definitions

A value definition establishes the name(s) of a constant or name of a function and
its type. It may also give an implicit or explicit definition of its value.

Typings The theory of a typing is is given by
properties(value id : T) ~ Jid': T «id = id
so in the new class expression we have to show that the value id is within the
type T. Note that if T is maximal or a sort there will be nothing to show: the

definition of the value id of the same type T or a subtype of it (necessary for static
implementation) will be sufficient.

Explicit value definitions The theory is given by

properties(value id : T =pe) ~ (Jid' : T+id =id) A (id = p_e)

so we have to show, as with typings, that the value id is in the appropriate type
and also that it is equivalent to the expression p_e.

Implicit value definitions The theory is given by
properties(value id : T+ peb) ~ (3id': T «id' = id) A (p_eb = true)

so we have to show, as with typings, that the value id is in the appropriate type
and also that the restriction p_eb holds.
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Explicit function definitions The theory is given by
properties(value id : T = a T1 id(b) = e pre ro_eb) ~

(Fid': T3 aTl+id =id) A (OVb: T« id(express(b)) = e pre ro_eb)
(where the partial function arrows may be replaced by total function arrows).

We have to show, as with typings, that the value id is in the appropriate type
and also that application of the function is always equivalent to the expression e
when the precondition holds.

We need to take particular care with function types involving subtypes in their
parameter and/or result types, or containing total function arrows, or containing
access descriptors. Consider for example the explicit function definition

value
f: Nat — read v Nat
f(x) = ..
Part of its theory is
db: Nat - read v Nat b =f

To prove this for an implementing function f we would need to show for any Nat
argument x, say, that f(x)

e does not access any channels,

e does not access any variables other than v,

e may read the variable v but cannot change it,

e converges, i.e. (since it does not communicate) terminates with a unique value,
and

e returns a Nat.

Similar remarks apply to a function defined only as a typing or defined implicitly.

Typically, of course, these properties are discharged by giving the implementing f
the same type as the implemented one, but we also note that they will be discharged
immediately provided parameter types only increase, result types only decrease,
accesses only decrease, and partial arrows are replaced by total ones.

Implicit function definitions The theory is given by
properties(value id : T = a T1 id(b) as b’ post ro_eb’ pre ro_eb) ~
(Fid': T S aTleid =id) A
(OVb: T-id(express(b)) as b’ post ro_eb’ pre ro_eb)
(where the partial function arrows may be replaced by total function arrows).
We have to show, as with typings, that the value id is in the appropriate type
and also that the postcondition always holds when the precondition does.

3.12.1.3 Implementation of variable definitions

A single variable definition establishes the name of a variable, its type and (option-
ally) assigns an initial value to it.
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If there is no initial assignment, the theory is given by
properties(variable v : T) ~

(O03id: Teid=v)A(OVid: T «v:=1id post true) A

(3id : T » O initialise ; v := id = initialise)
so we have to show that the new variable is always within the type T, that as-
signments to the new variable for any value in T will converge, and that the new
variable has some unknown but fixed initial value of type T. The first and third
conditions will be satisfied by a variable definition with the same variable name
with type a (non-empty) subtype of T, and the second by a variable definition with
the same variable name with type a supertype of T. So we can only implement by
a variable with the same name and same type.

If there is an initialisation, the theory is given by
properties(variable v: T := p_e) ~

(O3id: Teid=v) A (OVid: T v :=id post true) A

(O initialise ; v := p_e = initialise)
and in practice this means that the new variable as well as having the same name
and type must be initialised to an equivalent value.

3.12.1.4 Implementation of channel definitions

A single channel definition establishes the name of a channel and its type.
The theory is given by

properties(channel ¢ : T) ~

(3id : T » true) A (O c? post true) A (OVid: T - c! id post true)
The first condition says that the channel has a non-empty type and the others
that inputs and outputs of any value of the type must converge. This would allow
implementation by a channel of the same name with a larger type, but in practice
we need to use the same type to avoid possible contradictions in the types of
functions involving input expressions.

3.12.1.5 Implementation of object definitions

An object definition establishes the name of the object and its class expression. An
array object definition additionally establishes the type of the parameter.

We shall see that for a new object definition declaration to implement an old it
must have the same name and its class expression must implement that of the old.
Additionally, for arrays, the old array type must be a subtype of the new.

We could show this by examining the properties of object declarations, as we
did for the other kinds of declaration, but the argument is fairly complicated if
there is hiding involved. We appeal instead to the “compositionality” results for
object declarations given in appendix B.8.6. The relevant meta-rules are
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[object_implementation_ infl |
cel < cel
class object O : cel end < class object O : ce0 end

[object_implementation_ inf2 |
extend class value b : T end with cel <
extend class value b : T end with ce0
class object O[b : T]: cel end < class object O[b: T] : ce0 end

with the obvious extensions to several object parameters.

These express formally the results we claimed above, except for the possible
enlargement of the type of the object parameter, which can be shown to hold as a
consequence of these results.

3.12.1.6 Implementation of scheme definitions

A scheme definition establishes the name of the scheme, the names of its parameters
(if any), their order, their class expressions, and the class expression of the scheme.

We shall see that for a new scheme definition declaration to implement an old
one with the same parameters it must have the same name and its class expression
must implement that of the old.

As with object declarations in the previous section, we appeal directly to the
“compositionality” results from appendix B.8.6. For scheme declarations we have
the meta-rules

[ scheme_implementation_ inf1 |
cel < cel
class scheme S = cel end < class scheme S = ce0 end

[scheme_implementation inf2 |
extend class object X : cex end with cel <
extend class object X : cex end with ce0

class scheme S(X : cex) = cel end <
class scheme S(X : cex) = ce0 end

[scheme_implementation inf3 |
extend class object X[b : T]: cex end with cel <
extend class object X[b: T] : cex end with ce0
class scheme S(X[b: T]: cex) = cel end <
class scheme S(X[b: T]: cex) = ce0 end

with the obvious extensions to several scheme and object parameters.
These express formally the results we claimed above.

It follows, of course, that instantiations of the new scheme will implement in-
stantiations of the old scheme.




Verification of relations 255

What if we want to develop the scheme parameters? We can in this case show
that if we develop a scheme parameter to one that implements it then instantia-
tions of the new scheme will implement instantiations of the old scheme. (We will
also want to ensure, of course, that in such instantiations the actual parameters
implement the new parameters as well as the old.) This is in fact a particular case
of the more general discussion on developing scheme parameters in section 3.11.2.
The more general discussion is relevant here since we are most unlikely to change
a scheme parameter without at the same time developing the body of the scheme.

3.12.1.7 Implementation of axiom definitions

Axioms express logical properties. They may also be named but the names are
ignored for the purposes of implementation.
The theory of an axiom is given by

properties(axiom [id ] ro_eb) ~ O ro_eb = true

So the implementation check for an axiom is that it be shown to be always true in
the new class expression. Any axiom name is ignored.

3.12.2 Showing conservative extension

An extension
extend cel with ce2 (1)

is a conservative extension of cel if all the properties of the extension that can
be expressed in terms of the entities defined in cel are true of cel. Intuitively,
the extension conserves the “cel-properties”. Conservative extension is formally
defined in appendix B.8.4.

Unfortunately, conservativeness of an extension is not in general finitely expand-
able (unlike implementation) since the definition involves quantifying over all the
“cel-properties”. However, it is possible to give a set of sufficient conditions for
the extension (1) of cel to be conservative. These are:

1. ce2 contains no axioms.

2. ce2 does not mention any subtypes, or if it does, any value, variable and chan-
nel definitions in cel are consistent with those subtypes (see section 3.12.2.1).

3. Declarations in the body of any object declaration in ce2 satisfy conditions 1,
2 and 3.

3.12.2.1 Consistency with subtypes

We need to explain what we mean by consistency with subtypes:

e For a variable or channel declaration or a value declaration that is a typing,
it is sufficient for the subtype to be non-empty without using the variable,
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channel or value declaration as evidence for the non-emptiness. In addition, if
the variable is initialised, the initialisation value must be within the subtype.
e For an explicit value or function definition the defining value must be within
the subtype, without using the typing of the value name as evidence for this.
e For an implicit value or function definition there must exist a value within
the subtype satisfying the restriction or (when any precondition is true) the
postcondition, without using the typing of the value name as evidence for this.

Exercise A scheme S is defined as follows:

scheme S =
class
type T = {[i: Int « p(i) [}
value
p : Int — Bool,
a: T
end

Decide which of the following declarations would extend S conservatively:

channel c: T

variable v: T

variable v: T := 0

variable v: T := a

valueb: T

valueb: T+b #a

value f: Int — T

value f: Int - T f(x) asrpostr > a

3.12.3 Showing partial implementation

We saw in section 3.12.1 that an implementation relation
cel < cel

can generally be justified by justifying a (finite) collection of sequents of the form
cel - assertion; (1)

where the assertion; are the conjuncts of the properties of ce0. Note that these
are all in the context of, and hence properties of, cel, the implementing class
expression.

It is often the case that cel partially implements ceQ in the sense that the
properties of the cel are “close to” the properties (1) that would make it an im-
plementation of ce0. We do not define “close to” formally, but intuitively we have
a partial implementation when some of the properties that would together give
implementation are true, some are true under restricted conditions, and some are
true when rewritten to take account of signature changes.
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Example 1 A common instance of partial implementation is a development that
makes a type bounded. Suppose we start with a specification of an abstract un-
bounded collection:

scheme COLLECTION(E : ELEM) =
class
type Collection
value
/* generators */
empty : Collection,
add : E.Elem x Collection — Collection,
/* observers x/
is_in : E.Elem x Collection — Bool
axiom
[isin_empty | V e : E.Elem - is_in(e, empty) = false,
[is_in_add |
Ve, e : E.Elems, s : Collection ¢
is_in(e, add(e, s)) = e = €' V is_in(€, s)
end
and then we want to implement it with a scheme BOUNDED_COLLECTION
with a maximum size to Collection and an observer is_full. First we will need
to strengthen the parameter from ELEM to ELEM_BOUND, say, to include a
bound. Now the conditions to show that a suitable instantiation of BOUNDED_-
COLLECTION implemented the corresponding instantiation of COLLECTION
(as described in section 3.11.2) would expand to

class object E : ELEM_BOUND end, BOUNDED_COLLECTION(E)
V e : E.Elem - is_in(e, empty) = false (2)
and
class object E : ELEM_BOUND end, BOUNDED_COLLECTION(E)
Ve, ¢ : E.Elems, s : Collection »
is_in(e’, add(e, s)) = e = €' V is_in(€/, s) (3)
But in fact, while (2) will hold in BOUNDED_COLLECTION(E), (3) will not; add
is no longer a total function and will have a precondition. But we can write instead
the condition

class object E : ELEM_BOUND end, BOUNDED COLLECTION(E) +
Ve, ¢ : E.Elems, s : Collection * ~is_full(s) =

is_in(e’, add(e, s)) = e = €' V is_in(€/, ) (4)
So we can express the relation between COLLECTION and BOUNDED_COL-
LECTION as the properties (2) and (4) and claim this as a partial implementation
on the basis that these are close to the properties (2) and (3). We would also
provide some textual commentary to explain the differences between the partial
implementation conditions and the ones we would get from expanding the imple-
mentation relation; otherwise the partial implementation conditions are hard to
interpret.
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Expressing a relation as a variation on implementation also helps the developers
of clients of the module understand what is changing; which properties of the old
module are preserved, which are different and in what way.

This first example shows a relation that is a static implementation being de-
scribed as a partial implementation. The next example shows the technique being
applied to a static change.

Example 2 Suppose we generalize a function f from a scheme S0 by adding an
extra, second parameter in a development S1. One way to deal with this is to give
the more general function a new name and to define f in terms of it. Then we
would expect to obtain implementation of SO by S1. But suppose we do not do
this; we just change the signature of f. Again we will see that we can form a partial
implementation.

Suppose there is an axiom in SO of the form

axiom

[gf]Vx:Te-g(f(x) =e
where g is implemented in S1 and the expression e can be rewritten in terms of
the entities defined in S1. Presumably the new f in S1 behaves the same as the
old f when its new parameter has some particular constant value c, say. So we can
write the corresponding property of S1 as

S1FVx: Teg(f(x,c) =e
We can obviously generalize to several signature changes between SO and S1.

This second example shows a relation that is a static change being described as
a partial implementation.

3.12.3.1 Conclusion

In this section we have considered the various kinds of relations and shown that
their verification involves verification of implementation, conservative extension
and partial implementation.

Implementation involves the properties of all the different kinds of definition
in RSL. We can, under some weak restrictions expressed in terms of no_hiding
and no_scheme_defs, form the properties of any basic class expression simply by
forming the conjunction of the properties of its constituent definitions. There are
definitions (see appendix B.8) for the non-basic class expressions satisfying these
restrictions in terms of the properties of their components, so that the properties
of such a class expression can ultimately be expanded into a finite conjunction of
assertions. We also have a technique of dealing with the case where no_hiding does
not hold that involves extending the implementing class expression conservatively.

We have also seen that it is possible in practice to expand the implementation
relation as a number of separate conditions, each consisting of one conjunct of the
properties of the class being implemented in the context of the implementing class
expression. This is convenient for justifications of implementation.
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Conservative extension, unlike implementation, in general has no finite expansion
into properties. In practice we show it by construction, by restricting the definitions
we use and showing consistency with subtypes.

Partial implementation involves formulating the properties that are preserved
(often close to those that would need to hold for implementation) and verifying
them.



CHAPTER 4

Justification

One of the major reasons for expressing specifications in a formal language like
RSL is to prove properties of the specifications. Which properties are we interested
in? For a module, we may be interested in theorems about it. We may also be
interested in checking that there is no unintended use of language constructs like
division by zero. For a development step, we may be interested in a development
relation stating how the new module should be related to the old module in order
to be a correct development. In the tutorial, there were several examples of such
development relations, e.g. A QUEUEQ(_1 in section 2.8.4.6. Formulating properties
(also called conditions) about a module or development step and then trying to
prove them is a way of ensuring correctness and detecting errors before further
work is undertaken. This potentially reduces the effort devoted to testing software,
not because testing should be reduced in scope, but because fewer errors in the
code lead to fewer test failures and less re-work and re-testing.

In RAISE, a justification is an argument showing the truth of some condition.
Such an argument can be totally formal, i.e. be a mathematical proof based on
application of proof rules for RSL. Justification can, however, also be done more
informally if this suits the practical or economic constraints associated with a par-
ticular industrial application. The idea of using informal arguments is to indicate
how formal proofs could have been constructed. In other words, whenever informal
arguments are used one should be convinced that it is possible to replace them
with formal proofs. Such arguments, which depend on a formal underpinning but
allow for informal steps, are called rigorous.

This chapter gives an introduction to the formulation of justifications and con-
tains advice on techniques that can be used in constructing justifications.

Section 4.1 introduces the notion of justification conditions and section 4.2 the
notion of justifications. The following sections 4.3, 4.4 and 4.5 give advice on
techniques that can be used in constructing justifications. Section 4.3 gives general
advice, while section 4.4 gives particular advice related to imperative constructs
and section 4.5 particular advice related to concurrency.

The creation of justifications can be supported by computer-based tools. Which
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kind of support a tool can give is described in section 4.6. Some of the justification
examples in this chapter have actually been produced using such a tool, but it is
not the purpose of this book to explain how any specific tool operates.

4.1 Justification conditions

This section defines the notion of justification conditions and describes different
kinds of justification conditions.

A justification condition (usually abbreviated to condition) is an assertion to-
gether with a context in which the assertion is to be interpreted. The context
contains definitions (of objects, schemes, types, values, variables, channels and ax-
ioms) which define free names occurring in the assertion and state properties that
can be assumed to be true in the assertion.

More precisely, a justification condition is a sequent,! i.e. it has one of the fol-
lowing forms:

e assertion
e context F assertion

An assertion is one of the following constructs:

e a logical value expression
e an implementation relation

and a context is a list of assumptions, where an assumption is one of the following
constructs:

e a class expression

e a declaration

e an axiom assumption of the form [id] ro_eb, where ro_eb is a logical value
expression

We say that a context contains all those definitions which its assumptions stand
for. The RSL book [23] defines which definitions a class expression stands for. A
declaration stands for its constituent definitions. An axiom assumption is short
for the declaration axiom [id] ro_eb. The scope® of an assumption in a sequent
extends to any assumption to its right and to the assertion.

A sequent of the form assertion is short for the sequent class end - assertion.

In practice, we do not display the full context of an assertion as the context
may be quite large. For instance, we will typically not display definitions of global

!Formally, we should distinguish between sequents and meta-sequents, and between assertions
and meta-assertions, as done in appendix B.8.3. This distinction serves to ensure that there are
no circularities in the definition of the implementation relation. However, for the presentation in
this chapter the distinction is not important and we ignore it and include meta-sequents in the
term “sequent” and meta-assertions in the term “assertion”.

2The scope of a declarative construct is a region of RSL text in which the identifiers and
operators it introduces are potentially visible. However, there may be places where they are
hidden, cf. the RSL book [23].
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modules. Section 4.3.2 will describe the principles according to which the non-
displayed (implicit) part of the context can be derived. We call the non-displayed
part, context, of the context for the context of the condition and say that the
condition is interpreted in or has the context context. So, if a condition, ce F
assertion, is interpreted in context, then the assertion is interpreted in the context
“context, ce”. In other words, if we had displayed the whole context, the condition
would have been context, ce - assertion.

A sequent of the form context - assertion (where the context is the full context)
is true if assertion is true in all states in all models satisfying the definitions in the
context context.

Section 4.3.2 will also explain how the definitions in the context of an assertion
can be used to justify the assertion. For instance, if the assertion x > 0 has in its
context an axiom x = 1, we can use this axiom to justify the assertion.

In RAISE there is a distinction between two kinds of conditions to be justified:

e formal conditions
e confidence conditions

These are described in the following two sections.

4.1.1 Formal conditions

Formal conditions are sequents whose truth is expected. Formal conditions appear
as the sequents stipulated in theorems and development relations. The truth of a
theorem can affect the formal correctness of a proof, since the theorem can be used
in the proof. The truth of a development relation can affect the formal correctness
of the way in which a configuration is built (e.g. when a specification is substituted
for another specification, based on a stipulation that the implementation relation
holds between them).

An example of a formal condition from a theorem
Assume the following definition of a global module, I:

scheme I =
class
type El = Int*
value
insert : Int x El — El
insert(i, el) = (i) ~ el,
member : Int X El — Bool
member(i, el) = el # () A (i = hd el V member(i, tl el))
end

and a theorem T, about it:
theorem [T] I+ Vi: Int, il : El « member(i, insert(i, il))
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Then

IFVi: Int,il: El « member(i, insert(i, il))
is a formal condition arising from the theorem T'. This condition is to be interpreted
in a context which contains the definition of the scheme I. In general, a formal
condition is to be interpreted in a context containing those module definitions
which were in the context® of the theorem or development relation from which it
came.

An example of a formal condition from a development relation
Assume definitions of two global unparameterized schemes, STACKO and STACK1
and the following development relation:

development_relation [ STACK_DEV | STACK1 < STACKO
Then
STACK1 < STACKO

is a formal condition arising from the development relation STACK DEV. This
condition is to be interpreted in a context which contains the definitions of the
modules STACKO and STACK1.

4.1.2 Confidence conditions

Confidence conditions are sequents whose truth increases the confidence that there
is no unintended use of RSL constructs in a RAISE entity (module, theorem or
development relation). The confidence conditions extend the normal static con-
text conditions (such as maximal type correctness) in ensuring that constructs like
division by zero do not occur. Such constructs are legal, so the construct is not
formally incorrect and might be intended, but very probably the specifier has made
a mistake.

For a given RAISE entity, one can systematically (or even automatically by a
tool) generate confidence conditions sufficient to show that the RAISE entity does
not contain such potentially unintended use of constructs. Each of the generated
confidence conditions should be inspected, and it should be decided whether it is
relevant, in which case it should be justified, or whether it is irrelevant (because a
certain use of a construct was intended), in which case it should be ignored. Hence,
confidence conditions differ from formal conditions in that they can be considered
irrelevant.

We shall now give three examples of concerns that can give rise to the generation
of confidence conditions:

e precondition satisfaction
e non-divergence
e subtype correctness

3Theorems and development relations are, like modules, to be interpreted in a context.



264  Justification

Precondition satisfaction

An explicitly defined partial function with a precondition can, according to the
static context conditions, be applied to any actual parameter whose maximal type
is the same as the maximal type of the formal parameter. In particular it is allowed
to be applied to a parameter which does not satisfy the precondition, in which case
the result of the application is under-specified. Since the specifier of the function
has taken care to specify a precondition for the function, it is probably the intention
that the precondition should hold for any actual parameter. Similar considerations
hold for pre-defined operators. A natural choice is therefore to generate confidence
conditions ensuring that pre-defined operators and user-defined functions are only
applied to actual parameters which satisfy the preconditions. For instance, for the
RSL expression ei; / eis, where ei; and eip are read-only integer expressions, the
confidence condition

e12 # 0
could be generated. The condition states that the precondition for the integer
division operator should be satisfied.
Similarly, if pop is a function defined as follows
type
Elem,
Stack = Elem*
value
pop : Stack — Stack
pop(st) = tl st
pre st # ()
then for the RSL expression pop(ast), where the actual parameter ast is a read-only
expression possibly denoting an empty stack, the confidence condition

ast # ()

could be generated. This condition states that the precondition for pop should
be satisfied. It should be interpreted in a context which contains all those defini-
tions which are in the context of the RSL expression pop(ast) from which it was
generated. For example, if pop(ast) occurred in the expression

if ast # () then pop(ast) else ... end

then the context of pop(ast) would be the context of the if expression plus the
axiom ast # ().

Non-divergence

Some pre-defined operators are, according to the static context conditions, allowed
to be applied to actual parameters for which the application is specified to diverge
(to be equivalent to chaos). For instance, an application of the card operator
to an infinite set will diverge. This property can in rare cases be exploited, for
instance, one can test whether a set s is infinite by writing

card s = chaos
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However, it is most likely that divergence is not wanted. A natural choice is there-
fore to generate confidence conditions ensuring that there are no such applications.
For instance, for the RSL expression card s, where s is a possibly infinite set, the
following confidence condition could be generated:

~(card s = chaos)

The condition states that s should be a finite set, since otherwise the card s would
be chaos. However, chaos may be intended, as mentioned above, although that is
not too likely. The condition can be approached in two ways: (1) ignore it as being
irrelevant, because the effect was intended, or (2) try to argue that the condition
holds, thereby ensuring that chaos will not arise. If the confidence condition is
ignored, the specifier is advised to check carefully that the effect really was intended.

Subtype correctness

Confidence conditions can also be generated to ensure subtype correctness, i.e. that
certain value expressions must denote values of certain subtypes.

An example of a subtype correctness condition is the requirement that functions
whose formal parameter type is a subtype are only applied to actual parameters
belonging to that subtype. As mentioned earlier, functions are allowed to be applied
to any actual parameter belonging to the maximal type of the formal parameter
type. In particular, they are allowed to be applied to actual parameters which do
not belong to the formal parameter (sub-)type. However, if the specifier of the
function has taken care to specify a subtype for the parameters, it is probably the
intention that any actual parameter should belong to the subtype. A natural choice
is therefore to generate confidence conditions reflecting this. For instance, if pop
is a function defined over a subtype of non-empty finite stacks

type

Elem,

Stack = Elem*,

NonEmptyStack = {| st : Stack * st # () |}
value

pop : NonEmptyStack — Stack

pop(st) = tl st

then for the expression pop(ast), where the actual parameter ast is a read-only
expression possibly denoting an empty or infinite stack (maximal type checking
only ensures that ast is of type Elem“), the confidence condition

ast # () A ~(len ast = chaos)

could be generated. The condition states that the stack ast should belong to the
subtype NonEmptyStack. An alternative formulation of the condition could be

ast Z () A (3 t: Elem* « t = ast)
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4.2 General introduction to justification

The typical scenario for developing a justification is that the developer starts from a
given condition whose truth should be justified. Such a condition is written within
“half-brackets”:

Lcondition

and the whole construct is called a goal.*

An example of a goal is

LIFVi: Int, il: El » member(i, insert(i, il)) ,
where I is the scheme defined in section 4.1.1. Note that this goal requires a context
in which I is defined. In general, we assume that the context of a goal is given
when we start the justification and we do not write it in the justification itself.
This context should (at least) contain definitions of the free names occurring in the
goal. In section 4.3.2.1 we elaborate further on this.

A common style of constructing a justification is to try to break the goal into
simpler subgoals (whose truth ensures the truth of the original goal) by application
of a proof rule or an informal argument. Then the simpler subgoals have to be jus-
tified. After a number of such simplifications, all subgoals may have been reduced
to true, whereby the justification is completed. Such a strategy is conventionally
known as backwards reasoning (because, as we shall see, it involves applying in-
ference rules, as they are normally presented, upwards or backwards).® It is also
possible to do forwards reasoning, where one starts from some known facts and
then tries to establish a conclusion which coincides with the goal to be justified.
Forwards reasoning is described in section 4.3.7.

To be more formal, a justification consists of a goal, and an argument that justifies
the truth of the goal:

Lcondition
argument
or more generally, it can consist of several subgoals and an argument for each of
these:
. LCOIlditiOIllJ
argument,

+ _condition, |

argument,
An argument can for instance be a (backwards) application of a proof rule followed
by an argument for each of the generated subgoals. In the following sections various
kinds of arguments are described.

4For convenience, we sometimes use the term goal to mean the constituent condition of the
goal.

SWe could call this “bottom-up” reasoning, but this would conflict with the other common
usage in which division of a task into sub-tasks is described as “top-down”.
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4.2.1 Proof rules and their application

Formal justification is based on the application of proof rules for RSL.
There are two kinds of proof rules:

o equivalence rules which are used to manipulate (sub-)terms of goals
e inference rules which are used to manipulate conditions of goals

These are explained in the following two sections.

In appendix B there is a collection of RSL proof rules which are always avail-
able (but not necessarily applicable) for any condition/subterm. For each condi-
tion/subterm there may be additional rules available. In section 4.3.2.2 we explain
how these additional rules, which are called context rules, are derived from defini-
tions in the context of the condition/subterm.

The rules are divided into basic and derived proof rules. A rule is derived if
anything that can be proved using it can also be proved using only the basic rules.
Hence, the derived rules are not necessary, but they have been introduced to shorten
proofs.

The RSL proof rules are intended to be sound, but not necessarily complete with
respect to the semantics of RSL [19]. That means that any condition that can
be proved from them should evaluate to true according to the semantics, but not
necessarily vice versa.

The proof rules were developed from the RSL proof theory [18] and a larger
collection of derived rules can be found in the RAISE Justification Handbook [10].

4.2.1.1 Equivalence rules

An equivalence rule states that two RSL terms are equivalent. In a justification,
equivalence rules can be used to manipulate goals by replacing subterms with
equivalent subterms.

An equivalence rule has the form

tl ~ t2
where t; and t, are RSL terms of the same syntactic category. The rule states that
t; and t, are equivalent, i.e. have the same semantics (meaning).

Rules for the syntactic category value_expr are termed walue rules, rules for the
syntactic category type_expr are termed type rules, etc.

Examples of value rules are

[not_false | ~ false ~ true

[not_true| ~ true ~ false

[dom empty] dom [] ~ {}
and an example of a type rule is

[ text_expansion | Text ~ Char*

Each of the rules has a name written within square brackets. The first two rules
state equivalences between logical value expressions, the third rule states an equiva-
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lence between set value expressions while the last one states an equivalence between
type expressions. The rule, not_false, states that ~ false is equivalent to true. The
other rules are read in a similar way.

In a justification, equivalence rules can be used to manipulate goals: an equiv-
alence rule can be applied to a subterm, t, of a goal, replacing the subterm with
an equivalent term, t', obtaining a new goal. The context of the new goal is the
same as that of the original goal. The term, t, is called the matched term, and the
term, t', is called the resulting term. Equivalence rules can be applied left-to-right
or right-to-left. If an equivalence rule is to be applied left-to-right, the left-hand
side of the rule is called the matching side, and the right-hand side is called the
result side (and vice versa for right-to-left application). An equivalence rule can
only be applied to a (sub-)term, ¢, if ¢ is of the same syntactic category as the rule,
and if the matching side of the rule matches t. For simple rules, as those presented
above, matches can be read as is identical to, and the resulting term is equal to
the result side. As we shall see later, rules may contain term variables, and in this
case matching is more complicated.

As mentioned earlier, justifications can be in backwards or forwards mode. This
section only deals with application in backwards mode. Application in forwards
mode is covered in section 4.3.7.

When an equivalence rule having a name, name, is applied to a subterm ¢t of
some goal in order to replace it with an equivalent term t', this is written

Lty
name:
!
-t

Note that one has to select a subterm t which the rule should be applied to. Which
subterm was selected is, however, not written in the presentation of the justification
— only the name of the rule used. As an example, not_true can be applied left-to-
right to the subterm ~ true in the goal

L~ ~ true

in order to replace the subterm with the term false, obtaining the new goal
L~false

This is written

L~ ~ true
not_true:

L~ false

We now have to argue for the truth of this new goal and can proceed by applying
not_false to the term ~ false:
L~ ~ true
not_true:

L~ false |
not_false:

Ltrue
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As we have reached the goal _ true , which is fulfilled by definition, our justification
is completed — we have proved the truth of our original goal | ~ ~ true . (In this
justification, the meaning of the original goal is the same as the meaning of the last
goal, since the latter is obtained from the former by a sequence of replacements of
terms with equivalent terms by which the meaning is not changed.)

The examples of equivalence rules shown so far have been very simple in the
sense that each rule has defined exactly one equivalence between terms. However,
there are more general equivalence rules which contain term wvariables which can
be instantiated (i.e. replaced) with (actual) terms to give a particular equivalence.
Hence, equivalence rules containing term variables are schemas for many equiva-
lences.

An example of such a rule is

[empty_concatenation] () ~ el ~ el

Here, el is a term variable which can be instantiated with any term which has the
syntactic category value_expr and maximal type T* for some T. Hence, the rule
states that for any list expression, el, the term, () ~ el, is equivalent to the term
el.

Term variables can only be instantiated with certain terms — there are restric-
tions on

e the syntactic category
e certain static properties

of actual terms. These restrictions are, by convention, reflected by the name of the
term variable, as explained in appendix B.3. For example, a term variable having
the name el can only be instantiated with terms having the syntactic category
value_expr and maximal type of the form T%.

In order to explain what it means to apply an equivalence rule containing term
variables, we first explain what it means to instantiate the rule.

To instantiate a proof rule in a given context means to instantiate (i.e. replace)
the term variables in the rule with actual terms and to expand applications of
special functions. (Later we shall see that rules can also contain applications of
special functions). An instantiation of an equivalence rule is correct if

e the syntactic and static restrictions for term variable instantiation (see ap-
pendix B.3) are satisfied in the given context

e both sides of the instantiated rule are well-formed in the given context. This
constraint can be relaxed: “out-of-band names” may be accepted. See sec-
tion 4.3.2.4 for an explanation of this issue.

An equivalence rule can only be applied to a term, ¢, in a particular context if

e t is of the same syntactic category as the rule

e the matching side of the rule matches t, i.e. it is possible to find a correct
instantiation of the rule for which the matching side of the instantiated rule
is identical to t
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The resulting term is the instantiated result side.
An example of a left-to-right application of empty_concatenation, where el is
instantiated with the term (5 + 2), is
L)~ 6B +2) =M,
empty_concatenation:
L(5 +2) =(7),
Another example of a rule with term variables is
[iftrue] if true then e else ¢’ end ~ e
An example of a left-to-right application of if true is

Lif true then 0 else 1 end = 0
if_true:
|_0 = OJ
Here, e and € are instantiated with 0 and 1, respectively. This instantiation satisfies
the static restriction described in appendix B.3, that term variables whose names
only differ in the number of primes (like e and €' in the rule if true) must be
instantiated with terms having the same maximal type.

The rule if true can also be applied right-to-left to some term ¢t. In this case,
there are several possibilities for the term resulting from the application: it may
be any term if true then t else t' end where t' is some value expression which has
the same maximal type as t. Here one should make a choice such that the resulting
goal looks promising with respect to completing the justification.

On the left- and right-hand sides of an equivalence rule, application of some
special functions may occur. The names of these functions are always written in
boldface, so they are easily recognizable. For instance, in the rule

[let_absorption3 ] let b = e in express(b) end ~ e

the special function express has been used. Special functions are functions which
take RSL terms as arguments and return RSL terms as results. express is a special
function which takes a binding and returns a value expression, which is obtained
from the binding by bracketing any operators and otherwise leaving it unchanged.

When instantiating proof rules, applications of special functions must be ex-
panded.

In appendix B.4 a description of the special functions and their evaluation is
given.

Equivalence rules may also have applicability conditions, as explained in sec-
tion 4.2.1.3.

4.2.1.2 Inference rules

An inference rule consists of a list of sequents called the premises, and a sequent
called the conclusion, and states that the conclusion is true if the premises are true.
Such a rule can be used to split a goal into n subgoals.
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An inference rule has the form

P1;, -y Pn

p
where pi, ..., pn and p are sequents.® The rule states that the conclusion, p, is true
if the premises, py, ..., Pn, are true, i.e. we can conclude (forwards) that p is true if

we know that all p; are true. Conversely, we can prove (backwards) p by proving
all p;.

Inference rules may contain term variables and special functions just like equiv-
alence rules.

An example of an inference rule is

[and_split_inf |
ro_eb, ro_eb’
ro_eb A ro_eb’

The rule has a name written within square brackets. The rule states that for any
statically read-only logical value expressions, ro_eb and ro_eb', the conclusion, ro_eb
A ro_eb’, holds if each of the two premises, ro_eb and ro_eb’, holds. This means that
we can prove a condition ro_eb A ro_eb’ by proving each of the conditions ro_eb
and ro_eb’ separately.

As mentioned earlier, justifications can be in backwards or forwards mode. In
backwards mode, inference rules can only be applied backwards (upwards), while
in forwards mode they can only be applied forwards (downwards). Backwards
application is used to break a goal down into subgoals, which are then justified
separately. Forwards application is used to make a conclusion from some known
facts. This section only deals with backwards application. Forwards application is
covered in section 4.3.7.

An inference rule can be applied backwards to the sequent, p, of a goal,” if the
conclusion matches p, i.e. it is possible to find a correct instantiation of the inference
rule for which the instantiated conclusion is identical to p. An instantiation of an
inference rule is correct if

e the syntactic and static restrictions for term variable instantiation (see ap-
pendix B.3) are satisfied in the given context

e the instantiated premises and the instantiated conclusion are well-formed in
the given context.

In appendix B.8.3, which distinguishes between sequents and meta-sequents, there is also
a distinction between inference rules and meta-inference rules. As we remarked earlier, we will
generally ignore the distinction, but we will use the correct syntax; double horizontal lines will
be used for meta-rules:

b

"Unlike equivalence rules, however, it should be noted that inference rules can only be applied
to the whole sequent constituting the goal — not to a subterm of a goal.
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The result of the application is a list of goals whose sequents, pi, ..., pn, are the
instantiated premises, and whose contexts are the same as that of the original goal,
except for a few special cases explained later in this section. This is written

LbPa
name:
LP1.
if there is only one premise (n = 1), or else

LPuJ
name:

*LP1y

*LPnu
where the bullets indicate an itemized list of subgoals, and name is the name of the
rule. We say commonly that an inference rule is applied to a goal meaning that it
is applied to its sequent.

As an example, and_split_inf can be applied backwards to the goal

LX # Y A X =17,
in order to break it into two subgoals, | x # yj and _x = z,. This is written

LX# Y AX =1z
and_split_inf:
C X F Y]
X =17
We now have to argue for the truth of each of these new goals. These arguments
should be placed just after their respective goals, i.e. the form of the complete
justification will be
WXFAFYAX=13,
and_split_inf:
WX FYy
argument,
¢t LX=1Z
arguments
where argument; is an argument for the first subgoal, and argument, is an argument
for the second subgoal.

The sequents in the premises and conclusion of an inference rule will typically be
logical value expressions as in the example above, but they may also be implemen-
tation relations and they may have explicit contexts (i.e. be of the form context -
assertion.)

An example of an inference rule having a premise of the form context - assertion
is
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[all_subsumption_inf |
valueb: T F roeb
Vb: Teroeb

and an example of an application of this rule is
Vn: Naten >0,
all_subsumption_inf :
(valuen: Nat -n > 0

Note, how the context of the assertion n > 0 in the new goal is the context of the
assertion V n : Nat « n > 0 in the original goal enriched with the value declaration
value n : Nat. However, the context of the goal (that is the implicit context of
the assertion) is not changed.

There is another rule, all assumption_inf, which is very similar to all_subsump-
tion_inf, except that when applied backwards it moves the value declaration into
the implicit context:

Vn: Naten>0,
all_assumption_inf :
Ln > 0,
all_assumption_inf is also more general in that it allows a typing list after ‘V’ instead
of a single typing b : T. The rule is described in appendix B.9.

Another important example of a rule which changes the implicit context when
applied is class_assumption_inf. It is described in appendix B.9.

As a special convention, if the application of an inference rule results in a goal
of the form

L[id] ro_eb F ro_eb'
we write

[id] ro_eb F  r0_eb’
instead, and we do not display [ id] ro_eb - in the following steps of the justification.
Here we have reduced the goal to _ro_eb’; by moving the axiom [id] ro_eb to the
implicit context. An example of such an application is shown in section 4.2.1.3.

Hence, the application of inference rules may change the context of goals. The
context of a goal is not explicitly written down at each point of the justification; in-
stead it is indirectly represented as the context of the initial goal plus all definitions
which have been added in previous steps.

Inference rules may also have applicability conditions, as explained in section
4.2.1.3.

4.2.1.3 Applicability conditions

We have already seen that the applicability of proof rules is restricted by syntactic
and static constraints. Although such constraints can be fairly elaborate, for many
rules application is only correct under further constraints which are not always
statically decidable. Such constraints are called applicability conditions. These are



274 Justification

expressed as logical value expressions in which term variables and application of
special functions (for determining particular properties of terms) may occur.

Equivalence rules and inference rules with applicability conditions have the fol-
lowing forms, respectively:

t; ~ to when ro_eb

and

p17 ) pn

p

when ro_eb
where ro_eb is an applicability condition. The equivalence rule states that when
ro_eb is true t; and t, are equivalent. The inference rule states that, when ro_eb is
true, p is true if py, ..., pa, are true.

When a rule with an applicability condition is applied, the applicability condition
gives rise to a side condition which should be justified separately. The side condition
is the instantiated applicability condition and its context is the same as that of the
term/goal to which the rule was applied.

In a justification, a side condition and the argument for its truth are enclosed
by the keywords since and end and placed after the (last) goal resulting from the
application. For instance, if there is one resulting goal in backwards mode, the
form of the complete justification will be

Lcondition
name_of rule:
Lresulting_condition
since
Lside_condition |
argument_for_side_condition
end
argument_for_resulting_condition

If the side condition is a conjunction of m conditions we can instead write
Lcondition |
name_of_rule:
Lresulting_condition |
since
+ _side_condition;
argument_for_side_condition;

+ side_conditiony, |
argument_for_side_condition,,
end
argument_for_resulting_condition

Many side conditions will, in practice, be statically decidable or can be expanded
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to a conjunction of simpler conditions. So a tool need only generate side condi-
tions which are not statically decidable, and it may expand a side condition to a
conjunction of simpler side conditions, before presentation. Several justification
examples in this book have been produced using such a tool.

An example of an equivalence rule with an applicability condition is

[equality_annihilation| e = e ~ true when convergent(e) A readonly(e)

In the applicability condition, two special functions, convergent and readonly,
are used. These functions are described in appendix B.4. The rule states that
e = e is equivalent to true when convergent (i.e. is (a) deterministic and (b) either
terminating or waiting for communication) and e is read-only (i.e. does not access
any channels and does not write to any variables). The applicability condition is
necessary. Otherwise we would for instance be able to prove that equalities like
“(v:=1) = (v:=1)", “chaos = chaos” and “1 [| 2 =1 [| 2” are equivalent to
true which is wrong (the first equality is equivalent to “v := 1 ; true”, the second
to “chaos” and the third to “true [| false”).

There are two ways in which value equivalence rules with applicability conditions
can be applied: the standard application shown above, where the instantiated ap-
plicability condition occurs as a side condition, and the in-goal application where
the rule

t; ~ t when ro_eb
is applied left-to-right as if it had been written

t; ~ if ro_eb = true then t, else t; end
and right-to-left as if it had been written

if ro_eb = true then t; else t, end ~ t,

i.e. the instantiated applicability condition does not occur as a side condition;
instead it occurs as the guard in an if expression, where the then branch contains
the resulting term obtained by standard application, and the else branch contains
the matched term.

In-goal expansion should be used when the instantiated applicability condition
accesses variables and must be simplified in the context of the remainder of the
goal. See sections 4.4.3 and 4.4.6 for examples.

An example of an inference rule with an applicability condition is

[imply_deduction_inf|
[id] ro_eb F ro_eb’
ro_eb = ro_eb’
when convergent(ro_eb) A pure(ro_eb)

The inference rule states that, when ro_eb is convergent and pure, we can prove
ro_eb = ro_eb' by proving ro_eb' in a context where ro_eb is assumed to be true.
An example of a backwards application of imply_deduction_inf is
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LX = 0=x Z OJ
imply_deduction_inf:
[xzero] x =0F

Lx > 0,

The side conditions are trivially discharged since equality (=) is a total operator,
and x is pure and convergent (any value name is pure and convergent) and so is 0.

Note that the term variable id is not matched by matching the goal against the
conclusion and so can be instantiated to any identifier by the user.

4.2.2 Conclusion arguments

The justification of a goal is complete in backwards mode when the goal is reduced
to one or more subgoals which are all trivially fulfilled: | true or context - true,
and in forwards mode when a conclusion which coincides with the original goal is
established.

In order to mark the completion of a justification, a conclusion argument con-
sisting of the keyword ged is used, as in

L~ ~ true
not_true:

L~ false |
not_false:

Ltrue 1
qed

4.2.3 Irrelevance arguments

As explained in section 4.1.2; confidence conditions may be irrelevant if the situ-
ation they are intended to guard against is actually intended to occur. In such a
case, it is not relevant to attempt a proof of the condition; in fact a proof may
fail because the condition is not necessarily true. Instead, the confidence condition
should explicitly be identified as irrelevant. This can be done by an irrelevance
argument, which simply consists of the keyword irrelevant.

As an example, consider a fragment of a specification which allows for a certain
set s to be finite or infinite:

if card s = chaos then 0 else 1 end

A systematic generation of confidence conditions for this fragment would investigate
all sub-constructs for possible confidence conditions. In particular, the card s
construct will generate the confidence condition that s should be finite in order
to avoid chaos! But the possible evaluation of card s to chaos in this situation
does no harm, since the expression as a whole still converges (to 0). The presented
condition should then be considered irrelevant:
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L~(card s = chaos) |
irrelevant

Note that irrelevance arguments are not informal. An informal argument asserts
that some condition is true without formally proving it. An irrelevance argument
does not assert anything about the truth or falsity of the condition.

Irrelevance arguments can only be applied to confidence conditions, not to formal
conditions.

4.2.4 Comments

Any argument can be prefixed by comments, using the RSL syntax for comments
as in
LX#Y A X =1
/* next we want to bring the left conjunct into an appropriate form x/
inequality _expansion:
L~x=y) Ax =1z,

4.2.5 Informal arguments

It may be tedious to do all steps in a justification in a totally formal way. Therefore,
the RAISE method allows for rigorous arguments where some of the steps may be
informal explanations. When one is convinced that a certain condition can be
proved or that a certain condition can be replaced with another condition (by a
number of formal steps), one can simply give an informal explanation instead of
using formal arguments.

Hence, in addition to the application of proof rules, which constitutes formal
proof steps, there are two kinds of informal arguments that can be used:

e explanation arguments which consist of a comment followed by the keyword
qged. The comment should explain why the current goal is believed to be true.

o replacement arguments which consist of a comment followed by a new goal
or list of new goals (as replacement for the otherwise current goal), and then
an argument (formal or informal) for each new goal. The comment should
explain why the new goal(s) can replace the old goal.

For example, an explanation argument is used in the following justification:

L) T8 (M) = (5, 7).
empty_concatenation:

L(5) ~(7) = {5, 7),
/* which is obviously true %/
qed
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In the following justification a replacement argument is used:

L7 € {((5,7,3) = ())(2)}.
/* as the application of the list to index 2 gives 7, this is equivalent to */
L7 € {7},
isin_singleton:
L7=1,
equality_annihilation:
Ltrue
qed
In both examples the informal step could have been replaced with a few formal
steps.

4.2.6 Compact presentation of arguments

Justifications can grow rapidly. In order to make a justification more presentable,
it is useful to hide some of the details by using a summary notation for applying a
whole sequence of rules without showing the intermediate results (goals).
For example, a compact presentation of the justification of the theorem T from
section 4.3.2.4 is
LI FVi: Int,il: El - member(i, insert(i, il)) ,
class_assumption_inf, all_ assumption_inf :
Lmember(i, insert(i, il)) ,
insert_def, member_def :
L) ~il# () A (i=hd () " il) V member(i, t1 ({i) ~il))),
empty_list_inequality, true_and :
vi = hd ({(i) ~il) V member(i, tl ((i) ~il))
hd_concatenation, equality_annihilation :
Ltrue V member(i, t1 ((i) ~il)),
true_or, qed

4.3 Doing justifications

The previous section gave a general introduction to justifications. This section
contains advice on techniques that can be used in constructing justifications.

The scenario is that one starts from some goal

Lcondition
whose truth should be justified. The challenge is then to construct an argument
for this.

The goal can immediately be discharged by an irrelevance argument if the condi-
tion is an irrelevant confidence condition (the justifier has to decide whether it is),
or by an explanation argument if the truth of the condition is obvious and there
are no requirements for formality.
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Otherwise the argument is made in several steps. In a typical step, we try to
break a goal into simpler (sub-)goals using proof rules that are applicable to the
goal or subterms of the goal.

In general, for the same goal there may be several different arguments, some
of which are more elegant than others. It is not possible to give a general recipe
on how to find an argument, and in particular not an elegant one. It can be
difficult and is often an iterative process where various strategies are tried until a
successful one is found. Here experience (as in any other creative process) and a
computer-based assistant can be of great help.

In addition to finding an argument, there is also the challenge of presenting a
justification in a readable way by structuring it and hiding less important details.

In this section we give some hints on possible strategies for constructing and pre-
senting justifications. First, in subsection 4.3.1 we show some typical initial steps
where the goal is reduced by enriching the implicit context, and in subsection 4.3.2
we show how contexts can be used. Then, in subsections 4.3.3, 4.3.4 and 4.3.7
we explain how justifications can be structured using substitutions, lemmas and
forwards arguments, and in subsections 4.3.5, 4.3.6 and 4.3.8, we show how the
well-known strategies of proof by case analysis, induction and contradiction can be
applied.

4.3.1 Putting assumptions into the implicit context

Often the initial goal of a justification is a sequent of the form

Lce - assertion |
This is for instance usually the case for formal conditions coming from theorems
about some given modules, as in

LIFVi: Int, il: El » member(i, insert(i, il)) ,
from section 4.1.1.

A possible strategy for justifying such a goal is to try to simplify the assertion
assertion to true obtaining the goal

Lce F true

As in this case only the assertion assertion is manipulated, it would be better
immediately to get the class expression out of the way, i.e. reducing the goal to

Lassertion
by not displaying the class expression ce, but moving it to the implicit context. This
can be done using the rule class_assumption_inf which is described in appendix B.9.
For our example we get

LIFVi: Int, il : El « member(i, insert(i, il))
class_assumption_inf:
LV 1i: Int, il : El « member(i, insert(i, il)) |

Section 4.3.2.4 shows how the applications of member and insert can be unfolded
using the definitions given in I.
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Many goals are, as the goal we have reached above, a universally quantified
expression of the form

LV typing-list * ro_eb |
A possible strategy for justifying this is to try to simplify ro_eb to true obtaining
the goal

LV typing-list « true
and then reducing this to true by applying the rule all_annihilation. As in this case

only ro_eb is manipulated, it would be better immediately to get the quantification
out of the way, i.e. reducing the goal to

Lro_eb

by adding the value definitions of typing-list to the implicit context. This can
be done using the tactic, all_assumption_inf, which is described in appendix B.9.
For our example, this corresponds to saying that we can prove the universally
quantified expression by proving member(i, insert(i, il)) in a context containing
the value definitions i : Int and il : EI, i.e. under the assumption that i and il are
an arbitrary integer and integer list, respectively:

LV 1i: Int, il : El « member(i, insert(i, il)) |

all_assumption_inf:
Lmember(i, insert(i, il))

4.3.2 Using context information

As stated in section 4.1, any condition is to be interpreted in a specific context.
The same holds for any subterm of a condition.

The purpose of this section is to explain what the context is and how it can be
exploited in a justification by using certain proof rules, which are called context
rules.

First, in section 4.3.2.1, we recapitulate and elaborate on what the context of
conditions and subterms is. Then, in section 4.3.2.2, we explain how the context
rules are derived from the context, and finally, in sections 4.3.2.3—4.3.2.8, we give
important examples of the usage of context rules.

4.3.2.1 Contexts

Any condition and any subterm of a condition is to be interpreted in a context
containing definitions of schemes, objects, types, values, variables, channels and
axioms.

It is important to know what the context is, as it can be exploited in the justifi-
cation of the condition, as we shall see in the following sections. In this section we
recapitulate and elaborate on what the context is.
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The context of conditions
In justifications, we do not explicitly write the contexts of conditions appearing in
it, but they can be derived according to the following rules:

1. For the initial goal:
The context of the initial goal is to be provided outside the justification itself.
This context should (at least) include:

(a) if the goal is a formal condition, those module definitions which were in
the context of the theorem or development relation from which it came

(b) if the goal is a confidence condition arising from a subterm in a module,
theorem or development relation, those module definitions which were in
the context of the module, theorem or development relation plus local
definitions from constructs (let definitions, typings, etc.) “enclosing” the
subterm in the module, theorem or development relation

2. For subgoals:

In the justification of a goal, subgoals may be generated. The context of these
may be different from the context of the original goal, as in some steps def-
initions may be added to the context. The context of a subgoal is therefore
the context of the initial goal plus all definitions which have been added in
previous steps. Definitions may be added when inference rules are applied
(see section 4.2.1.2). Important examples are the additions of axiom defini-
tions from lemmas (see section 4.3.4) and case assumptions (see section 4.3.5).
Informal steps (see section 4.2.5) and applications of equivalence rules (see
section 4.2.1.1) do not change the context.

The context of subterms
The context of a subterm of a condition may differ from the context of the con-
dition itself by having local definitions from declarative as well as non-declarative
constructs “enclosing” the subterm in the condition.

For instance, in the condition

{2%n|n: Naten<2}={0,2},
the value definition, n : Nat, belongs to the context of the expressions n < 2 and
2 % n, and the axiom n < 2 belongs to the context of the expression 2 % n.

The RAISE Specification Language book [23] defines the scope rules for declara-
tive constructs and explains how declarative constructs give rise to definitions that

are not axioms. Section 4.1 does the same for the syntactic extension of a sequent
to RSL. Declarative constructs can also give rise to axioms:

e Axiom declarations give rise to their constituent axioms.

e Declarative constructs containing a restriction, * ro_eb, give rise to the axiom
ro_eb, if ro_eb is pure.

e Patterns or bindings in which a value expression, e, is matched against a bind-
ing, id_or_op, give rise to the axiom id_or_op = e, if e is pure and convergent.
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The scope of a definition® from a declarative construct is the scope of the declarative
construct from which the definition stems.
Non-declarative constructs can also give rise to axioms:

e Equivalence expressions, e = € pre ro_eb, and post expressions, e post ro_eb’
pre ro_eb, in which the precondition ro_eb is pure, give rise to the axiom ro_eb
whose scope is the remaining part of the equivalence/post expression.

e If expressions, if eb then e else € end, in which eb is pure and convergent,
give rise to the axiom eb whose scope is e and the axiom ~ eb whose scope is
e.

e Axiom prefix and infix expressions, and if expressions having elsif branches,
give rise to axioms in a similar way (as they can be expanded to if expressions

of the form if eb then e else € end).

In general, a definition from a construct is in the context of a term if the term is
within the scope of the definition.

Note that the axioms stated above do not have names, but a tool may automat-
ically generate and keep track of names.

4.3.2.2 Context rules

The definitions in the context of a condition or subterm give rise to additional proof
rules which are available for that condition or subterm. Such proof rules are called
context rules. As with other proof rules, we distinguish between basic and derived
context rules.

Context rules differ from other rules in that they may contain identifiers and
operators which are not term variables, but are defined in the actual context. When
applying such rules, matching requires identity for such identifiers and operators.

Basic context rules from axiom, type, value, variable, channel and ob-
ject definitions

Each definition, definition, of an entity with a name, id, in the context of a con-
dition/subterm gives rise to a number of equivalence rules which are available for
that condition/subterm:

[name | ro_eb; =~ true

[name | ro_eb, ~ true
where
properties(definition) ~ ro_eb; A ... A ro_eb,

properties is defined in appendix B.8. If definition is an axiom, name is the name
of the axiom, otherwise it is id_def, where id is the name being defined.
For example, if the context contains the definition

8Note that this also includes axioms.
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value x : Int * x > 5
then, since

properties(value x : Int + x > 5) ~
(Fid": Int +id' = x) A (x > 5 = true)
the rules
[x_def] 3id’ : Int + id' = x ~ true
[x.def] x > 5 = true ~ true
where x is not a term variable, are available.

Basic context rules from theorems and development relations
Each global theorem or development relation of the form

[id ] context - ro_eb
gives rise to the equivalence rule
[id] ro_eb ~ true
which is available for any condition/subterm, whose context includes the context

context.
Each global theorem or development relation of the form

[id | context F ce2 < cel
gives rise to the (meta-)inference rule
[id]
true
ce2 < cel

which is available for any condition, whose context includes the context context.

Care must, of course, be taken not to create circular arguments when we use
theorems and development relations.

A justification of a theorem or development relation is circular (and hence not
valid) if it depends on that theorem or development relation. A justification of a
theorem or development relation, id, depends on a theorem or development relation,
id', if it uses id', or if it uses a theorem or development relation which depends on
id'. A justification uses a theorem or development relation if it applies a context
rule which the theorem or development relation gives rise to.

Derived context rules
In practice, the basic context rules are not always in the most convenient form.
In appendix B.10 we list some of the most useful context rules derivable from
various forms of type, variable and value declarations and from axiom declarations
respectively.

For example, if the context contains the definition

value
f: Nat — Nat
fx)=x+1
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we obtain the derived context rule
[fdef] f(e) e+ 1
when convergent(e) A pure(e) A isin_subtype(e, Nat)
where e is a term variable, but f is not.
This rule can be used left-to-right to wunfold, for example, f(3) to 3 + 1, or
right-to-left to fold 3 + 1 to f(3).

4.3.2.3 Using axioms

In this section we give three examples of how axioms in the context can be used.
The first example illustrates how a value expression which is equal to the predicate
of an axiom can be reduced to true. The second and third examples illustrate how
axioms can be used if their predicates are universally quantified expressions and
existentially quantified expressions, respectively.

Simple use of axioms
If the context contains an axiom

[id] ro_eb
then an occurrence of the term ro_eb can be reduced to true
L...ro_eb...
id:
L-.-true...
using the derived context rule
[id] ro_eb ~ true
For example, if the context contains the following definitions

value

x : Int,

s : Int-set
axiom

[ax1] x € s,

the justification step

L---X € S...
ax1:
L...true...J

can be done using the context rule
[ax1l] x € s = true

in which x and s are not term variables.

Using universal quantifications
If the context contains an axiom of the form

[id]VDb: T+roeb
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then an occurrence of a term ro_eb’ can be reduced to true using the derived
context rule (cf. table B.3 in appendix B.10)

[id | subst_expr(e, b, ro_eb) ~ true

when convergent(e) A pure(e) A isin_subtype(e, T)
if there exists a pure and convergent value expression el of the type T such that
subst_expr(el, b, ro_eb) is ro_eb'.

For example, if the context contains the definitions

value p : Int — Bool
axiom [pnat]V x: Nat « p(x)
the justification step
LP(2)
p-nat :
LtI'UEJ
can be done using the derived context rule
[p-nat] p(e) ~ true
when convergent(e) A pure(e) A isin_subtype(e, Nat)

in which e is a term variable, but p is not. (Note that subst_expr(e, x, p(x)) has
been reduced to p(e) before presenting the rule.)

Using existential quantifications
If the context of a condition, ro_eb’, contains an axiom of the form
[id]3Db: T +roeb
then a general scheme for using this in the justification of the condition is
Lro_eb’ |
imply modus_ponens_inf :
e« _db: Teroeb,
id, qed
« (3b:T-+roeb) = roeb,
exists_implies, all_assumption_inf :
L(ro_eb = true) = ro_eb'

For example, if the context contains the definitions
value s : Int-set
axiom [E]Ji: Int+i€s
the following justification can be done:
s # {}.
imply modus_ponens_inf :
e« di:Intei€s,
E, qed
e (Fi:Intei€s)=s#{},
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exists_implies, all_assumption_inf :
L(i € s =true) = s # {},
is_true :

Li€s=s#{},
not_implies :

L~ 8 #{}) =~ (es),
inequality _expansion, not_not, not_isin_expansion :

LS = {} =1 ¢ S
imply_deduction_inf :

[s-empty| s = {}

Li € sy
s_empty:

i & {}.
not_isin_empty, ged
This example also illustrates the use of a context rule
[s_empty]s ~ {}
derived from the axiom assumption [s_empty] s = {}.

Exercise In a context containing the definitions
value s : Int-infset axiom [empty|Vi: Int«i¢s

prove the goal | s = {}.
Hint: use the rules set_equality and isin_empty.

4.3.2.4 Unfolding

Many goals contain names of entities defined in the context. There are a number
of equivalence rules for unfolding of type names, value names and function appli-
cations. Below we give some examples. Unfolding of variable names is discussed in
section 4.4.2.

Unfolding of type names
If the context contains a type abbreviation definition of the form
type Tid =T
then the derived context rule
[Tid_def] Tid ~ T
(where Tid and T are not term variables, but the identifier and type expression
from the type definition) can be applied to a type expression which is the name
Tid in order to replace it with the type expression T
L-..-Tid...
Tid_def:
L---To
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Unfolding of value names
If the context contains an explicit value definition of the form

valueid: T =e
then the derived context rule

[id_def] id ~ e
can be applied to a value expression which is the name id in order to replace it
with the value expression e:

Unfolding of function applications
If the context contains an explicit function definition of the form

value
f: TS5 aTl
f(b) = el

(where the partial function arrow = may be replaced by a total function arrow —)
then the derived context rule
[f def] f(e) ~ subst_expr(e, b, el)
when convergent(e) A pure(e) A isin_subtype(e, T)
(where e is a term variable, but f is not) is available. It can be applied to unfold
an application f(a) of f to an actual parameter a, when a is pure, convergent and
belongs to the type T

L...f(a)...J
f_def:

!
L---€...]

where € is the result of subst_expr(a, b, el). We saw an example earlier in
section 4.3.2.2.

This is generalized in the obvious way to cases in which the function has several
formal parameters.

Furthermore, it is generalized to the case where the function definition has a
precondition, ro_eb. The derived context rule then has an extra conjunct in the
applicability condition. This conjunct is the result of subst_expr(e, b, ro_eb).

To illustrate unfolding, we continue the justification started in section 4.3.1. First
we unfold the application of insert:

cmember(i, insert(i, il))
insert_def :
cmember(i, (i) ~ il)
In the same way the application of member can now be unfolded. The complete
justification is shown below:
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LI EVYi: Int, il: El « member(i, insert(i, il)) ,
class_assumption_inf :
LVi: Int, il : El « member(i, insert(i, il))
all_assumption_inf :
Lmember(i, insert(i, il))
insert_def :
Lmember(i, (i) ~ il)
member _def :
L) ~il# () A (i=hd () " il) V member(i, t1 ({i) ~il))),
empty_list_inequality :
Ltrue A (i = hd ({i) = il) V member(i, t1 ((i) ~ il))),
true_and :
Li=hd ((i) ~ il) V member(i, t1 ((i) ~ il)),
hd_concatenation :
Li =1V member(i, t1 (i) ~il)),
equality_annihilation :
Ltrue V member(i, t1 ((i) ~ il)),
true_or :
LtrueJ
qed
It should be noted that unfolding may introduce name confusion, i.e. the resulting
term may contain applied occurrences of names which are not visible because they
were bound in a context different from the current. Such names are called out-of-
band names.
As an illustration, assume that we want to justify the goal

Le--g(n).e
in a context containing the following definitions:
value
i: Int,
f: Int — Int
g : Int — Int
gj)=leti=j+2ini+ {(j) end
First we unfold g(n) to get
L..leti=n+2ini+ f(n) end ...,
And then we unfold f(n) to get
L..leti=n+2ini+ (i+n)end ...
Here, the i (shown in italics) is an out-of-band name — its corresponding definition
(i : Int) is hidden by the let definition.
In a justification produced by hand, the out-of-band name must be avoided by
applying let_name_change before unfolding f(n):
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L.leti=n+2ini+ f(n)end ...,
let_name_change:
L.-leti=n+2ini + f(n) end ...,
f def :
L..leti’=n+2ini' + (i+n)end ...,
A justification tool may provide an alternative way of avoiding out-of-band names:
it may be able to automatically apply renamings when necessary, or it may inter-
nally use unique, resolved names.

Exercise Prove the goal
LIFVi: Int e ~ member(i, (),
where I is the scheme defined in section 4.1.1.

4.3.2.5 Folding

There may be situations where we want to fold application of names, e.g. to replace
an expression € in a goal

!
L---€ ...
with a function application f(a), where the context contains an explicit definition
of the function f:

value
f: TS aTl
f(b) = el

For this purpose we can use the derived context rule
[f_def] f(e) ~ subst_expr(e, b, el)
when convergent(e) A pure(e) A isin_subtype(e, T)
right-to-left. (Note that for any concrete function definition, subst_expr(e, b, el)
will be expanded before presenting the derived rule.)

For example, in a context containing the definition of g above, we can do the
following folding:

L..leti=n+2ini+ f(n)end ...,
g_def:

Lo 8(n) ooy

4.3.2.6 Using subtype information

Assume that in the context a value, id1, is declared to be of a certain type, T1,
which is a subtype:

idl : T1
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The question is now how we can use such subtype information in the proof of some
condition involving id1.

For this purpose there are a number of proof rules.

First, there is the basic context rule

[id1.def] 3id' : T1 «id' =idl =~ true
which the value definition gives rise to. This rule can be used in the justification
of a condition, ro_eb, involving id1 using the following scheme:
Lro_eb
imply modus_ponens_inf :
® LElllel'ldlzlle
id_def, qed
« (3id': T1+id' =idl) = ro_eb,

Alternatively, derived context rules such as those given in appendix B.10 can be
used to give simpler justifications, as we see below.

In addition, there are several proof rules having applicability conditions of the
form

isin_subtype(e, T)
If such a rule is instantiated such that e is replaced with id1 and T with T1, we
get the side condition

isin_subtype(id1, T1)
which is equivalent to true, as, from the definition of isin_subtype for read-only
values in appendix B.4, it is equivalent to

Jid' : T1-id =id1
In the rest of this section we first discuss which rules to use when T1 is

e a subtype expression

e the type Nat
e an abbreviation (a name) for a subtype expression

Then we explain how to use subtype information occurring in quantifications, and
finally how to transform type expressions to equivalent subtype expressions.

Subtype expressions
Assume that in the context a value is declared to be of a certain subtype:

value idl: {|b: T - p_eb|}
Then the derived context rule
[id1_def] subst_expr(idl, b, p_eb) ~ true

can be used to prove conditions involving id1.
For example, if the context contains the value definition

value count : {|i: Int «i > 0|}
we can use the derived context rule
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[count_def] count > 0 ~ true

to prove conditions involving count.
The general scheme for proving a condition ro_eb involving a value name idl
declared in the context to have the type {|b : T p_eb|} is

Lro_eb
imply_modus_ponens_inf :

« _ro_eb’
id1_def, qed

« _ro_eb' = roeb,

where ro_eb' is equivalent to subst_expr(idl, b, p_eb).

The type Nat
For the type Nat there is a derived proof rule nat_value (which is not a context
rule):
[nat_value] ei > 0 ~ true
when convergent(ei) A readonly(ei) A isin_subtype(ei, Nat)
If the context contains the value definition
value n : Nat
this rule can for instance be used to directly reduce the expression n > 0 to true
L---Il Z OJ
nat_value:
L-.-true...

since the subtype information given by the definition of n can be used to reduce
each of the side conditions to true.

Abbreviations of subtype expressions
Any abbreviation definition of a subtype expression
type Tid = {|b: T * p_eb|}
in the context gives rise to a derived context rule
[ Tid_def| subst_expr(e, b, p_eb) ~ true
when
convergent(e) A pure(e) A isin_subtype(e, Tid)
where e is a term variable.
Now, if we also have in the context the value definition
value id1 : Tid
Tid_def can be used to prove conditions involving id1.
For instance, if the context contains the definitions
type N1 = {[i: Int «i > 0[}
value count : N1
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we get from the first definition the context rule

[N1. def] e > 0 ~ true
when convergent(e) A pure(e) A isin_subtype(e, N1)
where e is a term variable which can be instantiated with any integer value expres-
sion.
This rule can be used to directly reduce count > 0 to true

Lcount > OJ
N1_def:

LtI'UEJ

since the subtype information given by the definition of count can be used to reduce
each of the side conditions convergent(count), pure(count) and isin_subtype-
(count, N1) to true.

Subtype information in quantifications
For quantified expressions, the subtype information given in the quantification
can be exploited using the equivalence rules all subtype and exists_subtype, as
illustrated by the following examples:
LVn: {|1 Int°i>0|}°n7§0J
all_subtype:
Vn:Inte(n>0=true) =n#0,

(dn:{li:Int«i>0}n+#0,
exists_subtype:
tdn:Inten>0An+#0,

Transforming type expressions to equivalent subtype expressions
There are a number of equivalence rules for

e expanding types involving Nat, -set, *, i and — to subtypes of Int, -infset,
v = and =, and Text to Char*
e expanding a type expression T to a subtype expression {|b : T « true|}
e distributing subtype expressions through the type constructors x, -infset, ¢,
- and &>
In addition, there may be context rules derived from type abbreviations stating
equivalences between type names and type expression.

These rules can be used to replace a type expression, T1, with an equivalent
subtype expression, {|b : T+ p_eb|}. This may be useful when we want to use the
predicate, p_eb, from the equivalent subtype expression in the proof of a condition
involving a value which is defined to have the type T1. This technique is illustrated
in the following example:
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LV (x,y) : Nat x Natex >0 Ay >0,
nat_expansion, nat_expansion:
VEy) s {x:Intex >0} x {ly:Intey>0|}+x>0Ay>0,
product_subtype:
V(Ey) s {l(xy) Int xIntex>0Ay>0[}ex>0Ay >0,
We can now proceed using all subtype.

Exercise 1
Prove the goal

LV p: Nat x Nat «let (x,y) =pinx>0Ay > 0end,
Hint: use all name_change.

Exercise 2
Prove the goal

L~ (dx: {|i: Int - false |} « true)

4.3.2.7 Using variant, union and short record type information

In the RAISE Specification Language book [23] are descriptions of how variant,
union and short record type definitions can be expanded to sort definitions, value
definitions, induction, disjointness, destructor and reconstructor axioms. In this
book we use the convention that induction axioms are named id_induction, where
id is the type name introduced by the definition; disjointness axioms relating two
constructors, conl and con2, are named conl con2; destructor axioms relating a
destructor, des, to a constructor, con, are named des_con; and reconstructor axioms
relating a reconstructor, recon, to a constructor, con, are named recon_con.
For instance,

type Tree == empty | node(left : Tree, elem : Elem « newval, right : Tree)

can be expanded to a sort definition, some value definitions and the following axiom
definitions:

axiom
[ Tree_induction |
V p: Tree — Bool *
p(empty) A
(V t1: Tree, el : Elem, t2 : Tree *
p(t1) A p(t2) = p(node(tl,el;t2)))
= (V t: Tree « p(t)),
[empty node |
V tl : Tree, el : Elem, t2 : Tree « empty # node(t1,el,t2),
[left node |
V t1: Tree, el : Elem, t2 : Tree « left(node(t1,el,t2)) = t1,
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[elem node |
V t1: Tree, el : Elem, t2 : Tree ¢ elem(node(t1,el,t2)) = el,
[right_node |
V t1: Tree, el : Elem, t2 : Tree  right(node(t1,el,t2)) = t2
[newval node |
V tl : Tree, el, ell : Elem, t2 : Tree *
newval(ell,node(t1,el;t2)) = node(t1,ell,t2)
As stated in appendix B.8.2, we can obtain the properties of a variant definition
by forming the conjunction of the properties of the definitions to which it can be
expanded, and we get context rules from the properties in the usual way.
For instance, among the context rules that the variant type definition above give
rise to is
[ Tree_induction |
V t : Tree  e(t) ~ true
when
(convergent(e) A pure(e) A isin_subtype(e, Tree — Bool)) A
e(empty) A
(V t1: Tree, el : Elem, t2 : Tree « e(t1) A e(t2) = e(node(t1,el,t2)))
where e is a term variable of syntactic category value_expr having the maximal type
Tree = Bool.

Exercise Use Tree_induction to prove, in a context containing the definition of
Tree in this section, the goal

LV t: Tree st = empty V (31, r: Tree, el : Elem « t = node(l, el, 1)),
Hint: in section 4.3.6.3 another example of how to use Tree_induction is given.

4.3.2.8 Inconsistent contexts

When formulating theorems and development relations of the form

[id ] context F assertion
one has to be careful not to write an inconsistent context. A context is inconsis-
tent if false is derivable from the properties of the declarations it contains. (See
appendix B.8 for a definition of what the properties of declarations are.) If the
context is inconsistent it is possible to prove that any assertion is true, no matter
what the assertion is, in particular if it is false.

An example of inconsistent context is a declaration of a value v of an empty
subtype:

value v : {|i: Int - false |}
With this declaration in the context we can prove the condition false, since from
the declaration we get the derived context rule (cf. table B.2 in appendix B.10)

[v_def] false ~ true
A context that is not inconsistent is consistent.
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4.3.3 Using substitutions

When a goal is large it is sometimes convenient to be able to simplify a sub-
expression separately. There is a proof rule, substitutionl

[substitutionl] e ~ ¢ when e = ¢’
which allows you to replace an expression e with what you believe is an equiva-
lent expression € and to do the justification that the two expressions are indeed
equivalent “on the side”.

The general pattern is

L--€...
substitutionl:
!
L ---€ ...
since
LE = e'J
argument
end
argument

So using substitutions is a way of structuring justifications. But it is more than
that. It can be used as a technique for postponing the justification that e is
equivalent to € until you have investigated whether it is a reasonable strategy to
replace e with ¢, i.e. whether you can find an argument for the goal | ... € ... .
Substitutions can also be used when you find that it is easier to reduce € to e
than the opposite. An example of this is given in section 4.3.6.3.
A second substitution rule, substitution2
[ substitution?2 |
ro_eb ~ true
when convergent(ro_eb) A ro_eb
is available for replacing a boolean subterm ro_eb with true:

L ... Toeb ...
substitution2:
L -.. true ... |
since
Lro_eb
argument
end
argument
substitution2 can for instance be useful in situations where we want to make a
subterm of a goal into a goal itself so that inference rules can be applied to it.
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An example of the use of substitution?2 is sketched below:
L-.(3n: Naten=0)..,
substitution2 :
L -.. (true) ... |
since
tdn: Naten=20,
exists_introduction_inf :

L0 =0y
argument
end
argument

4.3.4 Lemmas

It is often convenient to introduce lemmas during a justification (that is, to establish
a result independently and name it), and then later use it one or more times by
referring to its name.

The concept of lemmas is hence very similar to that of theorems. The difference
lies in that a lemma belongs to the justification where it is introduced and can only
be used there, while a theorem is introduced independently of any justification
and can be used in several justifications. Lemmas should be used in preference
to theorems when the result is not of general interest or when the result depends
upon some context (including assumptions) that is only built up during a specific
justification and therefore has to be local to that justification.

The way to introduce a lemma, [L] ro_eb, is to apply the following inference rule
backwards:

[lemma |
[id] ro-eb F ro_eb’
ro_eb’
when convergent(ro_eb) A pure(ro_eb) A ro_eb

The layout of the justification then becomes

Lro_eb’
lemma :

[L]roebt
Lro_eb’
since
Lro_eb
argument_for_lemma
end
argument

for pure and convergent ro_eb. The context rules from the lemma can then be used
in the argument for ro_eb’. Note that the lemma itself is justified on the side as in
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Vi {li:Intei>0}e0/i+i/i=1,
all_subtype, is_true :
Vi:Intei>0=0/i+i/i=1,
all_assumption_inf, imply_deduction_inf :
[assump|i>0F
lemma :
[L]i#0F
0/i+i/i=1,
since | i # 0, / proof of [L] ¥/ int_inequality, assump, true_or, qed end
zero_divide_int :
O0+i/i=1,
since i # 0, L, qed end
divide_int_annihilation :
|_0 + 1= 1J
since (i # 0, L, qed end
simplify, qed
In the justification, the application of the rules zero_divide_int and divide_int_-
annihilation both give the side condition i # 0. It was therefore convenient to
introduce a lemma stating this predicate.
We produced this justification using a computer-based tool providing a tactic
called simplify. simplify transforms a term to an equivalent one by applying a
sequence of equivalence rules in one step.

4.3.5 Proof by case analysis

A possible strategy for justifying a condition, ro_eb, is to do a case analysis, i.e.
to justify it for a number of different and exhaustive cases. This means that the
condition should be justified under different assumptions, ro_eb, ..., ro_eb,, and it
should be justified that the disjunction of these assumptions is true.
The way to do case analysis is to apply the following inference rule backwards:
[ case_analysis |
[id; ] ro_eb; - ro_eb, ..., [id,] ro_eb, I ro_eb
ro_eb
when
convergent(ro_eb;) A ... A convergent(ro_eb,) A
pure(ro_eb;) A ... A pure(ro_eb,) A
(ro_eb; V ... V ro_eby,)

For pure and convergent assumptions the layout of the justification then becomes
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Lro_eb
case_analysis :
* [assumpt; | ro_eb;
Lro_eb
argument,,

» [assumpt, | ro_eb,
Lro_eb |
argument,
since
Lro_eb; V ... V ro_eb, |
argument
end
Case analysis is for instance a reasonable strategy in the justification of a property
of a function which is defined by cases over the argument value. For example, if
we wish to justify the condition

Vx:Intef(x)>0
in a context containing a definition of a function f for which f(x) is defined for
three different cases of x

value
f: Int — Int
axiom
[fgt0]Vx:Int-f(x)=x+2prex >0,
[fis 0] f(0) = 0,
[f1t 0]V x: Int » f(x) = 2 pre x < 0,
then a reasonable strategy is to use a case analysis over x, using the same three
cases. However, before we can do that we first need to apply an all_assumption_inf
in order to bring x into the context, since the identifiers in the case assumptions
must be in the current context. The complete justification is
LV x: Int « f(x) > 0
all_assumption_inf :
Lf(x) > 0,
case_analysis :
¢ [gt0]x>0F
Lf(x) >0,
fgt0:
LX + 2 Z OJ
since  x > 0, gt.0, qed end
/* which can be proved using [gt 0] %/ qed,
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¢ [isO0]x=0F
Lf(x) > 0,
is 0, fis 0 :
L0 > 0,
simplify, qed,
+[It0]x<O0F
Lf(x) > 0,
f1t.0 :
L2 >0,
since  x < 0, 1t.0, ged end
simplify, qed
since
Lx>0Vx=0Vx<0,; /*which is evident %/ qed
end
Note that the preconditions from the axioms f gt_0 and f It_0 appear as side con-
ditions when context rules derived from the axioms are applied.
If there are only two cases, ro_eb’ and ~ro_eb’, then it is preferable to use the
inference rule
[two_cases_inf |
[id] ro_eb’ I ro_eb,
[id'] ~ ro_eb’ I ro_eb
ro_eb
when convergent(ro_eb’) A pure(ro_eb’)
instead, as we then do not need to justify the disjunction of the cases. The layout
then becomes

Lro_eb
two_cases_inf :
» [assumpt; | ro_eb’ -
Lro_eb
argument,
* [assumpty | ~ro_eb’ I
Lro_eb
arguments

for pure and convergent ro_eb'.

Exercise Use case analysis to prove the goal
LV x,y: Int - abs (x + y) < abs x + abs y
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4.3.6 Proof by induction

A possible strategy for justifying predicates of the form
Vb:Teroeb

where T is an inductive type (i.e. a type having an induction principle) is to prove
(or rather justify) it by induction.

It is well-known that the (stepwise) induction principle for natural numbers can
be used to prove that some property p(n) holds for any natural numbers n: If
it can be proved that the property holds for zero (i.e. p(0) is true), and if, in
addition, by assuming that the property holds for some arbitrary number n (i.e.
p(n) is true), it can be proved that it also holds for the next natural number n+1
(i.e. p(n+1) is true), then one can conclude that the property p(n) holds for any
natural number n. In other words, according to the induction principle for natural
numbers, predicates of the form

V n: Nat * p(n)
(where p(n) is not necessarily an application expression, but stands for any predi-
cate in which n may occur) can be proved by proving

e a base case: p(0)
e an induction step: ¥V n : Nat « p(n) = p(n+1)

Such a proof is called a (stepwise) induction proof. In the induction step p(n) is
called the induction hypothesis.

For the natural numbers, there is an alternative (more general) induction princi-
ple called the complete induction principle for natural numbers, according to which
it can be proved that p(n) is true for all natural numbers n by proving that for
any natural number n, if p(0), ..., and p(n—1) hold then p(n) also holds. In other
words, by proving

Vn:Nate (Vj: Nat+j<n= p(j) = pn)

Complete induction is most often used in proofs where p(n) depends not just on
the predecessor (n—1) but on several previous numbers.

Similar induction and complete induction principles also exist for types other
than the natural numbers.

In general, the induction principles state that predicates of the form

Vb:Tseroeb (1)
can be proved by proving a number of base cases and a number of induction steps.

Among the RSL equivalence rules there are a number of induction rules which
can be used to do induction proofs for natural numbers, finite sets, finite lists, finite
maps, and values of variant, short record and union types. The induction rules for
natural numbers, finite sets, finite lists and finite maps are defined in appendix B,
and the induction rules for variants, short records and unions are derived context
rules, as described in section 4.3.2.7, in which ro_eb is of the form® e(b), where e

9There are differences between the formulations of the induction rules for built-in types and
the formulation of those for variant, short record and union types. The reason for this is that the
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is a term variable having the maximal type T — Bool.

The induction rules are all equivalences between true and predicates of the form
(1) for different types T. Each rule has an applicability condition consisting of a
conjunction of conditions, one for each base case and one for each induction step.

The typical layout of an induction proof having a base case and an induction
step is therefore

Vb:Teroeb,
induction_rule_name:
Ltrue
since
. _base-case |
argument_for_base-case
. Linduction-step
argument_for_induction-step
end

qed
Note that as the induction rules are equivalence rules, they can be applied to any
(sub)term of a goal.

Some examples of use of induction rules are given below.

4.3.6.1 Example of stepwise induction

Consider the following specification of a function sum which for any natural number
n gives the sum of the n first numbers:

scheme SUM =
class
value
sum : Nat — Nat
axiom
[sum_zero | sum(0) = 0,
[sumn]|Vn: Natesum(n + 1) =sum(n) +n + 1
end

sum is defined inductively:

e A basic clause defines sum(0).
e An inductive clause defines sum(n+1) in terms of sum(n) for n > 0.

latter rules are (dynamically) created as context rules derived from induction axioms typically
having the form V p: T — Bool s ... = (V b: T ¢ p(b)), while this is not necessary for the
former rules — they have been formulated directly once and for all.
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We now wish to prove the following condition:

Vn: Nat *sum(n) =n * (n + 1)/2
As the condition involves sum, which is defined in an inductive way, a reasonable
strategy for justifying it is to do a (stepwise) induction proof using the rule

[all nat_induction |

V b: Nat « ro_eb ~ true

when subst_expr(0, b, ro_eb) A

(Vb : Nat * ro_eb = subst_expr(express(b) + 1, b, ro_eb))
This is done below:

(SUMF Vn: Natesum(n) =n=x* (n+ 1) /2,
class_assumption_inf :

(Vn: Natesum(n) =nx*(n+1) /2,
all nat_induction :

Ltrue
since
. Lsum(0) =0 (0+ 1) /2,
sum_zero :

L0=0x(0+1)/2,
/* which is evident %/
qed
. Vn: Nate(sum(n)=nx*(n+1)/2) =
(sum(n+1)=m+1)*xn+1+1)/2),
all_assumption_inf, imply _deduction_inf :
[ind_hyp] sum(n) =n*x(n+ 1)/ 2F
sum(n+ 1) =m+1)*x(n+1+1)/2,
sum.n :
tsum(n) +n+1=mn+1)x(n+1+1)/2,
ind_hyp :
mx(n+1)/24n+1=m+1)*xn+1+1)/2,
/* which can be shown using rules for arithmetic */
qed
end
qed

Exercise Use all list_left_induction to justify the goal
LV el : Int* « len el > card (elems el)
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4.3.6.2 Example of complete induction

Consider the specification of a function g:
scheme A FUN =

class
value
g : Nat — Nat
axiom
[80] g(0) =8,
[g1] g(1) =11,

[gn]Vn: Nat-gn)=3%gn—1) —2*g(n—2) pren > 2
end
g is defined inductively:

e A basic clause defines g(0).
e A basic clause defines g(1).
e An inductive clause defines g(n) in terms of g(n — 1) and g(n — 2) for n > 2.

We wish to prove the condition

Vn: Nateghn)=3%*2tn+5
As the condition involves g, which is defined in an inductive way in which g(n)
depends on g for several previous numbers (g(n — 1) and g(n — 2)), a reasonable
strategy for justifying it is to do a complete induction proof using the rule

[all.nat_complete_induction |
Vb : Nat * roeb ~ true
when disjoint(b, b') A no_capture(b’, ro_eb) A
(Vb : Nat «
(V b’ : Nat « express(b’) < express(b) =
subst_binding(b’, b, ro_eb))
= r0_€b)
This is done below:
LAFUNFVYn: Nateg(n)=3%x21n+5,
class_assumption_inf :
(Vn:Nategn)=3%x21n+5,
all nat_complete_induction :
Ltrue
since
LV n : Nat -
(Vi:Natej<n=(g(j)=3*21j+5)) =
(gln)=3%21n+5),
all_assumption_inf :
L(Vj: Natej<n= (g(j)=3%x27j+5) =
(g(n) =321 n+5),
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case_analysis :
¢[cO0]n=0F
L(Vj:Nat-j<n=(g(j)=3%x21j+5)) =
(gn) =3 210 +5),
c0, c0, g0 :
L(Vi:Natej<n=(g(j)=3%21j+5)) =
(8=3%210+5),
/* which simplifies to */
L(Vji:Natej<n=(g(j)=3%21j+5)) = true,
implies_true, ged,
sfclln=1F
L(Vj: Nat+j<n= (g
(8(n) =3 21 n +5),
..., ged,
slenjn>2+F
LV Nat-j<n = (g
(gn) =3 *21n+5),
imply_deduction_inf :
[ind hyp]Vj: Nat-j<n=(g(j)=3*x21j+5)F
Lg(n) =3%21Tn+ 5,
gn :
3*xgn—1)—2xgn—2)=3%21Tn+ 5,
since (n > 2, cn, ged end
ind_hyp :
3*x(3*21t(n—1)+5) —2xgn—-2)=3%x2Tn+5,
since
+ n— 1< n, /* which is evident x/ qed
« (n—12>0, /+which follows from [cn] */ qed
end
ind_hyp :
3*x3*21t(n—-1)4+5)—-2x3*x21t(n—-2)+5) =
3x2Tn+5,
since
e n — 2<n, /*which is evident */ ged
e tn —2>0, /% which follows from [cn] */ qed

3x21j+5)=

3x21j+5) =

end
/* which can be shown using rules for arithmetic x/ ged
since
tn=0Vn=1Vn>2, /*whichis evident x/ qed

end
end qed
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4.3.6.3 Example of variant induction

Consider the following specification of a variant type Tree of trees and a function
count which counts the number of node elements in a tree and a function set which
gives the set of node elements in a tree:
scheme TREE =
class
type
Elem, Tree == empty | node(left : Tree, elem : Elem, right : Tree)
value
count : Tree — Nat,
set : Tree — Elem-set
axiom
[ count_empty | count(empty) = 0,
[ count_node |
V tl, t2 : Tree, el : Elem o
count(node(tl, el, t2)) = count(t1l) + 1 + count(t2),
[set_empty | set(empty) = {},
[set_node |
V tl, t2 : Tree, el : Elem »
set(node(tl, el, t2)) = set(t1l) U {el} U set(t2)
end
We now wish to prove the condition
V t: Tree » card set(t) < count(t)

A reasonable strategy for doing this is to do variant induction using the derived
context rule, Tree_induction (see section 4.3.2.7), which the variant type definition
of Tree gives rise to:

LTREE I V t : Tree « card set(t) < count(t)
class_assumption_inf :
LV t : Tree » card set(t) < count(t),
/* transform the goal to a form appropriate for Tree_induction */
substitutionl :
LV t: Tree s (At : Tree » card set(t) < count(t))(t)
since
Lcard set(t) < count(t) = (At : Tree » card set(t) < count(t))(t)
lambda_application, let_absorption4, is_annihilation, qed
end
Tree_induction :

Ltrue
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since
end
qed

Justification

L(A t : Tree » card set(t) < count(t))(empty)
lambda_application, let_absorption4 :
Lcard set(empty) < count(empty)
set_empty, count_empty :
ccard {} < 0,
card_empty, leq_int_annihilation, qed
LV tl: Tree, el : Elem, t2 : Tree «
(At : Tree » card set(t) < count(t))(t1) A
(At : Tree + card set(t) < count(t))(t2) =
(At : Tree » card set(t) < count(t))(node(t1,el,t2))
lambda_application, let_absorption4, lambda_application,
let_absorption4, lambda_application, let_absorption4 :
LV t1: Tree, el : Elem, t2 : Tree »
card set(t1l) < count(tl) A card set(t2) < count(t2) =
card set(node(t1,el,t2)) < count(node(tl,el,t2)),
all_assumption_inf, imply_deduction_inf :
[ind_hyp]
card set(t1) < count(tl) A card set(t2) < count(t2) F
Lcard set(node(t1,el,;t2)) < count(node(t1,el,t2))
set_node, count_node :
ccard (set(tl) U {el} U set(t2)) <
count(tl) + 1 + count(t2)
card_union, card_union, card_singleton, minus_plus_int :
ccard set(tl) + 1 + card set(t2) — card(set(t1) N {el}) —
card ((set(t1l) U {el}) N set(t2)) <
count(tl) + 1 + count(t2)
/* which is true if we can prove */
« _card set(t1) < count(t1)
ind_hyp, qed
+ _card set(t2) < count(t2)
ind_hyp, qed

For an exercise using variant induction, see section 4.3.2.7.

4.3.7 Forwards reasoning

Until now we have only considered how to justify a condition using backwards
reasoning, i.e. taking the given condition as the starting point, breaking it into
simpler sub-conditions, and then justifying each of these.

Sometimes it is convenient to work the other way around: to make conclusions



Doing justifications 307

from known facts (sequents), after which the conclusion is then a known fact, etc.,
until the initial goal has been established as a conclusion. This is conventionally
known as as forwards reasoning or natural deduction.

How to switch to forwards mode and how to do forwards reasoning is explained
below.

4.3.7.1 Switching to forwards mode

It is possible to switch from backwards mode to forwards mode. This is done by
using a follows argument which has the form

follows
argument
end

where the embedded argument must be developed as a forwards argument.

4.3.7.2 Introducing facts

While the steps in a backwards argument manipulate goals, the steps in a forwards
argument manipulate lists of facts, where a fact is a sequent which is known to be
true in the current context and is written within half-brackets (just as a goal).

We start from the empty list of facts. Facts can be added to the current list of
facts by fact introductions in a from argument which has the form

from fact_intro-list
fact-list
argument

Each of the embedded fact_intros introduces a fact. The result is a new list, fact-
list, of facts, which is obtained by adding the introduced facts to the right of the
current list of facts. argument is an argument in which this new list of facts can
be manipulated.

A fact_intro can be either

e the name of an axiom (e.g. a lemma or case assumption) from the context
optionally followed by the fact it represents (and introduces)
e a tautology, i.e. the fact | true,

Note that before starting a forwards argument, we should define a number of lem-
mas that we expect to be useful as facts in the forwards argument.

4.3.7.3 Conclusion arguments

The following sections explain how the list of facts can be manipulated. When a
fact is reached which is identical to the original goal of the follows argument the
follows argument is complete. So the typical form of a forwards justification is
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Lcondition
follows
from ...

Lcondition
qed
end

4.3.7.4 Application of inference rules

The main steps in a forwards justification are application of inference rules. An
inference rule can be applied forwards to (a sublist of) the list of facts if the
sequents, pi, ..., Pn, in the facts match (in the right order) the premises of the
inference rule, i.e. it is possible to find a correct instantiation of the inference rule
for which the instantiated premises are identical to pi, ..., pn. The result of the
application is a new list of facts which is obtained from the old list by replacing
the (sub)list with a fact whose sequent, p, is the instantiated conclusion. This is
written

- LP1Jy -y LPnds ---
name —

e P,y -

where name is the name of the applied rule. Note that the name is followed by
“=" rather than “:”, in order to indicate that the argument is forwards. (Sub)lists
of fact lists may be reordered to get them into the required order to match the
premises of the inference rule to be applied.

Applicability conditions give rise to side conditions in the same way as in back-
wards application. The side conditions are goals which should be justified (initially
at least) in backwards mode.

4.3.7.5 Application of equivalence rules

In forwards mode, equivalence rules can be used to manipulate lists of introduced
facts by replacing subterms of the facts with equivalent subterms, in the same way
as they can be used in backwards mode to manipulate goals by replacing subterms
of the goals with equivalent subterms. The concept of matching and the notions of
matched term, resulting term, etc. are the same. When an equivalence rule having
a name, name, is applied forwards to a subterm, t, of a list of introduced facts in
order to replace it with an equivalent term, t’, this is written



Doing justifications 309

Again, the name of an applied rule is followed by “=" rather than “:”, and ap-
plicability conditions give rise to side conditions if standard application and not
in-goal application is used.

4.3.7.6 Other forwards arguments

An irrelevance argument may not be applied.

A commented argument may be used as in backwards justifications.

A replacement argument may be used to replace the current list of facts with
another list of facts.

An ezplanation argument may be used to terminate a forwards justification.

4.3.7.7 Example

For example, suppose that we have in the context the two axioms:
[al] x € s1 Ns2,
[a2] x € 83

Then a justification of the condition x € s1 A x € s3 could be
Lx €sl Ax €83

follows
from

[al] x € s1Ns2,
[32] LX € S3J

Lx €slNs2,,  x€s3;
isin_intersection =

LXGSl/\XESQJ,LXES3J
and_left_inf =

LXESlJ,LXGS?)J
and_split_inf =

Lx €sl Ax €83,
qed
end

Exercise In a context containing the definitions

value k : Int
axiom [k_greater 5]k > 5

use forwards reasoning to prove the goal
Lk >4,

using as facts the axiom k_greater_5 and the lemma
[greater_transitivity | Vx,yz: Int e x >y Ay>z=x >z
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Hint: use all_instantiation_inf to obtain the fact
k>bA5>4=k >4,
from greater_transitivity and complete with imply_modus_ponens_inf.

4.3.8 Proof by contradiction

In some cases an efficient way to prove a condition is by contradiction. The strategy
for such a proof is to assume that the condition, ro_eb, which is to be proved, is
false, (i.e. assume ~ ro_eb), and then by a forwards proof show that this leads to
a contradiction (i.e. the condition false).

A condition, ro_eb, is proved by contradiction by first applying the rule

[ contradiction _infl |
[id] ~ ro_eb I false
ro_eb
when convergent(ro_eb) A pure(ro_eb)

and then typically shifting to forwards mode. So the layout for a proof by contra-
diction is, for pure and convergent ro_eb

Lro_eb

contradiction_infl:

[assumpt | ~ ro_eb

false |
follows
from

false |
qed
end
If the condition to be proved is of the form ~ ro_eb, we could alternatively start
by using the rule
[ contradiction_inf2 |
[id] ro_eb F false
~ ro_eb
when convergent(ro_eb) A pure(ro_eb)

The layout then becomes

Lo ro_ebJ
contradiction_inf2:
[assumpt | ro_eb

false |



Doing justifications 311

follows
from

false |
qed
end

For example, in a context containing the following declarations

value
X,y : Int,
s: Int-set
axiom
[ax1l] x € s,
[ax2] ~ (y € s)
a proof by contradiction can be used in the justification of | ~(x = y)
L~(x =),
contradiction_inf2:
[assumpt | x =y F
false |
follows
from
[ax1l] | x € s}
LX € S
assumpt =
LY € 84
ax2 =
Lfalse |
qed
end

Exercise The example just presented suggests a general theorem where x and y
are of some type T:

(F3f: T — Bool-f(x) A ~(y)) =x#y (1)

1. Prove this by contradiction.
2. For convergent, read-only logical expressions eb and eb’ we have the rule

not_implies:
~eb = ~eb' ~ eb' = eb
We could therefore do the proof of (1) by first rewriting the goal to
Lx=y=~(3f: T — Bool -« f(x) A ~(y)) (2)
Do the proof from the goal (2).
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Hint: the equality before the implication allows us to replace x by y in
the expression after the implication. This makes this proof of (1) easier than
the first and illustrates a useful strategy for proving implications where the
expression on the right is an inequality.

4.4 Justification for imperative specifications

When justifying conditions involving imperative constructs, the techniques pre-
sented so far are still applicable. For instance, suppose we have a conventional
implementation of an imperative stack using a state variable st containing a list,
and we want to prove the standard axiom

V x : Elem - push(x) ; top() = push(x) ; x
relating push and top (where top just reads the top of the stack, there being a
separate pop operation). We will, as in an applicative setting, start by removing the
quantification and unfolding the function applications. But then some additional
advice on how to manipulate imperative constructs, e.g. how to unfold variable
instances, is needed.

This section gives advice which is particularly related to the construction of
justifications where imperative constructs are involved.

4.4.1 Fulfilling applicability conditions on variable access

Many proof rules have applicability conditions like

e pure(e)
e readonly(e)
e assignment_disjoint(e,e’)

on the variable access in value expressions (here e and €'). For a definition of the
special functions used in these conditions, see appendix B.4.

In an applicative setting these conditions are always satisfied.

In an imperative setting, there may be situations where we wish to apply such a
rule, but where the applicability condition is not fulfilled. In these situations, how-
ever, it is sometimes possible to rewrite the expression such that the inopportune
accesses to variables are isolated in one sub-expression and the rule can be applied
to another sub-expression for which the applicability condition becomes fulfilled.

A strategy for isolating inopportune variable accesses is to use evaluation,'® as-
sociativity and commutativity rules in order to replace the term to which the rule

10 An evaluation rule is a rule which for some construct gives the order in which sub-expressions
are evaluated by stating an equivalence between the construct and a let expression. For example,
the rule application_evaluation states that a function application is evaluated by first evaluating
the function, then evaluating the argument, and finally evaluating the application.
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should be applied with an expression having one of the two forms'!

e let b = e; Iin ey end
® €15 €2

where only e; contains the inopportune variable accesses. Now the rule can be
applied to e,.

Examples of this are given in section 4.4.2.

If the inopportune variable access is a variable instance v (read access), an alter-
native strategy is to unfold this. In section 4.4.2, techniques for unfolding variable
instances are given. Examples are given in sections 4.4.2 and 4.4.4.

4.4.2 Unfolding variable instances

There are situations where a reasonable strategy for the next step in a justification
is to unfold a variable instance (a value expression which is a variable name), i.e.
to replace it with an expression representing the value the variable contains at the
point where the instance occurs.

Unfolding of variable instances can be a useful strategy for the same reasons as
it can be useful to unfold value names and function applications: we can obtain an
expression which makes it possible to further simplify the goal.

For example, unfolding of variable instances can be used as a strategy for remov-
ing read accesses from an expression, so that applicability conditions of the proof
rule to be applied can be fulfilled, cf. section 4.4.1.

This section gives strategies for how instances of a variable v can be unfolded.
First we will consider the situation where the instance occurs after an assignment
to the variable itself, and then the situation where this is not the case.

4.4.2.1 After an assignment

In this section, we consider the situation where the instance occurs in an expression
¢ in a sequence starting with an assignment of the value of an expression e to the
variable:

/
vi=e;e
For the purpose of unfolding the variable instance, v, in €, the following rule can
be used:

[assignment_unfold |
vi=e;ve~vi=e;e
when
convergent(v := e) A readonly(e) A assignment_disjoint(v := e, e)

Note that when e is read-only, the last conjunct means that e must not read v.

11n fact sequences can be expanded to let expressions using the rule sequence_expansion. This
indicates that a sequence is a derived form and that a let expression is the basic form.
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If ¢ is v and the applicability condition is satisfied, the rule can be used directly,
as shown in the following example, where we assume that v is declared to be a
variable of type Int:

wvi=3;v=v:=3; 3,
assignment_unfold:
v:=3;3=v:=3;3,
is_annihilation, ged
But what if € is not v or the applicability condition is not fulfilled? These issues
are discussed in the next sections.

4.4.2.2 Placing the assignment in front of the instance

If ¢ is not v, but a more complicated expression like abs v, then it is necessary
to perform some manipulations in order to bring the assignment directly in front
of the v we wish to unfold, so that the rule assignment unfold can be applied.
This is shown in the following example, where e is assumed to be read-only and
convergent, to be of the type of v and not reading v:
Lv:=e;absv=v:=e;abs e,
prefix_op_evaluation
v:=e;letx=vinabsxend =v:=e¢; abs e
sequence_let:
etx=(v:=e;v)inabsxend =v:=e;abse,
assignment_unfold:
tletx=(v:i=e;e)inabsxend =v:=e;abse,
sequence_let:
v:=e;letx=einabsxend =v :=¢€; abs e
let_absorption4:
Lv:=e;abse=v:=¢;abs e,
is_annihilation, ged
The general strategy is to use evaluation, associativity and commutativity rules in
order to replace € with a let expression of the form

let x = v in ¢’ end

and then to use sequence_let in order to place the v just after the assignment,
whereupon assignment_unfold can be applied. After that, sequence_let can be used
the other way in order to get the assignment out of the let expression.

Then, the let expression can be absorbed, replacing in €” all occurrences of x
with e. This can be done by using let_absorption4 if e is pure and convergent, or
by other manipulations for the less restrictive case where all occurrences of x in
¢’ are evaluated before any possible assignments in ¢’ to any variable that may be
read by e:
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L..vi=e;e..|
/* after some manipulation with evaluation rules and the like, we get */
L.v:=e:letx=vine"end...
sequence_let:
Llet x = (v:=e;v)ine" end...
assignment_unfold:
L..let x = (v:=e;e)ine" end...
sequence_let:
L..v:=e;letx=cine’ end...
/* after some manipulations, typically just let_absorption4, we may get */
L---V =€, e'"...J
where e" is subst_expr(e, v, €) if ¢” was subst_expr(x, v, €).
There is a derived equivalence rule, assignment_sequence_propagation, that does
all these manipulations in one step. It applies to expressions of the form

vi=e;e
when e is read-only and convergent, is of the type of v and does not read v. The
result of the applications is

vi=e;e”
where e is obtained from €' by substituting the expression e for any instance of
v that may be evaluated before any possible assignments to v or to any variables

that may be read by e. Possible assignments to a variable are actual assignments
and calls of functions with write access to the variable.

4.4.2.3 Fulfilling the instantiated applicability condition

If the applicability condition of assignment_unfold is not fulfilled (i.e. e is not read-
only or it is not convergent or it reads the variable v) the strategies mentioned in
section 4.4.1 can be used.
A strategy which can always be used is sketched here:
L---V:i=€ V...
assignment_evaluation:
L. letx=einv:=xend; v...
let_sequence:
L letx=einv:=x;vend..
assignment_unfold:
L---let x =einv:=x; x end...

But there may be more elegant ways, as shown below.
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Example of isolating inopportune write accesses

vi=(v2:=5:3);v=v2:=5;v:=3;3,
assignment_sequence:

v2:=5;v:i=3;v=v2:=5;v:=3;3,
assignment_unfold:

v2:=5;v:=3;3=v2:=5;v:=3;3,
is_annihilation, qed

Example of isolating and removing inopportune read accesses
Assume that we wish to unfold the instance of v succeeding the assignment in the
goal
L--Vvi=v+1;v..,
However, we cannot apply assignment_unfold, as there is an inopportune read
access in the right-hand side (v + 1) of the assignment. A strategy is to make
the assignment pure by unfolding the instance of v in it. If there is a preceding
assignment, we can use the techniques for unfolding described previously. An
example of this is
L-vi=3;vi=v+1;v..
assignment_sequence_propagation :
L-vi=3;vi=34+1;v...,
simplify :
Lv:i=33v:i=4;v..
assignment_unfold :
L--v:i=3;v:=4;4...,

If there is no preceding assignment, the technique explained in section 4.4.2.4 can
be used.

4.4.2.4 Introducing arbitrary initial assignments

What can be done if we wish to unfold a variable instance v and there is no
preceding assignment to it?

For instance, in

wvi=v+1l;v:=v—1=skip,
we may wish to unfold the v on the right-hand of the first assignment so this right-
hand side does not read v and therefore can be used when unfolding the v on the
right-hand side of the second assignment.

If the condition is an equivalence expression, a post expression or an implication

between equivalence expressions, a strategy is to introduce and make use of the O
(“for all possible states”) that is implicit in any goal. Having introduced O with
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the rule always_elimination_inf, we use one of the rules always_applicationm, m =
1,2 or 3, or always_post_applicationm, m = 1 or 2, to introduce arbitrary initial
assignments to state variables.

For the example above we need always_applicationl:

[always_applicationl |

Oe=e ~Vid: TveOv:=id;e=v:=id ;€
when

no_capture(id, v) A no_capture(id, e) A no_capture(id, e') A

(O isin_subtype(v, Tv)) A (O Vid: Tv ¢ v := id post true)
The justification is as follows:

wvi=v+l;vi=v—-1=

skip
always_elimination_inf:
Ov:i=v+1;v:=v—1=skip,
always_applicationl:
Vid : Int - O
vi=id;vi=v4+1l;v:i=v—-1=v:=id; skip,
since

tO0did: Int ¢ id = v
v_def, ged
L(OVid: Int « v := id post true)

v_def, ged
end

where we have assumed that v is declared to have the type Int.

In this way we have obtained an assignment to v that precedes the instance we
wish to unfold, and we can now proceed as usual. Continuing the example:
all_assumption_inf:

Odvi=id;vi=v+1;vi=v—1=v:=id; skip,

assignment_sequence_propagation:
dv:i=id;vi=id+1;v:i=v—-1=v:=id; skip,

assignment_sequence_propagation:

LOv:i=id;vi=id+1;v:=(id+ 1) —1=v:=1id; skip,

The general scheme for equivalence expressions without preconditions, and for a
variable v of type T, is as follows:

LE = e'J
always_elimination_inf:

LD e = e'J
always_applicationl:

WVid: T«O vi=id;e=v:=id; €
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since
« O0did: T-id = v
v_def, ged
¢+ OVid: T v :=id post true
v_def, qed
end

all_assumption_inf:

O vi=idje=vi=id; e
/* now, variable instances of v in e and/or €' can be unfolded
using the introduced assignments */

If the condition is either an equivalence expression with a precondition, or a post ex-
pression, or an implication between two equivalence expressions, similar techniques
can be used.

Exercise In a context containing
variable x,y : Int
justify the goal
X' =X+y;y:=X—y;X:=X—ypostx >yprey > x,

4.4.2.5 Using initialisations

If the context contains a variable declaration with an initialisation

variable

v:T:=e

then the context rule

[v_def] initialise ; v := e ~ initialise
can be used.

For example, assume that in the abstract imperative specification . QUEUEQ in
section 2.8.5.1 we had the axiom

initialise ; is_empty() = initialise ; true
This states that initialising all variables to their initial values and then evaluating
is_empty() is equivalent to initialising all variables to their initial values and then
returning true. Suppose we wish to show that this axiom holds in I QUEUE2 from
section 2.8.5.4. Then this can be justified using the derived context rule

[ queue_def] initialise ~ initialise ; queue := ()
The justification is
Linitialise ; is_empty() = initialise ; true
is_empty_def :
Linitialise ; queue = () = initialise ; true
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queue_def, queue_def, sequence_associativity, sequence_associativity :
Linitialise ; queue := () ; queue = () = initialise ; queue := () ; true
assignment_sequence_propagation :
Linitialise ; queue := () ; () = () = initialise ; queue := () ; true
simplify, qed

4.4.3 Avoiding imperative side conditions

When applying an equivalence rule, it may turn out that the instantiated applica-
bility condition reads variables. Such a condition may be impossible to prove if it
appears as a side condition (as in side conditions there is, as in any justification
condition, an implicit quantification over all states). In this case in-goal application
(as described in section 4.2.1.3) should be used.
For instance, in a context containing the following declarations
variable v : Int
value
f: Unit — write v Int
f0)=v:=v+1;v prev#0
any instance of the applicability condition for the derived context rule

[f_def]
f()xvi=v+1;v
when v # 0
for unfolding applications of f will be
v#0

which reads v. If we used the standard application of the rule in order to unfold
f() in the following goal:

wvi=2;f)=v:=3;3,
we would get
vi=2;v:i=v+4+1l;v =v:=3;3,
since

LV # 0,
end

Here, the side condition v # 0 is implicitly quantified over all states, i.e. it is
equivalent to

Ov#0
and this condition is actually false, and therefore too strong a side condition.
If we use in-goal application instead, we get
wvi=2;if (v#0)=truethenv: =v+1;v elsef()end=v:=3;3,
which we can prove as sketched below:
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v:=2;if (v#0)=truethenv: =v+1;v elsef()end =v:=3; 3,
is_true:

v:=2;ifv#Othenv: =v+1;v elsef()end=v:=3;3,
assignment_sequence_propagation:

v:=2;if2#0thenv: =2+ 1;v elsef()end =v:=3; 3,
/* which can be simplified to */

Wwvi=2;v:=3;v=v:i=3;3,
assignment_idempotence2:

v:=3;v=v:=3;3,
assignment_sequence_propagation, is_annihilation qed

4.4.4 Commuting sequences

There may be situations where we wish to commute two expressions in sequence.
For this purpose there are the following rules:

[ sequence_commutativityl |
eu;eu ~eu ;eu
when convergent(eu) A readwriteonly(eu) A
assignment_disjoint(eu, eu’)

[ sequence_commutativity?2 |
eu;e~letb=eineu;bend
when convergent(eu) A readwriteonly(eu) A
assignment_disjoint(eu, ) A no_capture(b, eu)

[ sequence_commutativity3 |
eu;eu ;e~eu ;eu;e
when convergent(eu) A readwriteonly(eu) A
assignment_disjoint(eu, eu’)

The reason for the requirement that at most one of the expressions is able to
communicate (i.e. the other must be read-write-only) is that, if they could both
communicate, commuting them would have changed the meaning (the order of
communications being significant).

If the side conditions concerning assignment disjointness are not fulfilled, the
techniques described in section 4.4.1 can be used.

The rules can for instance be used to move inputs and outputs to the start of
sequences, in order to obtain expressions in standard form (see section 4.5.1.1) as
required by certain techniques explained in section 4.5 on justification involving
concurrency.

Example of moving output to the start of a sequence
For read-write-only and convergent e we want to commute the sequence
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v:=e;clv
in some goal
Lvi=e;clvieu= ...
However, we cannot commute it using sequence_commutativity3 because the second
expression reads a variable (v) written to by the first, and hence the assignment
disjointness condition is not fulfilled.
Here we can use the technique of removing the inopportune variable instance
v by unfolding it. If e is read-only and does not read v, the unfolding can be
obtained by assignment_sequence_propagation, and then sequence_commutativity3
can be used:
Lvi=e;clvieu= ...
assignment_sequence_propagation:
Lvi=e;cle;eu= ..
sequence_commutativity3:
clesvi=e;eu= ...
If e has write effects or reads v, assignment_sequence_propagation cannot be used
immediately because its applicability condition is not fulfilled. In this case, one of
the techniques mentioned in section 4.4.1 can be used.

Example of moving an input to the start of a sequence
We can move inputs to the start of sequences by similar techniques. We can, for
example, justify
Lv:=e;letb=c? ineuend =
letx=c?inv:=e;let b=xin eu end end
provided e is read-write-only and convergent and x is different from b and v and
not free in e or eu. The justification is
Lv:=e;letb=c? ineuend =
let x =c?inv:=e;let b =xineu end end
sequence_let:
tletb=(v:=e;c?) ineuend =
let x =c? inv:=e;let b=xin eu end end
sequence_commutativity2:
tletb=let x=c? inv:=e;xend in eu end =
let x=c?inv:=e;let b=xin eu end end |
let_associativity:
Llet x =c? inlet b = (v:=e; x) in eu end end =
let x =c? inv:=e;let b=xin eu end end
sequence_let:
Llet x =c? inv:=e;let b=xin eu end end =
let x =c? inv:=e;let b=xineu end end
is_annihilation, ged
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4.4.5 Termination of loops

If there are until or while loops in a specification, it may be important to know that
they terminate, and therefore relevant to formulate and justify conditions ensuring
that they do.

Such conditions will be of one of the forms

do eu until eb end post true

or
while eb do eu end post true

4.4.5.1 Termination of until loops

A strategy for proving the termination of conditions of the first form is to transform
the until loop into a sequence in which the second expression is a while loop, and
then prove the termination of the sequence. The termination of a sequence can be
proved by using the rule

[ sequence_convergence |
eu ; e post true ~ true
when (eu post true) A (eu ; (e post true) = eu ; true)
Hence, the general scheme for proving the termination of an until loop is
Ldo eu until eb end post true,
until_expansion :

Leu ; while ~(eb) do eu end post true
sequence_convergence :

¢ _eu post true

+ Leu; (while ~(eb) do eu end post true) = eu ; true

4.4.5.2 Termination of while loops

A strategy for proving conditions of the second form is to apply the following rule
left-to-right:
[ while readonly_convergence |
while ro_eb do eu end post true ~ true
when
(Olet b =roeiineu ;b > roei end = eu ; true pre ro_eb) A
(O roei < 0= ~roeb) A
(O (ro_eb post true) A (ro_ei post true))

It requires

e that the loop condition (ro_eb) is convergent
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e that one can find a measure (integer expression), ro_ei, which is read-only
and convergent, and which strictly decreases for any execution of the body of
the loop and causes the loop condition (ro_eb) to be false when it becomes
negative

Below is an example of a justification of the termination of a while loop:

Lclass
variable v : Nat :=0
value
f: Unit — write v Unit
f() = whilev<2dov:=v+1end
end F
f() post true
class_assumption_inf, f_def :
while v < 2do v:=v + 1 end post true
/* use 2 — v as strictly decreasing measure */
while_convergence :
Ltrue
since
e (Oletb=2—-vinv:=v+1;b>2—-vend =
v:=v + 1; true
pre v < 2)
/* introduce arbitrary initial assignment for v and propagate */
always_application2, all_assumption_inf :
L (vi=v0;v<2=v:=v0; true) =
(v:=v0;
letb=2—-vin
v=v+1l;b>2—v
end =
v:=v0;v:=v+1;true),
assignment_sequence_propagation, assignment_sequence_propagation,
assignment_sequence_propagation :
(O (vi=v0;v<2=v:=v0;true) =
(v:=v0;
let b=2— v0in
vi=v0+4+1; b>2—-v
end =
v:=v0;v:=v0+1;true),
let_absorption4 :
(O (vi=v0;v<2=v:=v0; true) =
(vi=v0;vi=v0+1;2-v0>2—-(v0+1)=
v:=v0;v:=v0+1;true),
simplify, qed
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s (02 —-v< 0=~ (v<2),
simplify, qed
» (O (v < 2 post true) A (2—v post true) A readonly(2—v)) |
simplify, qed
end
qed

Exercise In a context containing the definitions

variable Q, R : Int
value
divide : Int x Int — write Q, R Unit
divide(x, y) =
R:=x;Q:=0;whiley<RdoR:=R —-y;Q:=Q+ 1end
prey >0
justify the goal
LY %,y : Int « divide(x, y) post x =R +y*Q Ay >Rprey >0,
This is an example of showing that an explicit function (for doing integer division)
implements its implicit specification in terms of a postcondition. Note that proving
a postcondition for an expression implies proving termination of the expression.
Hint: there are a number of rules that can be used to prove post expressions.
For this exercise use sequence_post, while_post and assignment_post_propagation.
The first of these rules can be used to establish that x = R + y * Q before the
while loop.

4.4.6 Example: justification of imperative queue development

This section shows how formal conditions arising from the development relation
I QUEUEQ_1 formulated in section 2.8.5.3 can be justified.
As a first step, class_assumption_inf and implementation_expansion_inf are ap-
plied, by which we obtain the subgoals
¢ is_full() = len list_of() = P.bound
+ Lis_empty() = list_of() = ()
+ Lempty() ; list_of() = empty() ; ()4
e Ve: PElem
enqg(e) ; list_of() = let 1 = list_of() in enq(e) ; 1 ~ (e) end
pre ~ is_full()
+ et 1 = list_of() in
deq() as e post e = hd 1 A list_of() = tl 1 pre ~ is_empty()
end |
+ renq() post true pre ~ is full()
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The first three of these are simple to justify so we will not show the justifications.

The last three subgoals are more complicated. As the principle for justifying these
three are the same, we only show the justification of the first:
LV e: P.Elem ¢

enq(e) ; list_of() = let 1 = list_of() in enq(e) ; 1°(e) end
pre ~is_full()

all_assumption_inf :

Lenqg(e) ; list_of() = let 1 = list_of() in enq(e) ; 1" (e) end pre ~is_full()
/* in order to avoid imperative assumptions from the precondition,
we introduce arbitrary initial assignments */
always_elimination_inf, always_application2, all_ assumption_inf :
L0 (queue := q ; ~is_full() = queue := q ; true) =
(queue := q ; enq(e) ; list_of() =
queue := q ; let 1 = list_of() in enq(e) ; 1" (e) end) |
/* we can now make the left-hand side of the implication pure */
is_full_def, assignment_sequence_propagation, sequence_is, simplify :
.0 ~ (len q = P.bound) =
(queue := q ; enq(e) ; list_of() =
queue := q ; let 1 = list_of() in enq(e) ; 1" (e) end) |

/* and then we can put it into the context as an assumption */
always_implies2, imply_deduction_inf :

[not_full ] ~(len g = P.bound)
L0 queue := q ; enq(e) ; list_of() =

queue := q ; let 1 = list_of() in enq(e) ; 17(e) end |

/* We now expand and simplify the left-hand side of the equivalence. x/
/* In order to avoid imperative side conditions,

we use in-goal application when unfolding enq. */
enq_def :

L0 queue :=q;

if ~is_full() = true then queue := queue™(e) else enq(e) end ; list_of() =

queue := q ; let 1 = list_of() in enq(e) ; 1™(e) end |
is_true, is_full def, list_of def :

0 queue :=q;
if ~(len queue = P.bound) then queue := queue”(e) else enq(e) end;
queue =

queue := q ; let 1 = list_of() in enq(e) ; 1"(e) end |
assignment_sequence_propagation, not_full, if true,
assignment_sequence_propagation :

L0 queue := q ; queue := q~{e) ; q~(e) =
queue := q ; let 1 = list_of() in enq(e) ; 1"(e) end |

/* the right-hand side is expanded and simplified in a similar way */
list_of_def, enq_def, is_true, is_full_def,
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assignment_sequence_propagation, let_absorption4, not_full, if true :

L0 queue := q ; queue := q~(e) ; q"(e) =
queue := q ; queue := q~(e) ; q~(e)

simplify, qed
Note that in-goal applications have been used for unfolding enq because otherwise
we would get a side condition involving — after unfolding is full — the value of
the variable queue.

Note also that the technique of introducing arbitrary initial assignments ex-
plained in section 4.4.2.4 has been used.

4.5 Justification for concurrent specifications

When justifying conditions involving constructs for concurrency, the techniques
presented so far are still applicable. This section gives advice which is particularly
related to the construction of justifications where concurrency is involved.

It explains how let expressions and expressions in the combinators || and {} can
be expanded to more simple expressions.

4.5.1 Expansion to choice form

An expression of one of the forms

e ey || eusy

o ey {} euy

e let b =1¢; in e; end
can be expanded to an expression in choice form, i.e. an expression in which the
outermost combinators are [| and [], by

1. first ensuring that eu;, e; and eu, are in a standard form, explained below, or
are equivalent to stop, and, for || and {}, also ensuring that eu; and eus are
assignment disjoint

2. then using one of the expansion rules explained below

4.5.1.1 Standard form

An expression is in basic standard form if it is in one the following forms:
1. a guarded convergent expression, i.e. in one of the two forms

(a) let b = ¢? in e end
(b) c! e ;ext?

12Note that we have chosen ¢ ! e; ; es as a basic standard form and not the equivalent form
let b =c! e in ey end, even though a sequence is a derived form and a let expression is the
basic form. The reason for this choice is that sequences are more frequently used.
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where e; is non-communicating, convergent and in the type of c,
i.e. readwriteonly(e;) A convergent(cle;)
2. a non-communicating and convergent expression
e

i.e. readwriteonly(e) A convergent(e)
3. an external choice

er [] - [] en

between expressions, e, ..., é,, (n > 2) in basic standard forms 1 and 2.

Note that a basic standard form expression is convergent if one of the following
holds:

e It is one of the first two forms.

e It is of the third form and all its constituents are guarded convergent expres-
sions (of the first form) and no two of these start with an input on the same
channel or an output on the same channel.

An expression is in derived standard form if it is in one the following forms:

1. a derived guarded convergent expression, i.e. in one of the three forms

(a) cu? ;e

(b) cu?

(c)c!e

where e; is non-communicating, convergent and in the type of ¢
2. an external choice
er [] - [] en

between expressions, e, ..., €,, (2 > 2) in derived standard form 1 (at least
one ¢ should be in this form) and basic standard forms 1 and 2.

They are derived standard forms since they can be immediately rewritten into basic
standard form expressions:

e cu? ; e can be rewritten to let b = cu? in e end using sequence_expansion

e cu? can be rewritten to let b = cu? in skip end using let_absorption2

e cle; can be rewritten to cle; ; skip using let_absorption2 and
sequence_expansion

An expression is in standard form if it is in basic standard form or in derived
standard form.

Some expressions which are not in standard form can be transformed to an
expression in standard form; see section 4.5.1.3.

4.5.1.2 The expansion rules

For eu;, euy and e; in standard form or equivalent to stop, and eu; and eu,
assignment disjoint, the three expressions
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eu; || eus

eu; # eus

let b =e; in e; end
can be expanded to expressions in the choice form by using the rules parallel -
expansion, interlock_expansion and let_expansion.

Before explaining these rules, we give two examples where we explain intuitively
how some expressions can be expanded.

Example 1

For the first example, consider the expression
letb=c?invl:=bend | c! e

It has the following possible behaviours:

o vl :=¢;
eletb=c?”invl:=bend;c! e
ecle ;letbh=c? invl:=bend

The first behaviour is obtained if the left-hand side and the right-hand side of the
expression communicate with each other. Such a behaviour is called an internal
behaviour. The second and third behaviours are obtained if the left-hand or the
right-hand side respectively communicates with the surroundings. Such behaviours
are called external behaviours.

It is an internal choice whether

e it will be up to the surroundings to make an (external) choice between each
of the external behaviours and the internal behaviour, or,
e the expression has the internal behaviour

Hence, the expression can be expanded to the choice form

(

letb=c?invl:=bend; c! ¢

cle ;letbh=c?invl:=bend
I

vl :=e

)

1

vl :=e
The form of the expression is

EJDII
where I is the possible internal behaviour and E is an external choice between the
possible external behaviours.
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Example 2
For the second example, the expression

cle |l c!e
can be expanded to
cle;cle [| cle;cle

In this case, the form of this expression is E. There are no possible internal be-
haviours that can contribute to the expansion.

General
In general, an expression of one of the forms

e cuy || euy
e ey {f euy
e let b =¢; in e; end

where euy, eus and e; are in standard form or equivalent to stop, and eu; and eu,
are assignment disjoint, can be expanded to

e E_ if there are no possible internal behaviours of the expression
e (E[]I) ] I, otherwise

Here, E is stop if there are no possible external behaviours of the expression,
otherwise it is an external choice, e; [| ... [] en, between all the possible external

behaviours e, ..., e, (n > 1). Similarly, I is an internal choice, iy [| ... [| im,
between all the possible internal behaviours i, ..., iy, (m > 1) of the expression.
In general, for expressions of the form
ar[] . [Jan® by [] .- [] b (n>1,m>1)

(where @ is || or #) the possible internal behaviours are all the possible internal
behaviours which can be found by investigating each pair

(i, bs) (1<i<n1<j<m)
Such a pair gives rise to a possible internal behaviour if a; or b; is non-communi-
cating (read-write-only), or if a; and b; start with a communication on the same
channel, one with an input and the other with an output. The specific internal
behaviour depends on the combinator @. For the combinator {}, there are no
external behaviours. For the combinator ||, each a; (1 <i < n) and b; (1 <j < m)
which starts with an input or an output gives rise to a possible external behaviour.

For let expressions of the form

letb=a; [] ... [] anin e end (n>1)

each a; (1 < i < n) which starts with an input or an output gives rise to a possible
external behaviour, and each a; (1 < i < n) which is non-communicating (read-
write-only) gives rise to a possible internal behaviour.

Absence of internal behaviour is modelled by swap and absence of external
behaviour is modelled by stop.
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All this is formalized in the expansion rules parallel_expansion, interlock_ex-
pansion and let_expansion, which can be found in appendix B.6.

In these expansion rules, some special functions parallel expand, interlock -
expand and let_expand are used. These functions are defined in appendix B.4
by rules that use the special (auxiliary) functions parallel ints, parallel exts,
interlock_ints, let_ints, and let_exts, which are used to calculate I and E. The
auxiliary functions are also defined by rules in appendix B.4, but only for arguments
in basic standard form or stop. Corresponding rules for arguments in derived
standard form are easily deduced.

4.5.1.3 Obtaining the right form

To apply the expansion rules for ||, f} and let we may need to convert their argu-
ments to standard form expressions. This section gives, for three often encountered
kinds of non-standard form expressions, ways of converting them to standard form
expressions by applying proof rules.

If expressions

Sometimes we have an if expression whose branches are in standard form, where
we need a standard form expression. In this case a suitable tactic is to do case
analysis (using two_cases_inf) on the guard of the if expression and its negation.
This will give two goals, each dealing with one of the branches of the if expression.

Test functions

It is also worth considering how we deal with interlocked expressions involving
“test” functions. (A “test” function is a function that is used to convert an ex-
pression to an expression of type Unit, so that it can appear as an argument of
the #§ combinator.) Suppose, for example, that we want to justify the following
condition:

LC_STACK  V st : Stack, test : Bool = Unit «
stack_p(st) {} test(is_empty()) = stack_p(st) { test(false) pre st # (),

where C_STACK is defined in section 4.5.1.4.
We start as follows:

class_assumption_inf, all_assumption_inf, pre_deduction_inf:
[st_not_empty] st # () F
Lstack p(st) { test(is_empty()) = stack_p(st) {} test(false) ,

Then we can unfold stack p(st) to obtain an expression in standard form, but
we cannot unfold test(is_empty()). Instead we can apply application_evaluation
followed by unfolding is_empty(), so that test(is_empty()) is replaced by something
like

let bl = test in let b2 = is_empty c? in b1(b2) end end
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Absorbing the outer let expression then gives
let b2 = is_empty c? in test(b2) end
which is in standard form.

If input or output is not at the start
Examples of how to move an input or output to the start of a sequence, in order
to obtain a standard form expression, are shown in section 4.4.4.

Hence

mp()
x :=1;cllx ; mp()

x =2 ; c2lx ; mp()

can be rewritten as the better (and equivalent) form
mp() =

clll;x:=1;mp()

1

c2!2 ;x:=2; mp()
This is better both because the interlock/parallel expansion rule can now be applied
to expressions where mp() is interlocked or put in parallel with another standard
form expression, and also because its convergence is now much more apparent — it
is clear that the variable x will be assigned 1 or 2 according to the communications
offered by the environment, not according to an internal choice.

Exercise In a context containing the definitions
channel c : Int wvariable v : Int
justify the goal
Lell || vi=e? = (15 vi=c? [] vi=c? 5 ¢!l [| vi=1) [] vi=1,

4.5.1.4 Example

Consider the specification of a stack process and its interface functions:

scheme C_STACK =
class
type Elem, Stack = Elem*
channel is_empty_c : Bool, push_c, top_c: Elem, pop_c : Unit
value
stack_p : Stack — in any out any Unit
stack_p(st) =
is_empty_c ! (st = ()) ; stack_p(st)
[

let b = push _c? in stack p((b) ~ st) end

[
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if ~ (st = ()) then pop_c? ; stack_p(tl st) else stop end

if ~ (st = ()) then top_c ! hd st ; stack_p(st) else stop end,

is_.empty : Unit — in any out any Bool
is_empty() = is_empty c?,
push : Elem — in any out any Unit
push(e) = push_c! e,
pop : Unit — in any out any Unit
pop() = popc ! (),
top : Unit — in any out any Elem
top() = topc ?

end

Suppose we want to justify the condition
V st : Stack, e : Elem
(stack_p(st) {} push(e)) {} pop() = stack_p(st) (1)

This can be done in two steps: First stack p(st) {} push(e) can be reduced to the
expression stack_p((e) ~st), and then stack_p({e) ~ st) § pop() can be reduced to
stack_p(st).

In both steps the arguments of {} are assignment disjoint and we can use the
expansion rules after having converted the arguments to standard form expressions.

In the first step it turns out that push(e) can be unfolded to an expression in
standard form, but stack_p(st) cannot. stack_p(st) unfolds to an external choice,
where two of the choices are if expressions. It is therefore necessary to do a two
case analysis on the guard of the if expressions and their negation, as explained in
section 4.5.1.3.

The justification is

LC_STACK +

V st : Stack, e : Elem » (stack_p(st) {} push(e)) # pop() = stack_p(st)
class_assumption_inf, all_assumption_inf :
L(stack_p(st) {} push(e)) {f pop() = stack_p(st)
two_cases_inf:
 [empty | st = () -
L(stack_p(st) { push(e)) {f pop() = stack_p(st)
/* first we unfold the stack and push processes */

stack_p_def, push_def :
L ((is_empty_c ! (st = ()) ; stack_p(st) []
let b = push_c? in stack_p((b) ~ st) end ]
if ~ (st = ()) then pop_c? ; stack_p(tl st) else stop end ||
if ~ (st = ()) then top_c ! hd st ; stack p(st) else stop end)
ff push_c ! e) { pop() =
stack_p(st) 4
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/* then using the case assumption we can reduce this to */
simplify :
L ((is_empty_c ! (st = ()) ; stack_p(st) []
let b = push_c? in stack p({(b) ~ st) end)

ff pushc ! e) {f pop() =
stack_p(st)
interlock_expansion, simplify :

Lstack_p({e) ~ st) }} pop() = stack_p(st),
/* the second step is proved in a similar way */

+ [not_empty ] ~(st = ()) F

L(stack_p(st) {} push(e)) {f pop() = stack_p(st)
/* this case is proved in a similar way */

Exercise 1 Complete the justification above.

Exercise 2 The process stack_p is recursive and yet non-terminating, which may
give problems in an implementation. An iterative version can be defined along the
lines of

stack_p : Stack — in any out any Unit
stack_p(st) =

local

variable v : Stack := st
in

while true do ... end
end

Complete the definition and then justify the same condition (1).

4.6 Tools support

When creating justifications there are two major tasks:

e Formulate justification conditions.
e Develop arguments for the truth of these conditions.

For both tasks it is a great help to have computer-based tools.

A tool that can generate confidence conditions for RSL modules, theorems and
development relations can provide help in formulating conditions.

A justification editor can help develop arguments. In particular it can:

e do syntax and type checking
e keep track of the implicit context
e keep track of where informal arguments are used
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e keep track of which proof rules are available. (In practice this means that it
should have a rule base consisting of the proof rules which are always available
and it should dynamically generate context rules which are available for the
current goal and additional context rules which are available for subterms of
the current goal.)

e generate and keep track of names for unnamed axioms

e handle out-of-band names

e for a given goal/term show the user the subset of rules that are applicable,
i.e. are available and can match

e for a given goal/term apply an applicable rule (chosen by the user or a tool)

e evaluate applications of special functions

e simplify expressions automatically by applying several rules according to cer-
tain tactics

e allow tactics to be developed and applied

e allow replay of a proof when changes are made to the specification it is about

Tools meeting many of these requirements have been developed in the RAISE and
LaCoS ESPRIT projects and are described in the RAISE tools manuals [3, 4].



CHAPTER 5

Translation

Once we have the final specification (low-level design) expressed in RSL, we are
ready to produce code for the implementation in a programming language. We call
the process of producing code from an RSL specification translation. The aim of
this chapter is to provide guidelines on how to translate RSL specifications into
code.

The implementation language for an RSL specification could be any program-
ming language: a logic language like Prolog, a functional language like Lisp, or a
more traditional procedural, imperative language, perhaps with some support for
object oriented programming. The nature of the implementation language greatly
affects the ease with which a given RSL specification can be translated into that
language. Since we cannot here describe translation into all these different kinds of
languages, we will restrict the guidelines to those relevant to procedural languages
and will use Ada [1] as our programming language.

RSL is a general wide-spectrum specification and design language and not a
special design language for any particular programming language. Hence, there are
at least three issues to consider when looking at both RSL and an implementation
language.

First of all, there are RSL constructs that are very far from those found in most
programming languages. These constructs include sorts and axioms, postcondi-
tions, quantifications and other features that all have one thing in common: that
they are typically used at the more abstract levels of RSL specification. Hence, all
of these constructs should be eliminated on the way to the final specification that
is to be subject to translation. Chapter 3 on development describes techniques for
developing such constructs into more directly implementable ones.

Secondly, there are RSL constructs that can be translated into the program-
ming language in a reasonably straightforward manner. This includes most of the
algorithmic parts of RSL.

Thirdly, there might be concepts in the relevant programming language for which
there are no immediately corresponding constructs in RSL but which we would
still like to use; these include array types, physical layout of data structures and

335
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exceptions. Some of these, like the array types, we can model by a special RSL
module and then provide an efficient manual translation that involves the desired
programming language type. Others, like the physical data layout, are actually
not supposed to be introduced before the coding. For the more difficult ones,
like exceptions, the treatment depends on the intended use of the feature in the
program. If we want to reason about exceptions at the RSL level, we need to
construct a model of them, which may not be a trivial thing to do. Alternatively,
we can say that the RSL specification defines all the “normal” cases only, and
exceptions (and their handling) should be introduced during coding.

This chapter first addresses some general issues of translation. Then it presents
more detailed translation guidelines for sequential specifications. After that a sec-
tion specifically deals with translating concurrent specifications. Finally, the trans-
lation process is illustrated using the examples in chapter 2.

5.1 General issues of translation

This section discusses overall aspects related to translation.

5.1.1 Correctness of a translation

When performing a development step from one RSL module to a more detailed
one, development relations are used to record the formal relation, for example im-
plementation, between the modules. The concept of one module implementing
another is well defined for RSL, but, when translating an RSL module into a pro-
gramming language text, no such obvious relation exists. There are two problems
in establishing such a relation.

First of all, the semantics of the programming language is typically not formal-
ized, and even if it were, it would probably be impractical to relate it to the RSL
semantics in such a way that a formal implementation relation between an RSL
module and some programming language code could be established. One possibil-
ity would be to provide a complete formal semantics of the programming language
expressed in RSL. But for any non-trivial language, like Ada, developing such a
semantics would be an enormous task. Therefore, we have to rely on a language
reference manual written in natural language, such as the one for Ada [1], and ac-
cept that an implementation is not formalizable and therefore not subject to formal
justification.

The other problem is to decide, even without a formalization of the relation
between an RSL module and code, what it means for a program to implement an
RSL specification. Two issues then arise:

e In RSL, the “effects” of two expressions can be compared using “=". Such
a strong equivalence operator does not exist in programming languages and
it cannot in general be implemented, since it can compare effects including
side-effects, non-determinism and convergence. This has the implication that



General issues of translation 337

expressions involving = cannot be directly translated (just as postconditions
cannot be). The second is that there are semantically different RSL expres-
sions whose difference cannot be observed at the code level. This is particu-
larly the case for expressions containing an internal choice, since there is no
fairness in RSL. For example, el [| e2 cannot be distinguished from el (or e2)
without having a strong equivalence like = or postconditions. Hence in cer-
tain cases it might be reasonable to consider code that is “more deterministic”
than the RSL specification to be a correct translation.

RSL contains composite types whose values can be arbitrarily large or even
infinite. Even if we decide that infinite values are not to be translated, the
arbitrarily large values are a problem. One approach is to use subtypes in
the specification that is to be translated and handle the introduction of limits
as a RAISE specification step as described in section 3.5.1. A similar but
still different issue is translation of the built-in types Int and Real. For Int
the subtype approach can be used. Real has the additional property that its
values are arbitrarily precise. This property is not implementable in practice.
There are two ways of dealing with this, depending on the role of reals in the
specification. If the detailed behaviour related to the accuracy and range of
the reals is not an issue, we can use an appropriate programming language
type — in Ada, a floating point or a fixed point type. Alternatively, we can
avoid using Real and even Int in the RSL specification and instead define
and use RSL modules that specify the behaviour of the relevant programming
language types. An example of such a model of the C++ integer types can
be found in Reher [24].

5.1.2 Automatic and manual translation

For a subset of RSL, it is feasible to produce target language code automatically
by a tool that is similar to a compiler. If such a tool (a translator) is available
for the relevant target language, we would still need to decide which parts of a
specification language should be automatically translated and which parts should
be manually translated. In general we can adopt the following criteria:

e Manual translation should be used for:

— user interfaces (e.g. communication with X windows)

— composite structures that have particular requirements for their storage
format or strict efficiency requirements

— low-level RSL constructs that the translator does not support

e Automatic translation should be used for:

— RSL modules other than the above
— generating skeleton code for the otherwise manually translated modules
in order to ensure a consistent set of interfaces



338  Translation

In general, hand-written code may have to be produced to interface automatically
produced code with existing software.

In order to manage the combined use of hand translated and automatically trans-
lated constructs, we should modularize the RSL specification in such a way that
the constructs that are to be translated by hand are localized in separate modules
that can then be used by the parts to be automatically translated. For a module
that is translated by hand the resulting code should be reviewed to ensure that it
satisfies the properties expressed by the RSL specification.

5.1.3 Particular problems of translation
5.1.3.1 Translating a specification

A specification consists of a list of modules that are at the outermost level. RSL
allows such modules to be defined in any order. Modules at this level correspond
in a natural way to Ada library units (and their bodies), and translating them into
library units leads to utilization of the Ada library with its separate compilation
facilities.

Ada imposes a partial order on library units and, in contrast to RSL, entities
must be defined before they are referred to. At the outermost level this means
that non-cyclic with clauses must be established among the Ada units. Consider
a specification consisting of the two modules

object
M1 :
class
value
f: Int — Int
f(x) = if x > 0 then M2.g(x) else x end
end
object
M2 :
class
value
g : Int — Int
g(x) = if x > 10 then x else 2 x x end
end

If we assume that a type Int, declared in a package Int_Package, is appropriate
for Int (see section 5.2.4.1), this specification can be translated into

with Int_Package; use Int_Package;
package M1 is

function f(x : in Int) return Int;
end Mi;
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with Int_Package; use Int_Package;
package M2 is

function g(x : in Int) return Int;
end M2;

with M2;
package body M1 is
function f(x : in Int) return Int is
begin
if x > 0 then
return M2.g(x);
else
return x;
end if;
end f;
end M1;

package body M2 is
function g(x : in Int) return Int is
begin
if x > 10 then
return x;
else
return 2 * x;
end if;
end g;
end M2;

This example also shows the straightforward mapping from RSL objects to Ada
packages. Similarly, schemes can in general be translated into generic packages, as
described in section 5.2.1.1.

As not all Ada compiler systems are equally powerful when it comes to estab-
lishing a good elaboration order for library unit bodies, it is a good idea to add
a pragma ELABORATE for all generic library packages (with bodies) that are men-
tioned in a with clause and also for library packages whose body elaboration is
required before the elaboration of some other unit.

Note that in order to get an executable image for an Ada program, an Ada main
program (usually a procedure) is needed for linking. Such a main program has to
be hand-coded and will typically mention (some of) the translated library units in
its context clause.
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5.1.3.2 Name and structure equivalence of types

If we define in RSL (perhaps in two different modules)

type
T1 = Int x Bool
type
T2 = Int x Bool
then in RSL T1 and T2 are the same type. This is normally referred to as “struc-
tural equivalence” of types. In a number of programming languages, including
Ada, two separate type definitions give rise to two different (incompatible) types,
even when their structure is the same. This is often referred to as “name equiv-
alence”, because each type name denotes a different type. Therefore, in order to
prevent a correct RSL specification being turned into an Ada program that will be
rejected by a compiler due to type errors, it is important to define types only once
in Ada and use subtypes to get the right names. Hence, in Ada the above RSL
type definitions should be translated into

type Tl is
record
f_1 : Int;
f_2 : Boolean;
end record;

subtype T2 is Ti1;

(See section 5.2.4.2 for details on the translation of product type expressions.)

5.1.3.3 Evaluation order for expressions

In RSL, the order of evaluation of the sub-expressions of an expression is from left to
right. Since the evaluation of expressions may have side-effects, it is important that
the evaluation order is preserved by the translation. The programming language
may have left the determination of the evaluation order of certain sub-expressions
for the compiler implementer to decide. The most important examples of such
sub-expressions are the actual parameters of subprogram calls and operands of
infix operators. If the actual parameters or operands cannot be guaranteed to have
no side-effects, auxiliary variables and assignments have to be introduced to enforce
the RSL evaluation order in the translated code.

5.1.3.4 Names

In order to maintain as close a relation as possible between the RSL specification
to be translated and the resulting code, the names used in the specification should
be preserved in the code as far as possible. When trying to preserve the names, a
number of issues have to be dealt with:
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e The scope and visibility rules of RSL might not be the same as those of the
programming language. The rules of RSL and Ada are fairly compatible, in
that Ada is a block structured language with modules (packages and generic
packages). The main source of difference is that RSL expressions, typically
let and local expressions but also other composite expressions, may require
the declaration of local entities. If the expression is the body of a function,
the local declarative part of the corresponding Ada subprogram is the natural
place for such additional declarations. If the expression is of type Unit, we
can and should always introduce an Ada block statement to keep the names
as local as possible. In all other cases, entities that need to be locally declared
should be declared at the innermost enclosing declarative part, and if name
conflicts arise from that, the names must be made unique.

e RSL is case sensitive, and a number of programming languages, including
Ada, are not. This means that names that would otherwise become indis-
tinguishable in a one-to-one translation sometimes have to be translated into
different ones. Similarly, a convention should be adopted for the treatment of
special symbols, particularly Greek letters and primes, that are not allowed
in Ada identifiers.

e RSL has the possibility of overloading values. For languages that do not
offer user-defined overloading, distinct names have to be used. For reasons of
traceability between the final specification and the code, it is better to remove
the overloading in the final RSL specification. Since Ada has overloading and
the rules for resolving overloading in RSL and Ada are very similar, there
is no reason for avoiding overloading in the final RSL specification when the
target language is Ada. The few expressions that can be resolved in RSL but
not in Ada can be handled by introducing a qualification in Ada.

Since we usually know which programming language will be used before writing
the specification, the special rules of the language should be taken into account
in the final specification in order to minimize the naming differences between the
specification and the code.

5.2 Translating sequential specifications

This section follows the structure of the RSL syntax and describes how the in-
dividual non-concurrent language constructs can be translated. Issues related to
translation of concurrent constructs are dealt with in section 5.3, while those related
to the specification level have been dealt with in section 5.1.3.1.

5.2.1 Declarations

Translating a declaration will result in one or more declarations; in fact each def-
inition in a declaration will become one or more declarations. Certain constructs,
like modules and functions, give rise to both a declaration and a body.
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One important difference between RSL and certain programming languages is
that the order of declarations (and definitions) in RSL can be chosen freely, whereas
the programming language requires that an entity is declared before it is referred
to. This means that the declarations in the resulting declaration list may have to
be topologically sorted in order to respect the “defined before use” requirement.
In the case of Ada, this requirement also applies to generic formal parts.

5.2.1.1 Scheme declarations

The programming language may not have a construct that corresponds to schemes,
which means that only objects can be translated.

The notion of being able to create instances based on a kind of template is
handled by generic packages and instances in Ada. Hence, the general idea is to
translate schemes into generic packages.

If the scheme is not parameterized, the Ada package should still be generic (and
parameterless) to allow for several instantiations. This is particularly important
if the scheme has a state, as each instance needs to have its own state. The
class expression is translated into the generic package declaration and body; see
section 5.2.2.

For a parameterized scheme, the differences between RSL schemes and Ada
generics are important. The object definition list constituting the RSL formal
scheme parameter has to be turned into a “flat” list of generic formal parameters
to the generic package. This typically means that new unique names have to be
found for the generic formal parameters in order to avoid name clashes. The new
names can easily be constructed from the formal object name and the local name
of the formal entity (see the example below).

A more interesting question is how the various formal parameters should be
translated. In RSL, most parameterized schemes are parameterized with respect
to types (often sorts) and values (constants and functions). Since a sort can be
implemented by any type in the actual parameter object of a scheme instantiation,
the generic package has to have enough information about the generic formal type
to manipulate it correctly. Because an RSL type might be translated into an
Ada type involving linked lists (see section 5.2.1.3), the Ada predefined equality
and assign operations might not give the desired result. Therefore, in addition to
the generic formal type corresponding to the sort, generic formal subprograms are
needed for these characteristic operations.

Consider the following simple parameterized scheme, DICTIONARY :

scheme
ELEM = class type Elem end,

DICTIONARY(KEY : ELEM, DESCR : ELEM) =
class

end
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The first scheme, ELEM, need not (and cannot meaningfully) be translated on its
own, since it is only used for defining formal scheme parameters.

Formal scheme parameters are in RSL defined by one or more formal objects, here
KEY and DESCR, that contain definitions of the formal entities, here the types
Elem. In Ada, a generic formal parameter part consists of a “flat” list of generic
formal parameters. Therefore the structure of the formal scheme parameters must
be “flattened” as part of the translation. We have adopted the strategy of prefixing
each of the non-overloadable entities, here the types Elem from KEY and DESCR,
with the formal object names to make the identifiers introduced by the flattened

declarations unique.
The generic package corresponding to DICTIONARY would be

generic
type KEY_Elem is private;
with function equal(x, y : in KEY_Elem) return Boolean is <>;
with function copy(x : in KEY_Elem) return KEY_Elem is <>;
with procedure assign(x : in out KEY_Elem;
y : in KEY_Elem) is <>;
with procedure free(x : in out KEY_Elem) is <>;
type DESCR_Elem is private;
with function equal(x, y : in DESCR_Elem) return Boolean is <>;
with function copy(x : in DESCR_Elem) return DESCR_Elem is <>;
with procedure assign(x : in out DESCR_Elem;
y : in DESCR_Elem) is <>;
with procedure free(x : in out DESCR_Elem) is <>;
package DICTIONARY is

end DICTIONARY;

(and a body)

The sorts are translated into formal private types, since they can be matched by
any non-limited type at the point of instantiation. The formal equal, copy and
assign routines are introduced to provide the right implementation of the RSL
operations “=”" and “:=”. We have to take care that these names are not already
used in the RSL specification. The formal parameter names, x and y are arbitrary,
but they must obviously not be the same. The free procedures are needed in case
more complex structures are built inside this module from one of the two sorts, as
those structures may need free operations themselves to avoid running out of heap
space. All of these characteristic operations are supplied with a default (is <>),
which means that the matching actual subprograms need not be mentioned in the
instantiation, but they have to exist at the point of instantiation for the defaulting
to work. This means that types that are to be used as actual parameters have to
have these four operations.
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Values (constants and functions) occurring in formal scheme parameters should
be translated into generic formal subprograms. The reason why constants are not
translated into generic formal in parameters is that constants can be overloaded
in RSL but not in Ada. Hence, in order to avoid conflicts with names introduced
by the code of the class expression of the scheme, the constants are translated
into parameterless generic formal subprograms. Moreover, since the use of defaults
requires the actual parameters at the point of instantiation to be given in named
notation, values defined in the same formal scheme parameter are not allowed to
overload each other.

Variables occurring in formal scheme parameters are simply translated into ge-
neric formal in out parameters.

5.2.1.2 Object declarations

An object is typically translated into a module in the programming language if the
language has modularity; if not, the specification will have to be “flattened” during
the translation.

In a translation to Ada, each RSL object can be translated into a package.
The form of the package depends on the class expression defining the object; see
section 5.2.2 on class expressions.

Ada does not have anything like object arrays. Hence, each object in the array
generally has to be declared as a separate package, which may be very cumbersome
(or even infeasible for large or infinite object arrays). In special cases we might
be able to arrive at better code than n Ada packages for an object array with =
elements at the cost of having a less straightforward relation between the the RSL
specification and the code. If each element in the object array contains a state
component (one or more variables) and functions manipulating this state, and if
the index type is sufficiently simple and not too large, we can do the following:

Declare one package corresponding to the object array.

Declare one or more arrays in Ada inside this package to hold the state.
Define subprograms inside the package for state manipulation. The subpro-
grams have one or more extra index parameters.

Translate each call of the original manipulation functions into calls with
the extra index parameters, e.g. in Ada OBJ_ARR[i].f(e) is translated into
OBJ_ARR.f(i,e).

The translation of the lift example in section 5.4.2 shows an example of translation
of an object array that also contains concurrency.

5.2.1.3 Type declarations

An RSL type definition is translated into a type or perhaps a subtype declaration.
In addition to the type declaration, it might be necessary to declare certain char-
acteristic operations (as described in section 5.2.1.1) if the type is to be used as an



Translating sequential specifications 345

actual parameter of a generic instantiation.
Translation of each of the different type definitions is done as follows:

Sort definitions In general, a sort should not be directly translated, but be
subject to further development within RSL, in order to get closer to an existing
programming language type.

There is one important exception to this: when the sort appears in a formal
scheme parameter. Here, a sort definition means that there are no restrictions
on the actual type except those coming from related values and axioms. The
sort definition should then be translated into a generic formal private type with
associated characteristic operations, as shown in section 5.2.1.1.

Variant definitions Variants are a convenient shorthand in RSL, but even
though they stand for a sort, some operations and axioms, they are more read-
ily translatable than the corresponding sort definition, operations and axioms.
One of the simplest forms of a variant type definition is one where all the alter-
natives are constant constructors and where there is no wildcard. Such a variant
definition is translated into an enumeration type declaration in Ada. For example

type Colour == red | green | blue
Ada type declaration:

type Colour is (red, green, blue);

This enumeration type satisfies both the disjointness and the induction axioms,
since the three enumeration literals are all different and the type contains exactly
three values. Moreover, the enumeration literals can be overloaded just like the
RSL values.

If there are wildcards in a variant type definition, the module containing the
definition should be developed further in RSL to remove the wildcard.

Variant type definitions containing record variants are often used to define recur-
sive data structures, as in the following example of a tree structure. The example
also illustrates translation of destructors and reconstructors.

type Tree == empty | node(left : Tree, val : Elem « repl value, right : Tree)

Because of the varying size of a Tree, a linked list would be a natural transla-
tion. This results in the following declarations in the (potentially generic) package
declaration corresponding to the enclosing class expression:

type Tree_kind is (empty, node);
type Tree_record(kind : Tree_kind :
type Tree is access Tree_record;
type Tree_record(kind : Tree_kind :
record
case kind is
when empty =>
null;

Tree_kind’First);

Tree_kind’First) is
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when node =>
left : Tree;

val : Elem;
right : Tree;
end case;

end record;

function empty return Tree;
function node(tl : in Tree; x : in Elem; t2 : in Tree)
return Tree;

function left(t : in Tree) return Tree;

function val(t : in Tree) return Elem;

function repl_val(x : in Elem; t : in Tree) return Tree;
function right(t : in Tree) return Tree;

function equal(tl, t2 : in Tree) return Boolean;
function copy(t : in Tree) return Tree;
procedure assign(tl : in out Tree; t2 : in Tree);
procedure free(t : in out Tree);

The type Tree kind is used as the discriminant type for distinguishing the variant
alternatives. Because of the possibility of overloading in Ada, the names empty
and node are “re-used” as discriminant values. The discriminant itself (kind) is
initialised to allow the structure to vary over time; the value is arbitrary, but using
an attribute makes the code easier to maintain. The complete type declaration for
Tree record defines that an “empty” tree has no components (except the discrim-
inant) and a “node” has the expected three components. If no destructor names
are defined in the specification, we can use any locally unique identifier as the
component name.

The subprogram declarations are fairly straightforward; see section 5.2.1.4 for
more information on translating values.

Since the Tree is implemented using access types, we need to define the char-
acteristic operations (equal, copy, assign and free) for the type Tree because
the predefined operators “=” and “:=” do not give the desired result and there
is no automatic garbage collection in Ada. The code for assign is shown in the
following as an example.

The corresponding package body contains

function empty return Tree is
begin

return new Tree_record’(kind => empty);
end empty;



function node(t1
return Tree is

in Tree; x :
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in Elem; t2 : in Tree)

=> node,
=> copy(tl),
=> copy(x),

right => copy(t2));

begin
return new Tree_record’ (kind
left
val
end node;

function left(t
begin

return t.left;
end left;

function val(t
begin

return t.val;
end val;

function repl_val(x
1l : Tree;

begin
assign(l, t);
assign(l.val, x);
return 1;

end repl_val;

function right(t
begin

return t.right;
end right;

function equal(tl, t2
begin

-— comparing two tree values
end equal;

function copy(t
begin

-- copying a tree value
end copy;

in Elem; t

in Tree) return Tree is

in Tree) return Elem is

in Tree) return Tree is

in Tree) return Tree is

in Tree) return Boolean is

in Tree) return Tree is

347
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procedure assign(tl : in out Tree; t2 : in Tree) is
1 : Tree := copy(t2);

begin
free(tl);
t1 := 1;

end assign;

procedure free(t : in out Tree) is
begin

-- deallocation of a complete tree
end free;

For variant types that are not recursively defined, the access type can and should
be avoided, as shown in the following example:

type Result == fail | ok(res: T)
results in the following Ada code in the declaration (assuming T is a simple type
without pointers):

type Result_kind is (fail, ok);
type Result(kind : Result_kind := Result_kind’First) is
record
case kind is
when fail =>
null;
when ok =>
res : T;
end case;
end record;

function fail return Result;
function ok(r : in T) return Result;

and in the body:

function fail return Result is
begin

return Result’(kind => fail);
end fail;

function ok(r : in T) return Result is
begin

return Result’(kind => ok, res => r);
end ok;
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Union definitions A union type definition should be translated in the same way
as the equivalent variant type definition. However, any implicit coercions in the
RSL specification have to be made explicit in Ada.

Short record definitions A short record type definition should be translated
into a record type and functions for construction and possibly destruction and/or
reconstruction. The result should be similar to that of a variant type definition,
except that no discriminant is needed since there is only one alternative, and no
access type is needed if the structure is not recursive.

Abbreviation definitions An abbreviation definition should be translated into
a type or subtype declaration, depending on the type expression. A type declaration
should be used if no corresponding programming language type has already been
declared for the type expression; otherwise a subtype declaration must be used
to avoid problems with the difference between name and structure equivalence of
types, as described in section 5.1.3.2.

Translation of the various type expressions is described in section 5.2.4.

5.2.1.4 Value declarations

In order to keep the distance between the final RSL specification and the code from
becoming too wide, only explicit value definitions and explicit function definitions
should be considered readily translatable. Typings as well as implicit value and
function definitions should be developed further in RSL before translation. An
exception is if an abstract RSL module has been constructed with the purpose
of capturing properties of existing concepts in the programming language or of
programming language library routines; the module could for example be one that
describes the relevant properties of arrays by typings and axioms. Typings may
also be useful in scheme parameters.

Explicit value definitions Since values in RSL can be overloaded, the general
translation of an explicit value definition into Ada should result in a function decla-
ration (and body). If the programming language does not have overloading, names
have to be made unique either prior to translation or as part of the translation.

If the value is not a function in the RSL specification, it should become a param-
eterless function in Ada, and the defining expression translates to the body of that
function. If required for reasons of efficiency, its definition can be translated into
a constant declaration, provided a (sufficiently global) analysis of the specification
has shown that the value is not overloaded and is not used in an actual parameter
to a scheme instantiation.

If the value is a function, i.e. the type expression denotes a function type, then one
of two cases apply. Either the expression is the name, perhaps qualified, of another
function, in which case, the value definition can be translated into a subprogram
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renaming, or the value definition can be treated as an explicit function definition;
see below.

Implicit value definitions An implicit value definition should usually be devel-
oped further before translation.

Explicit function definition An explicit function definition has a natural map-
ping onto a subprogram.

A function defined directly within a module is translated into a subprogram dec-
laration that belongs to the declaration list translated from the module. A function
defined in a local expression has both its declaration and its body in the declar-
ative part of the block corresponding to the local expression. See section 5.2.5.23
for translation of local expressions.

The result type of the RSL function is used to determine whether it should
become a function or a procedure. If the result type is Unit, the function should
become a procedure, since RSL functions with result type Unit do not deliver any
useful value and can occur before a semicolon.

In most programming languages, any type may be the result of a function. But
since, as in Ada, there may not be function types in the programming language,
an RSL function returning a function value may not be translatable. Similarly,
for such languages a curried function cannot be translated, as it could deliver a
function value when applied to only some of its parameters. Other programming
languages, such as C++, do not have such restrictions.

The partiality or totality of a function does not influence the translation of an
explicit function definition: the code for the function is that corresponding to the
expression. For the translation of a total function to be correct, we must, however,
be sure that the translated expression results in a subprogram that terminates. A
precondition can be treated in either of two ways, depending on the pragmatics of
the precondition. We can let the precondition have no influence on the code (except
perhaps for a comment re-stating it in programming language terms), because the
precondition is seen as something the developer has to ensure at every point of call,
and the function is not responsible for its behaviour when the condition is violated.
Alternatively, we can produce a more robust subprogram that, when called, checks
its precondition before executing the code corresponding to the real RSL function
expression, and raises an exception or similar if the check fails. This increased
robustness has a price at execution time and is therefore primarily relevant when
the subprogram is expected to be called from code that is not produced from an
RSL specification.

The parameter type of a function is very often a product type. Few of these
product types are used on their own in a specification, i.e. values of their type
are not constructed, assigned to variables, etc. Their only role is to define para-
meter types. The best translation strategy for such product types is to adopt the
following convention: If the parameter type of a function is a product type, the cor-
responding subprogram has one parameter for each element in the product. This
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number of parameters must then be present in the formal function application of
the explicit function definition to allow the formal parameters of the subprogram
to be established correctly. A function with parameter type Unit is most naturally
translated into a parameterless function.

Some programming languages, including Ada, allow user-defined overloading of
operators, as does RSL. Hence, both prefix and infix applications can be translated
in formal function applications. However, each programming language only has a
limited subset of the operators available in RSL; for the remaining ones suitable
function names must be chosen, either as part of the translation or when developing
the final RSL specification. The latter is recommended.

The value expression of an explicit function definition is translated into a function
or procedure body based on the result type. Section 5.2.5 describes how a value
expression is translated.

Implicit function definitions An implicit function definition should usually be
developed further before translation.

5.2.1.5 Variable declarations

A variable definition is translated into one or more variable declarations. If no type
already exists for the type expression, a separate type declaration is needed.

One thing to be aware of with respect to initialisations is that turning them into
Ada initialisation expressions will not always have the desired effect. For example, if
a function that is defined in the same module is used in the initialisation expression,
the exception Program Error will be raised at run-time, since the function body
cannot have been elaborated at the point of the variable declaration. For this
reason, an alternative to directly initialising the Ada variables might be considered:
to define an initialisation procedure for initialising all the variables that are defined
at the same level. This procedure would then have to be called in the statement list
of the body, at which point the elaboration is sufficiently progressed to guarantee
the absence of Program Error.

5.2.1.6 Channel declarations

See section 5.3 on translating concurrency.

5.2.1.7 Axiom declarations

An axiom should usually be considered not translatable except in very particular
contexts, such as those described in section 5.2.1.4. Axioms appearing in formal
scheme parameters should have no influence on the code (except perhaps for a
comment re-stating them in programming language terms), because an axiom is
seen as something the developer has to ensure at the points of instantiation.
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5.2.2 Class expressions
5.2.2.1 Basic class expressions

A basic class expression can occur in a number of different contexts, each leading
to its own rules for translation.

If a basic class expression occurs as the class expression of an object definition,
the object definition translates into a module, which for Ada will be a package
declaration and body (if needed). In the module, all the basic declarative items
resulting from the translation of the class expression are placed in the visible part
of the package declaration, and all the bodies, i.e. subprogram bodies and inner
package and generic package bodies, if any, are placed in the package body. The
translation of the various declarations in a basic class expression is described in
their respective sections. The main concern at the class expression level is to put
the resulting basic declarative items in a correct topological order that does not
violate the “define before use” rule, if the language has such a rule.

A basic class expression that occurs as the class expression of a scheme definition
translates into an Ada generic package declaration and body (if needed), unless the
scheme is only used in formal scheme parameters; see section 5.2.1.1. The generic
package is, apart from the generic formal part, constructed exactly as described
above for a package corresponding to an object.

A basic class expression occurring in the formal parameter part of a parameter-
ized scheme is used to determine the generic formal parameters, as described in
section 5.2.1.1.

When a basic class expression is a constituent of another class expression, e.g.
an extending class expression or a hiding class expression, it should be translated
as described in the sections dealing with the enclosing class expression.

5.2.2.2 Extending class expressions

Like a basic class expression, an extending class expression can occur in a number
of different contexts, each leading to its own rules for translation. In addition, the
nature of the constituent class expressions influences the possible translations of
the extending class expression.

An extending class expression occurring as the class expression of an object
definition translates into the Ada package declaration and body (if needed) corre-
sponding to the object. In practice, most extending class expressions that are to
be translated have the form

extend MODI(...) with class ... end

where MODI(...) is a scheme instantiation. In Ada there are basically two ways
of translating this. We can produce a package with an inner (nested) package in-
stantiation corresponding to the instantiation of MODI1, re-export all the entities
from the instantiation by Ada subtype declarations and subprogram renamings,
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and then add the declarations coming from the translation of the basic class ex-
pression. In this way the code produced for MOD1 is re-used. Alternatively, the
whole extending class expression could be turned into a corresponding “flat” basic
class expression, and then the resulting basic class expression could be translated
following the guidelines given in section 5.2.2.1. In this case, the first of those steps
need not actually be physically done at the RSL level, but can be handled as part
of the translation process. The first approach is preferable as it is more robust in
maintenance terms.

If the class expression that is being extended is a basic class expression, we
would naturally use the “flatten into a basic class expression” strategy. If the class
expression that is being extended is a hiding or a renaming class expression, we
would translate it according to the specific guidelines and then choose the nested or
the “flattened” approach as before. Similar considerations apply in the rare cases
where the second class expression is not a basic class expression.

An extending class expression that occurs as the class expression of a scheme
definition is translated just as if it occurred as the class expression of an object
definition, except that the result is a generic package; see section 5.2.1.1.

An extending class expression occurring in the formal parameter part of a param-
eterized scheme is used to determine the generic formal parameters, as described
in section 5.2.1.1.

5.2.2.3 Hiding class expressions

There are basically two approaches for translating a hiding class expression. One
is to move the hidden entities into the body of the Ada package or generic package
that results from the translation of the constituent class expression. This is not
always possible because of Ada’s requirement for defining entities before they are
used. The second approach is to produce a package or generic package with an
inner package containing the usual code for the constituent class expression and
then re-export (by Ada subtype declarations and subprogram renamings) only the
non-hidden entities.

A hiding class expression occurring in the formal parameter part of a parame-
terized scheme is used to determine the generic formal parameters, as described in
section 5.2.1.1.

5.2.2.4 Renaming class expressions

A renaming class expression can either be translated by translating the constituent
class expression and applying the renaming as a substitution on the result, or
by using an approach with an inner package like the one described for hiding class
expressions. In the second approach, the Ada subtype declarations and subprogram
renamings are used to provide the correct (new) names.
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A renaming class expression occurring in the formal parameter part of a param-
eterized scheme is used to determine the generic formal parameters, as described
in section 5.2.1.1.

5.2.2.5 Scheme instantiations

A scheme instantiation is generally translated into a package instantiation, unless
it occurs in one of the particular contexts described above where better alternatives
exist.

A scheme instantiation occurring in the formal parameter part of a parameter-
ized scheme is used to determine the generic formal parameters, as described in
section 5.2.1.1.

5.2.3 Object expressions
5.2.3.1 Element object expressions

The translation of an element object expression depends on how the object array
is translated; see section 5.2.1.2.

5.2.3.2 Array object expressions

An array object expression can be translated like an object array; see section 5.2.1.2.

5.2.3.3 Fitting object expressions

A fitting object expression that occurs as an actual scheme parameter (which is
normally the only place it occurs) is translated into a list of generic associations
where the fitting is reflected in the names used in the associations.

5.2.4 Type expressions

For each type expression occurring in a specification, a corresponding programming
language type must already exist or be defined, except for function types and
product types used as function parameter types; see section 5.2.1.4. However, it is
also important not to declare the same type twice, as discussed in section 5.1.3.2.

5.2.4.1 Type literals

Unit Since the type literal Unit is intended to be used as the parameter or result
type of functions in a specification, the type itself need not have a corresponding
type in the programming language. The treatment of Unit in parameter types is
described in section 5.2.1.4. If, however, we want to translate the type Unit on its
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own, it should be translated into a one-element enumeration type with an arbitrary
enumeration literal.

Bool All programming languages have a type that can be used as the implemen-
tation of Bool. The type Bool is translated into the predefined type Boolean in
Ada.

Int As discussed in section 5.1.1, the type Int causes a problem when we try to
preserve the semantics of the specification, since Int has infinitely many values.
If the type Int itself (as opposed to finite subtypes of it; see section 5.2.4.7) is
actually used in a specification, the best strategy is to perform an analysis of the
RSL specification to find the largest integer that is known to need a representation.
Then (if possible) declare an integer type that is sufficiently large. For example, in
Ada we could declare

type Int is range <:lower_bound:> .. <:upper_bound:>;

This type declaration has the advantage that the compiler will reject modules that
require too large integers (instead of introducing exceptions to reject them at run-
time). The type is called Int to indicate its relation to the RSL type Int and
in order not to conflict with the predefined Ada type names such as Integer.
Note that the RSL conversion operator int then needs to be translated into a
function with a different name, since Ada is not case sensitive. This type should be
declared in a library package, e.g. Int_Package, in order to provide adequate scope
and visibility, and to ensure that different abbreviation type definitions result in
compatible Ada subtype declarations.

Nat The type Nat has the same translation problem as Int. But assuming that
a type Int has been declared as described above, the declaration of an Ada subtype
corresponding to Nat would be

subtype Nat is Int range 0O .. Int’Last;

This subtype should be declared in a library package to provide adequate scope
and visibility.

Real This type causes even more problems than Int, because of the additional
aspect of accuracy discussed in section 5.1.1. If the type Real is used in a specifica-
tion, the best strategy is to perform an analysis of the RSL specification to find the
accuracy requirements and the largest real that is known to need a representation.
Then (if possible) declare a floating point type that is sufficiently large and precise.
For example, in Ada we could declare

type Real is digits <:decimal_precision:>
range <:lower_bound:> .. <:upper_bound:>;
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The type is called Real to indicate its relation to the RSL type Real and in
order not to conflict with the predefined Ada type names such as Float. Note that
the RSL conversion operator real then needs to be translated into a function with
a different name, since Ada is not case sensitive. This type should be declared
in a library package in order to provide adequate scope and visibility, and to en-
sure that different abbreviation type definitions result in compatible Ada subtype
declarations.

Char Since the type Char has as values the ASCII character set, it can be
translated into the Ada type Character.

Text Since Text is defined as Char*, it can be arbitrarily long and we could
consider translation strategies like those for general lists; see section 5.2.5.7. But
character lists should be treated as a special case that warrants a more efficient
implementation. The programming language may have a type that directly im-
plements character strings of varying length. Ada has a predefined type String.
However, once a variable of type String has been declared, its bounds (and there-
fore its length) are fixed. In order to allow for the dynamic behaviour of RSL
texts, a record type with a discriminant, like the following, should be used as the
translation of the type Text:

Text_Limit : constant := <:some_limit:>;
subtype Text_Index is Integer range O .. Text_Limit;
type Text(L : Text_Index := Text_Index’First) is
record
S : String(1l..L);
end record;

This type should be declared in a library package in order to provide adequate scope
and visibility, and to ensure that different abbreviation type definitions result in
compatible Ada subtype declarations.

5.2.4.2 Product type expressions

Product types play a special role as function parameter types, where they are used
to determine the number of parameters of the resulting subprogram, as described
in section 5.2.1.4. Product types that occur in other contexts should be translated
into record types, as shown in the following example:

Char x Bool
should in Ada be translated into

record
f_1 : Character;
f_2 : Boolean;
end record;



Translating sequential specifications 357

The component names are arbitrary, and the only requirement is that they are
locally unique within the record.

If the same product type occurs in several places within a specification, other
than as parameter types, it is important to declare the record type only once and
use subtype declarations for the other instances, as described in section 5.1.3.2.

5.2.4.3 Set type expressions

A set can be implemented in various ways depending on the element type, efficiency
requirements, etc. Most books on data structures contain adequate structures
for implementing sets that can be directly coded in the programming language.
However, a few issues should be kept in mind:

e The predefined equality and assignment of the programming language type
might not correspond to the RSL equality and assignment on sets.

e All set-related operations in RSL, which typically use special symbols, must
be potentially available as functions in the program.

e For Ada, it is recommended that one (or perhaps more) generic package(s) is
used to implement the set type constructor and that there is an instantiation
for each specific, unique set type. The generic declaration could for example
look like this:

generic

type Elem_type is private;
with function copy(el : Elem_type)

return Elem_type is <>;
with function equal(el,e2 : Elem_type)

return Boolean is <>;
with procedure assign(el : in out Elem_type;

e2 : Elem_type) is <>;
with procedure free(el : in out Elem_type) is <>;
package Set_Package is

type Set is private;
function empty_set return Set;
function cons_set(e : Elem_type; sl : Set) return Set;
function card(sl : Set) return integer;
function member(e : Elem_type; sl : Set) return Boolean;
function union(sl: Set; s2 : Set) return Set;
function inter(sl: Set; s2 : Set) return Set;
function minus(sl: Set; s2 : Set) return Set;
function supset(sl: Set; s2 : Set) return Boolean;
function supseteq(sl: Set; s2 : Set) return Boolean;
function subset(sl: Set; s2 : Set) return Boolean;
function subseteq(sl: Set; s2 : Set) return Boolean;
function equal(sl,s2 : Set) return Boolean;
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function copy(sl : Set) return Set;
procedure assign(sl: in out Set; s2 : Set);
procedure free(sl : in out Set);

private
—— full type declaration of type Set

end Set_Package;

The body will then define subprogram bodies.

5.2.4.4 List type expressions

Precisely the same translation considerations apply to list type expressions as to
set type expressions described in section 5.2.4.3. There is one significant additional
aspect of lists that is relevant to translation: lists are implicitly related to sets
via the inds and elems operations. If one or both of these operations are needed
for a particular list type, then it is necessary to implement the corresponding set
types. This added complexity might lead to declaring several generic packages for
defining list type constructors, one providing both the inds and elems operations
and requiring the set types as additional generic parameters (to avoid type con-
flicts), and others that do not provide the inds and/or elems operations. An Ada
specification of the former is given here:

with Int_Package; use Int_Package;
generic
type Elem_type is private;
type Elem_set_type is private;
type Integer_set_type is private;
with function copy(el : Elem_type) return Elem_type is <>;
with function equal(el,e2 : Elem_type) return Boolean is <>;
with procedure assign(el : in out Elem_type;
e2 : Elem_type) is <>;
with procedure free(el : in out Elem_type) is <>;
with function empty_set return Elem_set_type is <>;
with function cons_set(e : Elem_type; sl : Elem_set_type)
return Elem_set_type is <>;
with function member(e : Elem_type; sl : Elem_set_type)
return Boolean is <>;
with function empty_set return Integer_set_type is <>;
with function cons_set(e : Int; sl : Integer_set_type)
return Integer_set_type is <>;
package List_Package is
type List is private;
function empty_list return List;
function cons_list(e : Elem_type; 11 : List) return List;
function concat(ll : List; 12 : List) return List;
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function hd(11 : List) return Elem_type;
function t1(11 : List) return List;
function apply(l1l : List; i : Int) return Elem_type;
function len(l1l : List) return Int;
function elems(1l1l : List) return Elem_set_type;
function inds(11 : List) return Integer_set_type;
function copy(l1l : List) return List;
function equal(l1,12 : List) return Boolean;
procedure assign(ll: in out List; 12 : List);
procedure free(ll : in out List);

private
-- full type declaration of type List

end List_Package;

The body will then define subprogram bodies.

5.2.4.5 Map type expressions

Maps are quite similar to lists from a translation point of view. Moreover, the
list considerations originating from the inds and elems operations are exactly the
same as those from the dom and rng operations of a map. This might, as with
lists, lead to declaring several generic packages for map type constructors. An Ada
specification of a generic package offering both operations is given here:

generic

type Domain_type is private;
type Range_type is private;
type Domain_set_type is private;
type Range_set_type is private;
with function copy(el : Domain_type) return Domain_type is <>;
with function equal(el,e2 : Domain_type) return Boolean is <>;
with procedure assign(el : in out Domain_type;

e2 : Domain_type) is <>;
with procedure free(el : in out Domain_type) is <>;
with function copy(el : Range_type) return Range_type is <>;
with function equal(el,e2 : Range_type) return Boolean is <>;
with procedure assign(el : in out Range_type;

€2 : Range_type) is <>;
with procedure free(el : in out Range_type) is <>;
with function empty_set return Domain_set_type is <>;
with function cons_set(e : Domain_type; sl : Domain_set_type)

return Domain_set_type is <>;
with function member(e : Domain_type; sl : Domain_set_type)
return Boolean is <>;

with function inter(sl : Domain_set_type; s2 : Domain_set_type)
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return Domain_set_type is <>;
with function equal(sl,s2 : Domain_set_type)
return Boolean is <>;
with procedure free(sl : in out Domain_set_type) is <>;
with function empty_set return Range_set_type is <>;
with function cons_set(e : Range_type; sl : Range_set_type)
return Range_set_type is <>;
with function member(e : Range_type; sl : Range_set_type)
return Boolean is <>;
package Map_Package is
type Map is private;
function empty_map return Map;
function cons_map(d : Domain_type; r : Range_type; ml : Map)
return Map;
function extend(ml,m2 : Map) return Map;
function override(mi,m2 : Map) return Map;
function dom(ml : Map) return Domain_set_type;
function rng(ml : Map) return Range_set_type;
function apply(mil : Map; d : Domain_type) return Range_type;
function restricted_by(ml : Map; ds : Domain_set_type)
return Map;
function restricted_to(ml : Map; ds : Domain_set_type)
return Map;
function copy(mil : Map) return Map;
function equal(mi,m2 : Map) return Boolean;
procedure assign(ml: in out Map; m2 : Map);
procedure free(ml : in out Map);
private
-- full type declaration of type Map
end Map_Package;

The body will then define subprogram bodies.

5.2.4.6 Function type expressions

Since the programming language might not have function types, a specification that
is to be translated should only contain function type expressions in explicit value

or function definitions. Translation of function types occurring in such contexts is
described in section 5.2.1.4.

5.2.4.7 Subtype expressions

An abbreviation type definition that introduces a name for a subtype expression
should be translated into a subtype declaration if the programming language has
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subtypes, as Ada does. The restriction part of the subtype expression might not
always be translatable; in such cases a subtype declaration should still be declared
in order to introduce the RSL subtype name, but with no constraint. The only
kinds of restrictions that can be translated into Ada are restrictions that limit
a subtype to an interval, as they can be translated into range constraints, and
restrictions that limit a variant type to a single value, as they can be translated
into discriminant constraints.

If a subtype of Int, Limited Int say, is defined with the purpose of reflecting
the actual minimal and maximal values, e.g. min_val and max_val, needed by the
specification, such a subtype should be translated in Ada into an integer type
declaration of the form

type Limited_Int is range min_val .. max_val;

This type declaration would eliminate the need for a type that tries to implement
the unlimited type Int, as described in section 5.2.4.1.

If a subtype expression appears in another context, e.g. in a function signature,
we first declare a subtype and then use that subtype.

5.2.4.8 Bracketed type expressions

A bracketed type expression is translated as the enclosed type expression.

5.2.4.9 Access descriptions

Access descriptions are not translated into anything, as there is no corresponding
concept in Ada and they do not affect the functionality of a function; they merely
restrict what can occur in the expression that constitutes the body of the function.

5.2.5 Value expressions

RSL does not distinguish between “expressions” and “statements”, which is some-
thing most programming languages, including Ada, do. This has two implications
for the translation of expressions. First, some expressions should be translated
into statements rather than expressions. They are easy to identify because their
type is Unit, e.g. assignment expressions and function calls with result type Unit.
Secondly, some structured RSL expressions, that might not be of type Unit, only
have programming language counterparts that are statements, e.g. a case expres-
sion over a variant type. The translation of such an expression depends on the
context, but it typically involves declaring an auxiliary variable that is assigned to
in the structured statement and then used in the translation of the context. The
declaration of auxiliary variables should take place as close to the expression as
feasible and may therefore require the introduction of a block statement.
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5.2.5.1 Value literals

Unit literal The Unit value literal is intended to be used as the actual parameter
of functions in a specification. Such functions are translated into parameterless
functions, as described in section 5.2.1.4. Therefore the literal itself need not
have a corresponding value in the program. If, however, the type Unit has been
translated on its own, as described in section 5.2.4.1, the translation of the Unit
literal is the corresponding enumeration literal.

Bool literals A Bool literal is translated into the corresponding boolean literal;
in Ada true and false.

Int literals An Int literal is translated into the same programming language
integer literal. The only possible problem is that it might be too large for the
programming language type involved; see section 5.2.4.1.

Real literals A Real literal is translated into the same real literal. There are
two potential problems with this: the resulting real literal might be too large for
the programming language type involved and, for Ada, the implicit conversion
from universal real to the relevant Ada floating point type might result in a loss of
precision; see section 5.2.4.1.

Char literals A Char literal is translated into a corresponding programming
language character literal.

Text literals Assuming that the type Text for Ada has been translated as de-
scribed in section 5.2.4.1, i.e. as the record type Text, a text literal is translated
into a record aggregate:

Text’ (L => <:the length:>, S => <:the string literal:>)

One should be aware that “escaped” characters in the RSL Text literal need to be
dealt with as part of the translation.

5.2.5.2 Names

A name that appears as an expression is just translated as itself, as it is known to
represent a value or a variable.

5.2.5.3 Pre-names

Pre-names only occur in postconditions, and they therefore need no translation.
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5.2.5.4 Basic expressions

chaos One would typically not find chaos in a specification that is to be trans-
lated. But if it occurs, it probably signals an error of some kind, and a reasonable
translation would therefore be to raise an exception that should be declared in a
library package.

skip Since skip does nothing and is of type Unit, it is translated into a program-
ming language statement that does nothing; for Ada this is the null statement.

stop Apart from special uses of stop in combination with external choice, for
which the translation is described in section 5.3, we would not expect stop to
appear in a specification that is to be directly translated. But if it occurs, it
probably signals an error of some kind, and a reasonable translation would therefore
be to raise an exception that should be declared in a library package.

swap One would typically not find swap in a specification that is to be trans-
lated. But if it occurs, it probably signals an error of some kind, and a reasonable
translation would therefore be to raise an exception that should be declared in a
library package.

5.2.5.5 Product expressions

A product expression that is the outermost actual parameter of an n-ary function
is translated into n actual parameters. A product expression that occurs in other
contexts should be translated into a qualified record aggregate corresponding to
the guidelines for translating product type expressions; see section 5.2.4.2.

5.2.5.6 Set expressions

Assuming that the relevant set type expression has been translated using a generic
package, as suggested in section 5.2.4.3, set expressions should be translated as
follows, utilizing the overloading facility of Ada:

e Ranged set expression. This expression denotes an integer set. The corre-
sponding programming language type is here called Int_set. An expression
of the form {exprl .. expr2} is translated into

— a declaration of an auxiliary variable:
s : Int_set := empty_set;
— a statement:

for i in T (exprl) .. T (expr2) loop
s := cons_set(i,s);
end loop;
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where 7 (e) is the translation of e. After this statement s is the value of the
ranged set.

e Enumerated set expression. An expression of the form {exprl, expr2, ..,
exprn} is translated into

cons_set (7 (exprl), cons_set(T (expr2), ...,
cons_set (7 (exprn), empty_set)...))

e Comprehended set expression. Such an expression is generally not directly
translatable, but should be developed further.

5.2.5.7 List expressions

Assuming that the relevant list type expression has been translated using a generic
package, as suggested in section 5.2.4.4, list expressions should be translated as
follows, utilizing the overloading facility of Ada:

e Ranged list expression. This expression denotes an integer list. The corre-
sponding programming language type is here called Int_list. An expression
of the form (exprl .. expr2) is translated into

— a declaration of an auxiliary variable:
1 : Int_list := empty_list;
— a statement:

for i in reverse 7T (exprl) .. 7T(expr2) loop
1 := cons_list(i,1);
end loop;

where T (e) is the translation of e. After this statement 1 is the value of
the ranged list.
e Enumerated list expression. An expression of the form (exprl, expr2, ...,
exprn) is translated into

cons_list (7 (exprl), cons_list(7 (expr2), ...,
cons_list (7 (exprn), empty_list)...))

e Comprehended list expression. Such an expression is generally not directly
translatable, but should be developed further.

5.2.5.8 Map expressions

Assuming that the relevant map type expression has been translated using a generic
package, as suggested in section 5.2.4.5, map expressions should be translated as
follows, utilizing the overloading facility of Ada:

e Enumerated map expression. An expression of the form [exprll —expr2l,
exprl2 —expr22, ..., exprln —expr2n| is translated into
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cons_map(7 (expril),T (expr2l),
cons_map (7 (expr12),T (expr22),
cons_map(...,
cons_map (7 (exprln),T (expr2n),
empty_map)...))

where T (e) is the translation of e.
e Comprehended map expression. Such an expression is generally not directly
translatable, but should be developed further.

5.2.5.9 Function expressions

For languages that have function values, a function expression should be translated
into a function definition, i.e. a name for the function typically has to be introduced,
and this name can then be used in place of the function expression.

5.2.5.10 Application expressions

An application expression is a list application, a map application, or a function
application. List and map applications have corresponding apply functions defined
for the types; see sections 5.2.4.4 and 5.2.4.5. A function application expression
is translated into a function or procedure call depending on the result type, as
described in section 5.2.1.4. If the function is n-ary and it is being called with only
one (composite) actual parameter, the translation must result in the subprogram
getting n parameters. This can be done by component selection for the actual
parameters. For example, for a function g with two formal parameters and an
actual composite value av, the call will be g(av.f_1, av.f_2), where £_1 and £_2
are the component names, as described in section 5.2.4.2. In the case of a complex
actual parameter expression, e.g. one with side-effects, an auxiliary variable might
have to be introduced.

5.2.5.11 Quantified expressions

A quantified expression is generally not directly translatable, but should be devel-
oped further.

5.2.5.12 Equivalence expressions

As discussed in section 5.1.1, equivalence expressions cannot be translated if there
are side-effects, non-determinism or non-convergence involved. The only cases
where it can be faithfully translated are those where the equality operator could
be used, i.e. the arguments are read-only and convergent.
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5.2.5.13 Post expressions
A value defined by a post expression should generally be developed further into an

explicit function definition before translation. The only exception is post expres-
sions used in formal scheme parameters, as they are ignored in the translation.

5.2.5.14 Disambiguation expressions

If the programming language does not have overloading, a disambiguation expres-
sion can be translated as the disambiguated expression. If overloading exists in
the programming language, a disambiguation expression should be translated into

a qualified expression to aid in overload resolution. The only requirement for the
translation is that a type name must be defined for the type expression.

5.2.5.15 Bracketed expressions

A bracketed expression is translated into a bracketed expression.

5.2.5.16 Infix expressions

Value infix expressions The translation of a value infix expression is deter-
mined by its infix operator; see section 5.2.7.

Axiom infix expressions The translation of an axiom infix expression is deter-
mined by its infix connective; see section 5.2.8.

Statement infix expressions The translation of a statement infix expression is
determined by its infix combinator; see section 5.2.9.

5.2.5.17 Prefix expressions

Value prefix expressions The translation of a value prefix expression is deter-
mined by its prefix operator; see section 5.2.7.

Axiom prefix expressions The translation of an axiom prefix expression is
determined by its prefix connective; see section 5.2.8.

Universal prefix expressions A universal prefix expression is used to quantify
over all states. This is not feasible to do in a program. It is therefore not considered
suitable for translation.
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5.2.5.18 Comprehended expressions

The only comprehended expressions that can be expected in a specification that
is to be translated is one where the operator is || or [], which are often used in
connection with object arrays. An example of translation of the former can be
found in section 5.4.2. The latter may be translated into a select statement.

5.2.5.19 Initialise expressions

The expression initialise is intended to be used in axiomatic specifications for
expressing properties of the initial state. Such properties should be achieved by
means of explicit initialisations in specifications that are to be translated. There
is one context where it might be relevant to translate initialise: when it is being
used to re-initialise the state to an explicitly defined initial state. The translation of
class expressions that are subject to such re-initialisations should declare a param-
eterless procedure, initialise, that contains assignments (see section 5.2.5.20)
corresponding to the explicit initialisations of the local variables; initialise is then
translated into a call of initialise.

5.2.5.20 Assignment expressions

For types translated into types involving access types, an assignment expression
cannot be translated directly into a programming language assignment statement,
since sub-structures have to be copied. Instead an assign procedure must be
called; see section 5.2.1.3. For Ada, the overload resolution will then ensure that
the appropriate assign procedure is called, provided that the correct visibility has
been established.

For other types, the built-in Ada assignment can be used.

5.2.5.21 Input expressions

See section 5.3 for the translation of concurrent specifications.

5.2.5.22 Output expressions

See section 5.3 for the translation of concurrent specifications.

5.2.5.23 Structured expressions

Local expressions If a local expression is the value expression of an explicit func-
tion definition, the locally declared entities can become local declarations within
the subprogram body. A local expression of type Unit can be translated directly
into a block statement. If the type of the local expression is not Unit, an auxil-
iary variable must be declared, followed by a block statement with a translation
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of the declaration of the entities of the local expression and a statement part that
assigns the result to the auxiliary variable. That variable is then used at the place
corresponding to the original local expression.

Let expressions Only the translation of let expressions containing explicit let
definitions is feasible; a let expression containing a typing or an implicit let defi-
nition should be further developed prior to translation. An explicit let definition
introduces one or more names in a local scope. Hence, in general, a block statement
is needed. In that respect the translation of a let expression is similar to that of a
local expression described above. The names introduced in a let definition may be
overloaded, and therefore we may have to declare each of them as a parameterless
function. If they are not locally overloaded, they should be declared as constants,
since doing so makes the program both easier to read and more efficient.

If expressions If an if expression is the value expression of an explicit function
definition, it can be translated into an if statement within the subprogram body,
each branch having a return statement at the end. An if expression of type Unit
can always be translated directly into an if statement — for languages without
an elsif construct, nested if statements should be used. The translation of other
if expressions will, for languages that do not have conditional expressions, require
the introduction of an auxiliary variable, followed by an if statement that assigns
a value to the variable in each branch. The variable is then used at the place
corresponding to the original if expression.

Case expressions Whether a case expression can be translated into code that
includes a case statement depends on the type of the value expression of the case
expression and the nature of the patterns. As most programming languages only
allow case statements over discrete types, and some even only over integer types, at
least translations of case expressions over the types Real and Text have to result
in if statements.

Variant types are often used in case expressions, and assuming that the variant
type has been translated as described in section 5.2.1.3, case expressions can be
translated into Ada for Colour and Tree as follows:

For Colour, assuming that exprl, expr2 and expr3 are of type Unit

case ce of
red — exprl,
green — expr2,
_ — expr3
end
is directly translatable into
case T (ce) is
when red => T (exprl)
when green => T (expr2)
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when others => T (expr3)
end case;

A wildcard pattern at the outermost level is translated into the Ada choice others.
Inner wildcard patterns result in no local declarations for the corresponding com-
ponents.

If the case patterns has not covered all possibilities, a final

when others => 7 (swap)

should be added. Following the guidelines of 5.2.5.4, T (swap) will be raise swap,
where swap is a user-defined exception.
For Tree, assuming that exprl and expr2 are of type Unit

case te of
empty — exprl,
node(l,v,r) — expr2
end
is translated as follows. (Remember that a discrete type Tree kind and a kind
field were introduced to distinguish the two variants. This can now be used in
translating the case expression.)

aux_t : constant Tree := T (te);

case aux_t.kind is
when empty => 7 (exprl)
when node =>

declare
1l : Tree := aux_t.left;
v : Elem := aux_t.val;
r : Tree := aux_t.right;
begin
T (expr2)
end;
end case;

The auxiliary constant aux_t is introduced to ensure that 7(te) is only evaluated
once. We have assumed that I, v and r are not locally overloaded within expr2; if
they had been overloaded they would have been translated into parameterless func-
tions returning the appropriate fields. Note that if Tree had not had destructors,
the RSL pattern matching would have been non-deterministic. We would typically
ignore such kinds of non-determinism, as discussed in section 5.1.1, and produce
code like the above.

If product or list patterns occur in a case expression, the case expression is
translated into if statements with inner blocks for declaring entities resulting from
the pattern matching.
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If an inner pattern other than an identifier occurs in a case expression, the case
expression is translated into (potentially nested) if statements with inner blocks
for declaring entities resulting from the pattern matching.

If the type of a case expression is not Unit, an auxiliary variable must be de-
clared, as explained for the translation of if expressions.

While expressions A while expression can be directly translated into a while
statement. If the translation of the logical value expression results in statements,
its translation should be made into a parameterless function that is then called
in the condition part of the while statement, or the statements should be placed
prior to the loop as well as at the end of the loop.

An infinite RSL loop, i.e. one of the form while true do ... end, can be trans-
lated into an infinite loop of the target language instead of a while with a trivial
condition.

Until expressions If until statements do not exist in the target language, an
until expression can be translated into a while statement by following the RSL
context-independent expansion of until expressions. A better translation can be
achieved by using an infinite loop with an exit statement. For example:

do exprl until expr2 end
in Ada becomes
loop
T (exprl)
exit when 7 (expr2);
end loop;

For expressions The list limitation of a for expression can be of any list type.
Hence, in the resulting code, it may be necessary to build the list first and then
loop from 1 to the length of the list. However, very often the list limitation is of
the form

id in (exprl .. expr2)
In such cases it would be unnecessary to build the list at all. Instead the resulting
for loop can directly loop over the range. In Ada this would be

for id in T(exprl) .. T (expr2) loop
end loop;

5.2.6 Names

Names should be preserved by the translation as much as possible; see section
5.1.3.4 for a discussion of this issue.
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A qualified identifier with a non-empty qualification is translated into the same
name when the target language allows, as Ada does. Qualification of operators
might not be supported, in which case a different naming approach has to be
adopted. In Ada, a qualified operator like O.(+) is translated into 0."+". This
approach is applicable to all RSL operators which also exist in the target language.
For the other RSL operators, identifiers will already have been introduced and the
usual translation of qualified identifiers can be used; see 5.2.7.

5.2.7 Identifiers and operators

Not all RSL operators are necessarily operators in the target language. For these
operators, identifiers have to be introduced by the translation.

5.2.7.1 Infix operators

The translation of an infix expression involving the equality or inequality operator
depends on the type of the operands. If the translation of the operand type has
introduced a special equal function, as described in section 5.2.1.3, then that
function is called (negated in the case of inequality). Otherwise the built-in equality
and inequality operators can be used directly.

Addition, subtraction, multiplication and division of integers and reals can be
directly translated as long as no special implementation is required of those types;
see section 5.2.1.3.

Exponentiation of integers can be translated directly into integer exponentiation.
The target language might have limitations on real exponentiation, in which case a
function needs to be introduced as part of the translation for the operation. This is
the case for Ada, where the built-in exponentiation can only raise a floating point
value to the power of an integer.

Function composition cannot be translated in all contexts. But if a function
composition, with operands that are function names, occurs in a function value
definition, it can be translated into nested function calls within the body of the
function being defined.

Comparison operators for integers and reals can be directly translated as long as
a special implementation of those types is not required; see section 5.2.1.3.

The set, list and map operators are translated into the function names as de-

scribed in the translation of the type constructors in sections 5.2.4.3, 5.2.4.4 and
5.2.4.5.

5.2.7.2 Prefix operators

The integer and real abs can typically be translated directly into corresponding
abs functions of the target language.
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Application of the real conversion operator can typically be translated directly
into a type conversion of the target language. Note that since Ada is not case
sensitive, real(e) is the same as the predefined type conversion Real(e).

The int conversion operator has the semantics of truncating the real value. In the
target language the semantics of conversion to integer is often that of rounding to
the nearest integer. Hence, we must define a function for doing the RSL conversion.
Note that, if the guidelines of section 5.2.4.1 have been followed for translating the
type Int, the function in Ada must have a name different from int.

The remaining prefix operators work on sets, lists and maps and they are trans-
lated into the function names, as described in the translation of the type construc-
tors in sections 5.2.4.3, 5.2.4.4 and 5.2.4.5.

5.2.8 Connectives
5.2.8.1 Infix connectives

When translating infix connectives we must be aware of the short-circuit nature
of their RSL semantics, e.g. that a A b is defined as if a then b else false end.
This means that we have to be careful in deciding whether A, for example, can be
translated into a logical conjunction in the target language.

There are three infix connectives:

e Boolean and (A). In Ada this would be translated into and then.

e Boolean or (V). In Ada this would be translated into or else.

e Boolean implication (=-). This operator may not exist in the target language,
but since a =b is equivalent to ~a Vv b, it can be translated as such.

5.2.8.2 Prefix connectives

There is only one prefix connective, the Boolean not (~) and it is translated into
logical negation in the target language.

5.2.9 Infix combinators

There are five infix combinators:

e External choice ([]). This is only relevant to translation in the context of
concurrent specifications; see section 5.3.

e Internal choice ([|). One would typically not use this in a specification that
is to be translated. But if it occurs, we could adopt a pragmatic approach,
inspired by the discussion of semantics preserving translation in section 5.1.1,
and just translate the operand that is easiest to translate and ignore the other

one — an internal choice made by “the translator”.!

1 This translation, however, does not fully reflect the original meaning
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e Concurrent composition (||). See section 5.3 on guidelines for translating
concurrent specifications.

e Interlocked composition (}}). The interlock combinator in RSL is used to
axiomatically specify th